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Abstract
Background: Mass spectrometry is a method for identifying proteins and could be used for 
distinguishing between proteins in healthy and nonhealthy samples. This study was conducted using 
mass spectrometry data of ovarian cancer with high resolution. Usually, diagnostic and monitoring 
tests are done according to sensitivity and specificity rates; thus, the aim of this study is to 
compare mass spectrometry of healthy and cancerous samples in order to find a set of biomarkers 
or indicators with a reasonable sensitivity and specificity rates. Methods: Therefore, combination 
methods were used for choosing the optimum feature set as t‑test, entropy, Bhattacharya, and an 
imperialist competitive algorithm with K‑nearest neighbors classifier. The resulting feature from each 
method was feed to the C5 decision tree with 10‑fold cross‑validation to classify data. Results: The 
most important variables using this method were identified and a set of rules were extracted. Similar 
to most frequent features, repetitive patterns were not obtained; the generalized rule induction 
method was used to identify the repetitive patterns. Conclusion: Finally, the resulting features were 
introduced as biomarkers and compared with other studies. It was found that the resulting features 
were very similar to other studies. In the case of the classifier, higher sensitivity and specificity rates 
with a lower number of features were achieved when compared with other studies.
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Introduction
One of the major and unresolved problems 
in the treatment of cancer disease is the lack 
of an appropriate method for its timely and 
early diagnosis. Based on information on 
the genetic science area, chemical reactions 
within a living organism might be reflected 
as protein patterns in fluids such as urine 
and blood.[1] Recent results of researchers 
indicate that the pattern of proteins in the 
blood could be regarded as a fingerprint for 
the disease.[2] Thus, comparing the proteins 
in healthy and patient samples might result 
in the detection of vital biomarkers and 
the determination of the position of the 
cell during the disease process. Detecting 
the reliable biomarkers can help in early 
diagnosis of disease and its treatment, 
since in most cases, molecular variations 
related to them are diagnosable before 
clinical signs of the diseases emerge. One 
of the techniques used for extracting the 

protein patterns is surface‑enhanced laser 
desorption/ionization of time‑of‑flight mass 
spectrometry (SELDI‑TOF MS).[3] This 
method, in combination with advanced 
data mining algorithms, is used to 
reveal the protein patterns related to 
diseases.[4,5] In fact, the mass spectrometry 
yields a signal, which its horizontal axis is 
the mass‑to‑load (M/Z) ratio of the specific 
molecules in Dalton and its vertical axis is 
severity as a criterion of the frequency of 
the molecules in the sample.[6] Tang et al.[7] 
used statistical moments for the reduction 
of the dimension of the characteristics 
after using a t‑test on a dataset of ovarian 
cancer with high resolution. Dataset was 
categorized using the kernel partial least 
squares (KPLS) method. The M/Z ratio 
range is up to about 20,000 Daltons, 
leading to the generation of a vector of 
5000–20,000 numerical values per mass 
spectrum.[7] While the mass spectrum has 
high dimensions, the number of healthy and 
patient samples in the data is relatively low. 
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Hence, data mining techniques to reduce the dimension, 
determine the biomarkers, and correct classification of 
the samples have high importance. Hilario and Kalousis[8] 
examined various methods for reducing the dimension in the 
mass spectrometry dataset. The reduction of the dimension 
in this type of dataset would reduce tens of thousands 
of variables (M/Z points) to several hundred variables. 
The reduction of the dimension is generally divided into 
two groups: feature selection and feature transformation. 
Feature transformation methods result in linear or nonlinear 
combinations of the features. These methods can be single 
variable or multivariable, depending on the fact that one 
single feature or a subset of features is evaluated. In the 
concept of classification, feature selection methods are 
divided into three groups including filter, wrapper, and 
embedded.[9] Cancer screening and diagnostic tests are 
evaluated in terms of the rate of sensitivity and specificity. 
Several studies have been carried out in order to classify or 
detect biomarkers in the dataset of mass spectrum related 
to cancer. Using the dimension reduction methods and 
different classifications has resulted in different sensitivity 
and specificity rates. Petricoin et al.[10] investigated protein 
patterns generated by SELDI‑MS, to distinguish between 
healthy and ovarian cancer samples. This analysis was 
conducted in the form of a combination of a genetic 
algorithm and a self‑organizing map. Li et al.[11] used 
both t‑test and genetic algorithms to select the features, 
and in both methods, the support vector machine (SVM) 
method was used as a classifier. Yu et al.[12] used a strategy 
including four stages of binning, a Kolmogorov–Smirnov 
test, limiting unstable coefficients, wavelet analysis, and 
SVM classifier. Liu[13] used a multilevel wavelet analysis 
for the mass spectrum dataset and presented approximation 
coefficients as input to the SVM classifier. Conrads 
et al.[14] used mass spectrum dataset SELDI with high 
and low resolutions to diagnose ovarian cancer. Using 
the binning method and implementing the combination of 
genetic algorithm and self‑organizing systems resulted in 
the separation of control and cancerous samples with high 
sensitivity and specificity.

The M/Z vectors for all samples were homogenized using 
resampling to be able to compare various spectra based on the 
same resolution and reference. The act of resampling, in fact, 
implements an anti‑alias filter to delete the high‑frequency 
noise available in the mass spectrum.[15] Mass spectrometry 
with 15,000 M/Z points was used, where values between 
710 and 11,900 M/Z were obtained by resampling of the 
spectra. All the M/Z points were considered as a subset of 
features. After this stage, mass spectra were normalized to 
delete the effect of the scale coefficient. In the normalization 
operation, the mean and variance of each feature for all the 
samples were obtained. Then, the values of each feature 
were subtracted from the mean, and the result was divided 
by the corresponding variance of that feature. Lack of 
balance between the number of features and samples might 

result in an increased chance of the wrong classification, 
due to the use of nonrelevant or additional features. From 
a medical viewpoint, finding a limited number of markers 
that play a major role in correct diagnosis has special 
importance. Thus, reducing the number of features and 
selecting a number of them seem to be essential. If feature 
selection is done independently of any learning algorithm 
and based on a ranking criterion, it would be called a filter 
method. However, if the evaluation procedure is followed 
by a classification algorithm, the feature selection method 
would be called the wrapper method. This method uses the 
search in the space of the subsets based on the estimation of 
the accuracy resulting from the selection of special subset 
under classification algorithm conditions. Researchers have 
focused on evolutionary search algorithms such as genetic 
algorithm (GA),[16] simulated annealing (SA),[17‑19] particle 
swarm optimization,[20,21] and cultural algorithm[22] over the 
past decade.

Wu et al.[23] used the Kolmogorov–Smirnov method, 
logistic regression, and random forest as a feature selection 
in an ovarian cancer dataset with high resolution. Dataset 
was classified using one hundred superior features and 
three classifiers of SVM, regression tree with bagging, and 
K‑nearest neighbors (KNN). The objective of the current 
research is not just to differentiate the mass spectrum 
dataset of ovarian cancer and to achieve high sensitivity and 
specificity rates but also to detect a number of biomarkers 
for diagnosis of this cancer. The proposed algorithm is a 
combination of a filter method based on single‑variable 
feature selection and a multivariable wrapper method, 
which are evaluated in high‑resolution ovarian cancer 
dataset. Using three methods: t‑test, entropy, and 
Bhattacharyya, the features were reduced and the output of 
each of these three methods to the imperialist competitive 
algorithm (ICA) was provided, to select the optimal subset 
of the features using the KNN classifier. Then, the results 
obtained from three combined methods were provided 
separately to the C5.0 decision tree algorithm to determine 
the most important features such as biomarkers and extract 
the rules to distinguish the cancer data from healthy data.

Subjects and Methods
Data preprocessing

In this research, we have used the National Cancer Institute 
and have gathered two high‑ and low‑resolution datasets 
for ovarian cancer data.[11]

We have used the combination of different methods for data 
preprocessing step. In the t‑test method, M/Z values are ranked 
by the absolute value of the test statistic, assuming that M/Z 
value is independent and calculating a two‑way t‑test. In the 
entropy method, the resolution level of two classes, or ranking 
of the features, is performed using the entropy criterion. The 
Bhattacharyya method as the ranking criterion measures the 
similarity between two probability distributions.
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Imperialist competitive algorithm

The ICA in the area of evolutionary computations 
provides a method to solve optimization problems by 
mathematical modeling of the sociopolitical evolution 
process of humans. This algorithm was introduced 
in 2007,[24] and it has been used so far to solve many 
problems in the area of optimization.[25‑37] Like other 
evolutionary algorithms, this algorithm is composed 
of the initial set of possible solutions, which of them 
is called a country. The ICA gradually improves 
these initial solutions (countries) and finally provides 
the desired answer to the optimization problem (the 
desired country). The main bases of this algorithm are 
assimilation, imperialist competition, and revolution. 
As stated, the ICA begins with a number of initial 
random populations, called a country. Some of the best 
elements are selected as imperialists, and the rest of the 
population is considered a colony. Imperialists draw 
these colonies toward themselves in a special procedure 
based on their power. The total power of each empire 
depends on its two parts constituting it, namely the 
imperialist country (as the core) and its colonies. In the 
mathematical state, this dependency was modeled by 
defining the empire power as the sum of the power of 
the imperialist power and a percentage of mean power 
of its colonies. By the formation of initial empires, the 
imperial competition begins among them. Any empire 
that cannot act successfully in the imperialist competition 
and cannot increase its power will be eliminated from 
the imperialist competition arena. Thus, the survival 
of the empire depends on its power in attracting the 
empire colonies of the competitor and dominating 
them. Therefore, during the imperialist competitions, 
the power of the larger empires will increase gradually 
and the weaker empires will be eliminated. In order to 
increase their power, empires will have to develop their 
own colonies. With the passage of time, colonies will 
become closer to empires in terms of power and a kind 
of convergence will be formed. The ultimate limit of the 
imperialist competition is when there is a single empire 
in the world. Figure 1 illustrates the flowchart of the 
ICA.

The objective of using this optimization algorithm is for 
the process of selecting the features in a way that the most 
optimal set of features is found. Each country is coded in a 
binary way. It means that the initial populations are random 
strings of the numbers zero and one, with the length of the 
number of the features.. If the feature has been selected 
from the set of features , it has been shown by number ‘1’ 
in each string, and when the number is ‘0’, it means that 
feature has not been selected. In the ICA, each of these 
strings is called a country. The solution to attraction policy 
is that the new position includes both previous information 
and a part of imperialist information. Thus, there is a need to 
recognize where the position of the colony and imperialist 

is similar and where it is different. As the problem binary 
is defined, both of them are strings of zero and one. As a 
result, if the colony position is reduced from the imperialist 
position and the absolute value from the resulting string is 
calculated, the result will be a string of zero or one. Being 
zero in this string means that both imperialist and colony 
were similar in that cell (both were zero or one) and being 
1 means that one is zero and the other one is one. With 
this, the difference between the two strings is revealed. By 
summing up the elements of the string resulting from the 
deduction of the colony and imperialist, the number of these 
differences is also revealed. If this number is multiplied by 
a number between zero and one (for example, 0.2) and 
the obtained number is rounded up, it can be considered 
as a criterion to make different cells similar. For example, 
suppose that the number of variables has been determined 
to be 200. If colony and imperial are different from each 
other in 120 out of 200 cells, the 120 in 0.2 is multiplied, 
and the result will be 24. Hence, the similarity in 24 
out of all the cells in which two strings differ should be 
created. Hence, the colony position in those cells is made 
exactly like its imperialist position in the corresponding 
cell (that is, if the imperialist is zero in that cell, we make 
its colony zero, and if it is one, we make it one). Using 
this approach, the new colony position would be a position 
between colony position and its imperialist position. For 
the revolution operator, an integer random number between 

Figure 1: Imperialist competitive algorithm flowchart[38]

[Downloaded free from http://www.jmssjournal.net on Tuesday, June 1, 2021, IP: 10.232.74.22]



Pirhadi, et al.: Using mass spectrometry data for ovarian cancer prediction by imperialist competitive algorithm

Journal of Medical Signals & Sensors | Volume 11 | Issue 2 | April-June 2021 111

1 and the number of features was generated. This number 
specifies which cell should be changed in the position of 
each colony in each empire. Then, it is replaced with zero 
or one, generated randomly.

Application of the algorithm to ovarian cancer datasets 
with high resolution

As stated earlier, this dataset has 121 cancerous cases and 
95 control samples, and the number of M/Z points reached 
15,154 using resampling operations. Eighty‑five percent of 
the samples were considered as the training sample, 7% 
as the validation samples, and the rest were considered as 
the test samples. Thus, the numbers of training, validation, 
and test samples are 184, 16, and 16, respectively. After 
normalizing the data and applying the filter algorithms (t‑test, 
entropy, and Bhattacharyya), in which each of them ranked 
the features by their own criterion, those features were 
extracted from the main data. KNN was selected as a 
classifier. Thus, when the cost function was called up, KNN 
learning was performed using training samples and tested by 
the validation samples. In each run, the best cost and mean 
for different countries were determined.

Finally, this set was tested on the test samples, where 
the algorithm has not been seen before. Moreover, the 
value of K in the KNN classifier was selected to be 2, 
and the distance type was selected as Euclidean. After 
implementing the ICA several times and calculating the 
mean of accuracy, sensitivity, and specificity, we provided 
the answers obtained from each time of implementation 
to algorithms of the association rule mining and the 
decision tree, and the rules obtained were presented. Before 
applying the association rule mining algorithm, there is 
a need to determine the level of support, the coefficient 
of confidence, the maximum number of features in the 
antecedent of each rule, and the maximum number of rules.

The flowchart of the different stages of the proposed 
algorithm is illustrated in Figure 2. It should be noted that 
MATLAB 2017a (The Mathworks, Inc., Natick, MA, USA) 
software and SPSS Clementine 12 (SPSS Inc., Chicago, IL, 
USA) have been used for the application of algorithms.

Figure 3a shows the range of the M/Z values, several healthy 
and cancerous spectra, and values of the absolute value 
obtained from the t‑test. Figure 3b illustrates the entropy 
values, and Figure 3c illustrates the Bhattacharyya criterion 
together with the spectra of two healthy and cancerous groups.

Results
In this section, the number of features extracted from each 
filter method and the settings related to ICA [Table 1] were 
investigated.

When the ICA begins, cost function recalled in each 
decade and the cost of all countries is calculated using 
cost function and the best and mean costs are yielded. 
These values can be reported at each time of implementing 

ICA, which proceeds based on the number of decades 
determined. Figure 4 shows these values for the three 
phases of ICA implementation (these charts refer to the 
state, where the t‑ and ICA tests were used): Figure 4a 
related to the first implementation, Figure 4b related to 
the second implementation, and Figure 4c related to the 
third implementation of the ICA. The horizontal axis 
also indicates various decades. As shown, in the three 
implementations, the best cost in each decade reached 100 
and the mean of the costs gradually reached 100. It means 
that the algorithm could optimize the cost function by a 
set of selected features and increase the accuracy of the 
classification of the samples to 100%.

The accuracy of the two methods is also shown in Table 2. 
It should be noted that ICA proceeds with the number of 
the mentioned decades each time of the implementation, 
and finally, it selects a number of features among the 
features selected from the filter methods. Then, this set 
of features selected by ICA is stored in the last decade 
and tested on the test samples. Accordingly, the values of 
accuracy, sensitivity, and specificity were calculated. Then, 
ICA was run again. Then, it selects another set of features 
and tests on the test samples. As shown in Table 2, this 
was performed three times. Finally, the values of accuracy, 
sensitivity, and specificity obtained from the test samples 
were averaged in three stages. The result of the average of 
these values is also shown in Table 3.

With each time of implementation of ICA, the selected 
features were stored by the algorithm, and those repeated 
in each of the three times were determined. Table 2 shows 
information related to the number of features obtained 

Figure 2: Flowchart of the proposed algorithm
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from each method in different implementations. Finally, 
the features which have been repeated in at least two 
methods (t‑test and ICA, entropy and ICA, and Bhattacharyya 
and ICA) as the most frequent biomarkers were reported. 
Out of the 31, 28, and 44 most frequent features obtained 

from all three methods, there are five common features. The 
M/Z values of these 5 features include 861/094, 862/7076, 
3428/817, 7053/731, and 7054/654.

Then, the features obtained from the first, second, and third 
implementation in each method separately were extracted 

Figure 4: Values of the cost function and meaning of the costs in the implementation of (a) first, (b) second, and (c) third. The horizontal axis indicates 
the decade, the longest line shows the best cost, and the dotted line shows the mean of costs

c

ba

Figure 3: Control and cancerous spectra together with the absolute value (a) t‑test; (b) entropy values; (c) the values related to Bhattacharyya distance

c

b
a
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Table 1: Imperialist competitive algorithm parameters in filter‑based methods
Methods Number of 

features
Parameters of ICA

nPop nImp Decades Β pRevolution ζ
t‑test 200 30 8 20 0.3 0.3 0.1
Entropy 200 30 5 20 0.1 0.1 0.1
Bhattacharyya 400 40 4 15 0.1 0.1 0.1
ICA – Imperialist competitive algorithm

Table 2: Information related to the number of selected characteristics in each time of imperialist competitive 
algorithm implementation, and finally, the number of common characteristics implemented in each time, three times

Methods #features from 1st 
running of ICA

#features from 2nd 
running of ICA

#features from 3d 
running of ICA

Common features in tree 
times of running ICA

t‑test‑ICA 104 113 111 31
Entropy‑ICA 114 97 98 28
Bhattacharyya‑ICA 199 194 201 44
ICA – Imperialist competitive algorithm

Table 3: Results obtained from imperialist competitive 
algorithm implementation on ovarian cancer dataset

Methods #decade Best cost Mean cost #empires
t‑test‑ICA 1 100 96.77 8

20 100 100 4
1 100 96.77 8
20 100 100 4
1 100 96 8
20 100 100 3

Entropy‑ICA 1 100 100 5
20 100 100 5
1 100 100 5
20 100 100 5
1 100 100 5
20 100 100 4

Bhattacharyya‑ICA 1 100 100 4
15 100 100 3
1 100 100 4
15 100 100 4
1 100 100 4
15 100 100 4

ICA – Imperialist competitive algorithm

from the normalized data. Accordingly, there are three 
matrices with the number of main data samples for each 
method, and the number of features in each matrix is also 
equal to the values shown in columns 2–4 of Table 2. 
The C5 decision tree algorithm was applied separately 
for each of the matrices of the dataset. By implementing 
C5, the most important variables were determined and a 
number of rules were extracted. In Table 4, the accuracy 
of classification using C5, the most important variable, 
and the number of rules obtained for the control and 
cancerous groups were determined. In Table 4, there are 
features repeated several times among the most important 
features. M/Z values repeated in at least two methods 
are 845/042, 8607/152, 7065/738, 1006/425, 7063/890, 
8708/407, and 8603/073. Rules extracted by the C5 

algorithm, where these common features are present, are 
listed in Table 5.

In addition to the decision tree, another algorithm known 
as generalized rule induction (GRI) was used in this study 
to extract the rules. The algorithm requires determining 
the support parameter, the confidence coefficient, and the 
maximum number of features in the antecedent part of 
a rule, which should be determined by the user. These 
parameters 30, 100, and 10, respectively, were determined. 
In addition, these rules can be arranged using the methods 
with the scoring mechanisms. The most important of these 
approaches is a method in which the rules are arranged first 
based on the confidence coefficient in the descending order, 
then, the rules having the same confidence coefficient are 
arranged based on the level of support, and if the support of 
a number of rules is the same, they are arranged based on 
the number of antecedent features.[39] The association rules 
obtained from the three methods (t‑test‑ICA, entropy‑ICA, 
and Bhattacharyya‑ICA) were compared with the same 
method. The common rules are listed in Table 6.

Accordingly, the repetitions of each feature were not 
just considered separately as the criterion to select the 
biomarker, each occurrence of the features or finding of 
frequent patterns were examined.

Now, these biomarkers in the control and cancerous samples 
were investigated and change in their severity in the two 
mentioned groups was found. In this regard, we can plot 
the spectra related to both groups and compare the severity 
of the M/Z values. Another method is the display of the 
heatmap, which is an effective method for visualizing the 
complex dataset in the matrices. In the heatmap display, the 
areas where there is peak were determined by hot colors, 
and other areas were determined by cold areas.

The common biomarkers provided by the C5 method in the 
mean of the control and cancerous samples are shown by 
the red triangle in Figure 5. The heatmap of the cancerous 
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group is plotted at the top and that of the control group is 
plotted at the bottom.

Now, the high frequent biomarkers, which are common in 
different implementations of the t‑test‑ICA, entropy‑ICA, 
and Bhattacharyya‑ICA methods, within the spectra of 
healthy and cancerous groups were determined. The 
severity of the spectra of two groups [Figure 6] can be 
compared by limiting the M/Z values around each of these 
biomarkers. In this figure, the normal group is shown in 
red color, and the cancerous group is shown in blue color.

As shown in Figure 7, the severity of 861/094 and 862/7076 
values is high in normal samples; in low cancerous samples, 
the severity of 3428/817, 7053/731, and 7054/654 is high 
in many cancerous samples, and it is reduced in normal 
samples. Figure 7 shows the biomarkers (their average is 
plotted instead of their spectra).

The severity of these biomarkers also varies in the 
average of healthy and cancerous spectra. However, these 
M/Z values are shown in Figure 7 alone and as common 
features among the most important features obtained from 
C5. Considering the rules in Table 5, they have at least 
one feature, and if their severity is more or less than 

value, the normal or cancerous class will be separable 
using them.

In the antecedent part of the rules obtained from the 
GRI algorithm, the features were mentioned and can be 
compared in the average of both healthy and cancerous 
spectra. Some of these values are observable in the figures 
for previous biomarkers. Thus, only 1031/516, 4300/749, 
4302/912, 4310/126, and 8618/373 are plotted in Figure 8.

Then, we aimed to compare the biomarkers provided by 
our proposed algorithm and other studies to find if there is 
a similarity between them or not. For this purpose, studies 
that provided results on ovarian cancer datasets with high 
resolution were referred to. Conrads et al.[12] collected 
samples from controls and those who had ovarian cancer 
and used two mass spectrometers: one with low resolution 
and another with high resolution. In this study, the 
biomarkers obtained from the algorithm express the values 
845/089, 8602/237, and 8709/548. In 2008, Wu[21] used his 
algorithm on two samples of ovarian cancer data, in which 
one of them was the same ovarian cancer dataset with high 
resolution in relation to the previous study.

We have found three common M/Z values with Wu[21] and 
Conrads et al.[12] as 845/042, 8708/407, and 8603/073. 
Another important point is that one of these values, 845, 
was the same in the three studies. This value of M/Z among 
our three methods, t‑test‑ICA‑C5, entropy‑ICA‑C5, and 
Bhattacharyya‑ICA‑C5, was shown to be the same. Thus, it 
can be regarded as a biomarker with high confidence. Figure 9 
shows this M/Z value in the heatmap related to the average of 
the control and cancer groups. The severity of this biomarker 
is plotted for all cancerous and control samples [Figure 10]. In 
terms of data classification, several studies that implemented 
their algorithm on this data can be compared.

Discussion
The proposed algorithm, which is a combination of filter 
techniques (t‑test, entropy, and Bhattacharyya) and ICA, 

Table 4: Results obtained from applying the decision tree on ovarian cancer dataset
Important values of M/Z #rules for 

cancer group
#rules for 

control group
Accuracy% 

C5
#features of 
original data

1034/163, 8607/152, 7063/890, 8708/408 2 3 98.15 104
845/042, 8711/485, 8607/152, 7065/738, 8713/531 2 4 97.22 113
1036/285, 8022/877, 8100/848, 1072/332, 1006/425, 
8604/093, 7065/738, 844/722

2 5 99.54 111

6856/641, 8794/786, 8212/033, 845/042, 1290/083, 8607/152, 
4310/126, 8553/187

3 4 98.15 114

8794/786, 8603/073, 6834/813, 8213/03, 4310/126, 1056/195 3 4 99.07 97
8600/015, 8794/786, 8621/435, 845/042, 4310/126, 4003/314 3 4 98.61 98
1006/774, 8025/832, 845/042, 8710/459, 8603/073, 7065/738 3 5 99.07 199
6859/372, 1006/425, 8708/408, 1939/120, 8604/093, 
7065/738, 6850/271, 1079/182

3 4 99.07 194

8522/717, 7063/890, 8607/152, 7174/257, 1049/775 3 3 99.54 201

Table 5: Rules obtained from C5 algorithm related to 
ovarian cancer dataset

1. If 7065/738≤0.073 and 8603/073≤−0.034 then control
2. If 1006/774>0.018 and 8603/073≤−0.034 then control
3. If 1006/425≤0.028 and 7065/738>0.073 then cancer
4. If 845/042>−0.013 and 8607/152≤−0.038 then control
5. If 8603/073≤−0.034 then control
6. If 8708/408>0.078 then control
7. If 8607/152≤−0.038 then control
8.  If 7063/890>−0.037 and 8607/152>−0.038 and 8708/408≤0.078 

then cancer
9. If 845/042>0.045 then control
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was applied to the ovarian cancer mass spectrum data with 
high resolution. Each of the filter methods, in fact, ranked 
the features based on their own criteria. A number of the 
best features obtained from each method were selected 
and separately provided to the ICA. ICA, as an intelligent 
optimization method, was associated with our desired 
classifier (KNN) during the training process, to achieve 
the most optimal set of features after implementing several 
decades by maximizing the classification accuracy. Finally, 
a set of features was provided by ICA for each of the 
methods: t‑test‑ICA, entropy‑ICA, and Bhattacharyya‑ICA. 
In this regard, there were features repeated in these 
methods, which were reported as the most frequent 
biomarkers. In the next stage, the features obtained from 
the three methods were provided to C5 decision tree, so that 
the most important features of each method can be extracted 
using the criterion of this algorithm. In this regard, there 
were common features, which were also determined. The 
rules containing these common features were provided for 
a better understanding. In addition to the C5 tree decision, 
another algorithm called GRI was used to yield repetitive 
patterns. Finally, the biomarkers introduced in the main data 
were investigated to determine the severity of each of them 
in the control or cancer groups. The severity of some of 
these biomarkers in the cancer state increased as compared 
to that of the normal state, while the severity of others 
reduced. 

Conclusion
By comparing the values contained in Table 7, it was 
realized that the proposed algorithm in all the methods 

with the lower number of characteristics could achieve 
an acceptable level of sensitivity and specificity. Another 
advantage is using M/Z values in the data as characteristic 
features, in which a number of biomarkers were also 
presented as a result. These biomarkers showed a high 
similarity with the biomarkers reported. Moreover, by 
examining the classifications in the table, it is shown that 
the KNN, as a simple classifier in our algorithm, could 
achieve appropriate answers with the lower number of the 
features, while stronger classifiers such as SVM and KPLS 
achieved this rate of sensitivity and specificity with the 
greater number of the features.

Table 6: Rules obtained from the exploration of generalized rule induction associative rules in the ovarian cancer 
dataset

Rules Percentage of confidence coefficient Percentage of support
If 7065/738> −0.032 and 8601/034> −0.022 then cancer 100 43.06
If 1034/516 < 0.002 and 4310/126> −0.021 then cancer 100 42.59
If 7065/738> −0.032 and 8602/053> −0.021 then cancer 100 42.59
If 7065/738> −0.032 and 1078/821 < 0.021 and 4303/634> −0.025 then cancer 100 40.74
If 8618/373> −0.017 and 4302/912> −0.011 then cancer 100 39.81
If 4300/49 > −0.020 and 4302/912> −0.008 then cancer 100 39.81

Figure 5: Heatmap display for the average of the cancerous groups (top) 
and control (bottom). Biomarkers obtained from C5 method are shown 
with the red triangle

Figure 6: Display of M/Z values for high‑frequent biomarkers. (a) 861/094 
and 862/076; (b) 3428/817; (c) 7053/731 and 7054/654. The horizontal axis 
shows the M/Z values and the vertical axis shows their severity

c

b

a
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Table 7: Comparison of sensitivity and specificity in several studies related to ovarian cancer data with high resolution 
with our proposed algorithms

Authors/year/
classification type

Cross validation Using the 
main features

Number of 
features

Sensitivity (%) Specificity (%)

Yu et al.[12] 1000 independent k‑fold (k=2,…10) No 3382 97.38 93.30
Wu et al.[23] 10‑fold Yes 100 93.9 93.23
Tang et al.[7] 5‑fold No 1964 99.50 99.16
Liu[13] 2‑fold No 247‑949 98.45‑99.55 95.69‑97.01
Wu[40] 10‑fold No 215 92.98 88.97
Cui[41] 10‑fold Yes 371 98.16 ‑
Our proposed 
algorithm as t‑test‑
ICA‑C5
KNN 

10‑fold Yes 104 97.52 98.94
113 96.69 97.89
111 100 98.94

Our proposed 
algorithm as Entropy‑
ICA‑C5
KNN

10‑fold Yes 114 98.34 97.89
97 98.34 100%
98 99.17 99.89

Our proposed algorithm 
as Bhattacharyya‑
ICA‑C5
KNN

10‑fold Yes 199 99.17 98.94
194 100 97.89
201 99.17 100

ICA – Imperialist competitive algorithm

Figure 7: Biomarkers obtained after the implementation of the C5 algorithm. The top row from left to right: 845/04, 1006/43, and 7063/89 and the bottom 
row from left to right/7065/74, 8603/07, 8607/15, and 8708/41. In this figure, the average control and cancerous samples are plotted with red and blue 
colors, respectively
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