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Abstract
Background: Nonlinear dynamics, especially the chaos characteristics, are useful in analyzing 
bio‑potentials with many complexities. In this study, the evaluation of arm‑tip force estimation method 
from the electroencephalography  (EEG) signal in the vertical plane has been studied and chaos 
characteristics, including fractal dimension, Lyapunov exponent, entropy, and correlation dimension 
characteristics of EEG signals have been measured and analyzed at different levels of forces. Method: 
Electromyography signal was recorded with the help of the BIOPEC device  (the Mp‑100 model) and 
from the forearm muscle with surface electrodes, and the EEG signals were recorded from five major 
motor‑related cortical areas according to 10–20 standard three times in a normal healthy 33‑year‑old male, 
athlete and right handed simultaneously with importing a force to 10 sinkers weighing from 10 to 100 
Newton with step 10 Newton. Results: The findings confirm that force estimation through EEG signals is 
feasible, especially using fractal dimension feature. The R‑squared values for Fractal dimension, Lyapunov 
exponent, and entropy and correlation dimension features for linear trend line were 0.93, 0.7, 0.86, and 
0.41, respectively. Conclusion: The linear increase of characteristics especially fractal dimension and 
entropy, together with the results from other EEG and neuroimaging studies, suggests that under normal 
conditions, brain recruits motor neurons at a linear progress when increasing the force.
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Introduction
One of the ways to check the performance of 
the muscle in the body and also to estimate 
the amount of force of it is to record and 
process electromyography  (EMG) signals. 
There are some problems related to EMG 
signal and recording of it that can be 
invasive and painful and need for existence 
physicians specialize in signal recording to 
prevent damage to the nerve and muscle, as 
well as the correct selection of the desired 
muscle, or in a noninvasive manner that 
is superficial and the deeper muscular 
signal is not accurately recorded and it 
can interfere with the signals and noise of 
adjoining muscles.

In the field of motor control, it is a basic 
problem to quantify the brain signal that 
modulates the force in a motor task: 
One of the few available and powerful is 
electroencephalography  (EEG).[1] In EEG, 

the strength of the brain signal is typically 
estimated as the so called movement-
related cortical potential (MRCP). It is 
desirable to find new quantities that can 
extract more information from the brain 
signal; one of these quantities can be fractal 
dimension that is a good candidate because 
of its intrinsic power in characterizing 
complexity.

A linear relationship have found between 
the fractal dimension of EEG and the force 
of the hand.[1] It is observed that the fractal 
dimension of EEG is suitable for calculating 
brain quantities of great complexity. The 
four factors were evaluated, including 
force level, physiological period, fractal 
dimension calculations, and electrode 
recording. An increase in fractal dimension 
during the motor activity indicates that the 
brain increases motor neurons’ use and 
their rate of fire. Therefore, increasing the 
force will increase the fractal dimension of 
the EEG signal.[1] It was suggested to assist 
persons with disabilities by estimating 
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force/torque information from the brain activity and 
estimating the muscle activity by EEG through principal 
component analysis and recursive least squares methods.[2] 
The results have shown that the estimation of EMG of EEG 
is feasible, and this indicates the high potential of EEG to 
assist in the analysis of muscle activity.[2]

Some research have been done on the relationship between 
cortical motor activity and voluntary muscular activity 
and concluded that with increased muscle activity and 
strength, MRCP range increased, and there is a strong 
correlation between force and MRCP.[3] The effect of force 
and movement on the magnitude and increasing of brain 
signals have been studied and shown that the rate of EEG 
changing and its correlation with muscle activity depend on 
the amount of using force and motions of the head or body 
and have a regular pattern, the result is that EEG signal is 
directly related to force and movement.[4]

It is stated that nonlinear dynamics has recently been 
widely used to analyze the biological data.[5] Their 
results show that systemic variations of EEG signal are 
significantly correlated with muscle strength and fatigue. 
A  study has been showed that a positive relationship is 
observed between the strength of EEG signal source and 
hand compression force at the time of simultaneous EEG 
signal recording. There is communication over a short 
period of time.[6] A study has been conducted of hand 
motion reconstruction using EEG and EMG signals. In 
this study, the focus is on assistive devices and prosthetics 
for arm cuts that EEG and EMG signals have been 
recorded and reconstructed using a noninvasive method, 
and hand motion reconstruction was performed using the 
high‑precision neural network algorithm.[7] They have 
shown that synchronization of EEG and EMG signal in 
the beta range is directly related to varying degrees of 
subjective consideration, and the amount of contraction 
and the peak of signals’ coordination in the beta range 
is in high consideration and maximum contraction.[8] A 
study called multivariate autoregressive modeling has 
been performed to analyze the interaction between EEG 
and EMG signals in the human body and showed that the 
interaction of information from the brain to muscle was 
delayed in appropriate physiological conditions with little 
delay.[9] A study of upper limb function estimation using 
EEG and EMG signals has been done and stated that 
EMG are widely used in the control of limb‑bound robots 
to estimate individuals’ intention to move and perform 
movement.[10] It is important to use the brain signals to 
estimate muscle strength, especially when it is not possible 
to record EMG signal.[11] Reached the existence of chaos 
phenomena in the Two‑Link Arm driven by six muscles 
model controlled with reinforcement learning that using 
tools such as bifurcation maps, Lyapunov exponents, 
phase‑plane trajectories, and spectral analysis using fast 
Fourier transform. The results yield that chaos phenomena 
may occur in the overall system by changing the some 

internal parameters of muscles that have a physiological 
explanation.[12]

In patients with spinal cord and paralysis in organs, 
especially neck paralysis, organs are involuntary, and 
it is not possible to measure and estimate muscle force 
voluntarily, but if force can be achieved through the 
noninvasive EEG signal, it can stimulate and move the 
individual’s organs as much as needed by later external 
stimuli. This method has ambiguous or obscure points, 
such as whether the correlation between the two signals is 
such that one can obtain the desired features to calculate 
the force or whether the specified points are appropriate 
for recording an EEG signal or what areas of the cerebral 
cortex are most suitable for testing and whether there is 
a relationship that leads to the discovery of a precise and 
generalizable relationship for all individuals between the 
two signals. In this study, it was tried to overcome the 
previous problems of methods to estimate muscle force 
from EMG signal and improve them, the correlation 
between EMG and EEG signals was evaluated to study 
the feasibility of muscle force estimation by EEG signal. 
Chaos features of EEG were extracted in this study. The 
theory of chaos has been one of the scientific researches 
of various fields in recent decades, but in fact, its simple 
concept is rooted in the basic human perceptions of the 
world. From the point of view of chaos theory, complex 
systems are merely chaotic in appearance, and as a 
result, appear irregular and random, while they may be 
a result of a given function with a definite mathematical 
formula.[11]

Complex time series, such as received signals from the 
brain, are assumed to be unpredictable. While these series 
are likely to be the result of a certain dynamic nonlinear 
process, or rather chaotic, and therefore, they will be 
predictable. Many traditional analysis tools analyze these 
signals assuming it is unpredictable, while in fact, the 
occurrence of targeted behaviors in biological systems 
contradicts it.

Methods
Subject and motor task

One healthy 33‑year‑old right‑handed male was participated 
in this study. The individual was asked to raise each weight 
10  times in a 2 min period with a 2 s interval to raise and 
lower the weights and 1 s rest between each contraction 
in a vertical direction at an angle of 90° upward by the 
forearm. He was also asked to relax without distraction 
and with full focus on avoiding blinking, shaking his head 
and body, mouth and jaw, talking, squeezing teeth and lips 
while raising weights. Furthermore, disturbing factors of 
focus such as driving light and noise were eliminated from 
the environment. After each contraction, the muscles were 
rested for 30  min. This was done for ten different weights 
of 10–100 Newton with step 10 Newton over a day, the 
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weights have been applied in sequential order from lowest 
weight to highest and then the same procedure was repeated 
over the next 2 days. At the end of the 3rd day of the signal 
recording, another signal recording with the same weights 
was performed in the form of contraction for each weight 
as the test signal recording so that after performing the 
investigation and obtaining the force estimation relation; 
this signal was used as the test signal. After recording 
the signals and completing the task, the recorded EMG 
signal and EEG signal obtained from the beta band were 
transferred to MATLAB R2017a to perform processing and 
feature extraction.

Data recording

Electromyogram

Surface signal recording was performed by two electrodes 
on the forearm and a reference electrode in the wrist area 
for EMG signal recording. EMG of muscles was obtained 
from BIOPAC system, Model MP150  (Biopac Systems, 
2010). The subject was asked to sit behind a special table. 
The height of this table is adjustable that the shoulder 
and the person’s body meet a 90° angle. He has no 
neuromuscular problems. Ag–AgCl surface electrodes were 
used to record EMGs. For bipolar recording, the electrodes 
of 8 mmAg–AgCl BIOPAC‑EL208S were attached to 
the subject’s skin. The EMG signals were obtained by 
5000 gain factor amplifiers  (BIOPACEMG100A) with a 
sampling rate of 1 kHz.

Electroencephalogram

EEG signals were recorded from scalp at five cortical 
locations. These five locations roughly overlaid major 
cortical sensory motor regions involved in motor control 
and exhibited prominent MRCP: The contralateral  (C3) 
and ipsilateral  (C4) primary sensorimotor cortices, 
the supplementary motor area  (Cz), the central frontal 
lobe  (Fz), and the central parietal lobe  (Pz).The electrodes 
were placed at these locations according to the international 
10–20 positioning method. A  reference electrode was 
also attached to the auricle. The Subject was seated in a 
comfortable chair suitable for his height and weight in front 
of the BIOPEC device  (the Mp‑100 model). The scalp at 
the recording places was first cleaned using alcohol pads. 
Conductive gel was then applied to connect the recording 
surface of the electrodes to the scalp. The impedance 
of each EEG channel was maintained below 10KΩ, 
determined by an electrode impedance meter. All the metal 
tools were out of order. He was provided with the proper 
weights already prepared.

The time taken for recording the signals for each weight 
was 2  min. The sampling frequency was 1000 Hz. The 
image of EMG measurement device and a sample of 
recorded EMG signal are shown in Figure 1, and the image 
of EMG measurement device and a sample of recorded 
EEG signal are shown in Figure 2.

Then, the time from rise to the peak of each muscle 
contraction was determined by muscle‑related signals. 
Chaos features of EEG were also extracted during the 
time of the rise range to the peak obtained from EMG 
signal. For each signal, 10 numbers were extracted as the 
corresponding features, and the mean of the 10 numbers 
was obtained, and the result was considered as the 
desired feature for the specified weights and series. The 
same procedure was done for each of the three recorded 
signal series and was performed separately for each 
channel  (every 5 channels). Then, according to the tables 
based on the results, averaging of three series of signal 
recordings was done, and the amount of standard deviation 
was calculated and its Error bar graph was plotted and 
the polynomial trend lines by order 1, 2, and 3 and linear 
trend were added. A  Polynomial equation is always in the 
form Y  = A0  + A1X  + A2×2+… + AkX

K  +  C. The number 
of coefficients can be from 2 to 8A polynomial of order 
k‑1 can be passed through k points, so that more or fewer 
curves or “‘hills” can be added or taken away for accuracy 
purposes.[13] R‑squared value measures the trend line 
reliability and the near R2 is to 1, the better the trend line 
fits the data. This value was calculated for linear trend line 
and third‑order polynomial trend line.

Results
Figure  3 shows the fractal dimension output values in 
the Fz, Cz, Pz, C3, and C4 channels in three times of the 
signal recording, with mean values and standard deviations 
in terms of the amount of force applied to the muscle. 
The standard deviations are  <0.0121. As it can be seen in 
Figure  3, the numerical values of fractal feature increase 
with increasing force, with an almost regular rhythm. The 
average value of all three series of signal recordings is very 
close to the fixed values and has a small standard deviation.

Figure  4 shows the Lyapunov exponent output values in 
the Fz, Cz, Pz, C3, and C4 channels in three times of the 
signal recording, with mean values and standard deviations 
in terms of the amount of force applied to the muscle. The 
standard deviations are <0.0254. In Figure 4, the Lyapunov 
exponent values increase with a relatively irregular rhythm 
at most force values as the force increases, but decrease 
at 30 Newton and 80 Newton. The mean values of all 
three series of signal recordings are close to the fixed 
values and have a low standard deviation. However, the 
values of the standard deviation of the data are somewhat 
increased compared to the standard deviation of the fractal 
specificity.

Figure  5 shows the Entropy output values in the Fz, Cz, 
Pz, C3, and C4 channels in three times of the signal 
recording with mean values and standard deviations in 
terms of the amount of force applied to the muscle. The 
standard deviations are  <0.0120. In Figure  5, the values 
of the entropy feature increase with increasing force with 
a relatively regular rhythm that increases at most force 
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values, but decreases at 70 Newton, but to a large extent 
can be expressed that in all graphs, as the amount of force 
exerted on the muscle increases, the entropy increases. The 
average value of all three series of signal recordings is 
close to the fixed values and has a small standard deviation. 
However, the values of the standard deviation of the data 
are slightly increased compared to the standard deviation of 
the fractal feature.

Figure  6 shows the correlation output values in the Fz, 
Cz, Pz, C3, and C4 channels in three times of the signal 
recording, with mean values and standard deviations in 
terms of the amount of force applied to the muscle. The 
standard deviations are  <0.0085. In Figure  6, the values 
of the correlation properties are relatively irregular with 
increasing force, so that at some values the force is 
relatively increasing, but decreasing at 50 Newton and 70 
Newton, and it cannot be stated that at all curves increase 
with increasing amount of force applied to the muscle. The 
average value of all three series of signal recordings is 
close to the fixed values and has a low standard deviation. 
However, the standard deviation values of the data are 
increased compared to the standard deviation values of 
fractal feature.

Averages were calculated between the five channels for 
each feature, and the standard deviation was calculated, 
and then, the error bar graph was plotted to calculate 
the mean of the different channels for each feature and 
compare the results. After calculating mean and standard 
deviation for five channels related to each feature, the 
polynomial trundling by three orders added to curves 
in each feature, and the force estimation formula was 
specified. The different sinkers weights were determined 
for each feature.

Figure 7 shows the average of fractal dimension, Lyapunov 
exponent, entropy, correlation dimension values in the Fz, 
Cz, Pz, C3, and C4 channels, and their standard deviation 
in terms of the amount of force applied to the muscle and 
also the polynomial trend lines by order 1, 2, and 3 and 
linear trend were added. The standard deviations for fractal 
dimension, Lyapunov exponent, entropy, and correlation 
dimension are  <0.0089, 0.0074, 0.0070, and 0.0035, 
respectively. In Figure 7, it can be seen that all five cortical 
locations demonstrated the similar pattern of changes in 
extracted features. That is, if we examine the results of one 
of the channels instead of averaging the five channels, the 
overall result will not be significantly different.

Figure 1: Electromyography measurement device and a sample of recorded electromyography signal

Figure 2: Electroencephalography measurement device and a sample of recorded electroencephalography signal in the beta band
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According to the results obtained by giving the output 
value of a quadratic feature to the written code with mean 
data values and weights values, one can estimate a certain 
amount of force. For a signal recording performed as a 
test against the device in the laboratory, the fourth series 
of signal recorded to compare the results of the test series 
with the previous three series and to verify the results with 
10–100 Newton weight at the end of the 3rd day of the signal 
recording. The output values of the four attributes are shown 
in Figure  8. As it shown in Figure  8, in comparison with 
the results of the four extracted properties, the estimation 
of the force from the fractal feature of EEG signal is more 
accurate than the other properties and is very close to the 
original values, indicating a more effective estimation. The 
force estimation by the entropy feature of EEG signal after 
the fractal characteristic is also a reasonable estimate. The 
results of this feature are only somewhat distant from the 
actual value at 70 N and are almost unacceptable. However, 
two other properties, correlation and Lyapunov exponent, 
are relatively acceptable in some estimates, and in others, 
their estimates are inadequate.

Discussion and Conclusion
The complexity of the EEG signal may be the result of 
two major parameters including the number of motor 
neurons that were recruited and their discharge rates. In 

this study, the values of features derived from the EEG 
signal including fractal, Lyapunov exponent, entropy and 
correlation dimension are presented in separate figures. 
These figures show the values of each feature in each of 
the five EEG channels in each of the three signal registers, 
as well as the average graph of the three registrations, 
along with an Error Bar plot showing the variation of these 
three registered signals.

Figure  7 suggests that primary sensory motor cortices  (C3 
and C4) and the higher level association and secondary 
cortices (Fz, Pz and Cz) modulate a motor task in a highly 
coordinated manner, which has also been observed in other 
EEG and neuroimaging studies.[1]

In a study, the chaotic characteristics have been 
extracted from the brain signal,[1] they only compared 
the amount of brain activity with increasing force, 
and a fractal dimension is extracted, they indicated 
that for the movement and holding periods, the fractal 
dimension values  (in the range of about 1.45–1.75) 
at all 5 motor‑related cortices increased linearly with 
the handgrip force. The increase are significant under 
multiple comparisons, the linearity is high  (R‑squared 
value ranges from 0.92 to 0.97) but in present study 
all four chaotic extraction features including fractal, 
Lyapunov and entropy and correlation are derived for 
force estimation and obtaining numerical quantification, 

Figure 3: The Fractal dimension output values in the Fz, Cz, Pz, C3, and C4 channels in three times of the signal recording
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Figure 4: The Lyapunov exponent output values in the Fz, Cz, Pz, C3, and C4 channels in three times of the signal recording

Figure 5: The Entropy output values in the Fz, Cz, Pz, C3 and C4 channels in three times of the signal recording
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and comparisons were made between feature outputs, 
and the results were reported as numerical force 
estimates.

In the present study, EMG signal was used to analyze the 
brain signal in order to obtain a more accurate estimation, 
but in the,[2] brain signals were used to estimate and 
analyze muscle behavior.[4] only compares the relationship 

between head and body force in increasing brain activity, 
and in the present study, a numerical estimation of the 
force from brain activity has been performed.[6] also states 
that the relationship between brain activity and muscle 
strength is quantitatively hypothesized, but this relationship 
has not been quantitatively investigated. In the present 
study, EMG signal has been recorded from arm, forearm, 

Figure 7: Average of fractal dimension, Lyapunov exponent, entropy, correlation dimension data of FZ, Cz, Pz, C3 and C4 channels and their standard 
deviation and also the polynomial trend lines by order 1, 2 and 3 and linear trend line. R‑squared value is related to third order polynomial trend line

Figure 6: The correlation output values in the Fz, Cz, Pz, C3 and C4 channels in three times of the signal recording
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and fingers at the same time as the force was applied, and 
the results of[6] were used to record signals of present study. 
In,[8] it is stated that there is a coordination and coherence 
between the brain and muscular activities in the beta band 
with the increase or decrease of the activity. In the present 
study, the force was estimated by using the Beta‑band 
signal recording with different amount of forces applied 
to the muscle and the cohesion and coordination of these 
two fixed signals in the central regions of the head under 
voluntary contraction.

The R‑squared values for Fractal dimension, Lyapunov 
exponent, and Entropy and Correlation dimension features 
for linear trend line were 0.93, 0.7, 0.86, and 0.41, 
respectively. As it shown for fractal dimension and entropy 
data, the linearity was high.

According to the results of this case study, the Fractal 
dimension, Lyapunov exponent, and Entropy can serve as a 
sensitive index for quantifying dynamical changes in EEG 
signals during the voluntary motor tasks and has a potential 
to become a useful tool to characterize the patterns of 
motor‑related cortical activities for the purpose of medical 
research. It is suggested signal recording is done from more 
people as the target population and include different men 
and women of different ages and left and right hand people 
are employed and accurate and comprehensive review of 
the inaccurate estimation of the correlation and Lyapunov 
features in some weights are done, as well as the use of 
other nonlinear dynamics and other properties extracted 
from the brain signals and compare them with the chaotic 
features.
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