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Abstract
Despite the considerable improvement of the common‑mode rejection ratio of digital filtering 
techniques, the electrocardiogram  (ECG) traces recorded by commercialized devices are still 
contaminated by residual power line interference  (PLI). In this study, we address this issue by 
proposing a novel real‑time filter adapted to single‑frequency noise cancellation and automatic power 
line frequency detection. The filtering process is principally based on a point‑by‑point fast Fourier 
transform and a judicious choice of the analysis window length. Intensive experiments conducted 
on real and synthetic signals have shown that our filtering method offers very clean ECGs, due to 
the suppression of spikes corresponding to the PLI and the preservation of spikes outside the filter 
band. In addition, this method is characterized by its low computational complexity which makes 
it suitable for real‑time cleaning of ECG signals and thus can serve for more accurate diagnosis in 
computer‑based automated cardiac system.
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Introduction
Electrocardiogram  (ECG) is the oldest and 
most widely available physiological test. It 
allows identifying cardiovascular diseases 
(CVDs) while being entirely painless.[1]

A clean ECG is often required for the proper 
treatment of cardiac ailments. However, in 
a real scenario, the ECG signal is typically 
contaminated by different kinds of noises 
during its acquisition and transmission, 
such as the high‑frequency noise  (additive 
white Gaussian noise and power line 
interference  [PLI]) and the low‑frequency 
noise  (baseline wandering).[2,3] Particularly, 
PLI noise causes a precision issue when 
interpreting low‑amplitude waveforms 
like the ECG. In order to avoid the wrong 
identification of the characteristics of ECG 
signals and their impact on diagnostic 
accuracy, several PLI removal techniques 
have been developed.[4‑7]

In this work, we propose a novel filtering 
method which has the particularity 
of eliminating noise with a single 
quasi‑invariant frequency as it is the case 

for PLI. First, a point‑by‑point windowed 
fast Fourier transform  (FFT) with an 
appropriate choice of the analysis window 
size is applied on the original ECG signal 
to accurately estimate the instantaneous 
amplitude value of PLI  (50 Hz or 60 Hz). 
Finally, the instantaneous value of the 
filtered signal is determined by simply 
subtracting the computed noise value from 
the instantaneous value of the noisy ECG 
signal.

It is worth noting that the suggested method 
allows both the automatic detection and 
instantaneous suppression of PLI even in 
the presence of a variable noise amplitude. 
The simulation results have shown that the 
spectral response is stable and has a very 
narrow band rejection, ensuring a minimum 
of 33 dB attenuation in the band  (49.8 Hz, 
50.2 Hz). Moreover, the theoretical basis 
of the proposed denoising technique has 
been studied in addition to the relationship 
between the length of the analysis window 
and the filter parameter setting.

Always as part of experimental analysis, 
the simulation tests have been firstly 
conducted on synthetic ECG waveforms 
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with a constant PLI amplitude. Thereafter, the same tests 
have been carried out with variable PLI amplitudes to 
determine the limitations of the proposed method. Finally, 
the experiments have been conducted on real ECG signals 
to compare their spectrums before and after filtering. 
According to the obtained results, it has been demonstrated 
that our filtering method delivers an impressive ECG 
quality, which is confirmed by the suppression of PLI 
spikes while preserving those outside the filter band in the 
frequency domain.

Background

The ECG consists of an electrical signal generated by the 
heart’s muscular activity. Its graphical representation is 
commonly used to identify CVDs. However, in real‑life 
scenarios, the recorded ECG signal is often corrupted with 
different types of noise: those caused by breathing, which 
generates a deflection of the isoelectric line;[8] those caused 
by the electrical activity of the muscle, which is also called 
electromyogram;[9] and those caused by PLI,[10] which is 
our focus. Previous studies showed the PLI noise with a 
frequency of 50 Hz or 60 Hz. This  frequency has been 
subject to variations that do not exceed 0.5 Hz.[11,12]

Even though modern instrumentation amplifiers/differential 
amplifiers have a high common‑mode rejection ratio, which 
attains 120 dB, the ECG recordings are still contaminated 
by PLI. In order to prevent the wrong identification of 
the ECG characteristics and its impact on diagnostic 
interpretation, advanced ECG denoising methods have 
been investigated. The most common solution is based on 
wavelet decomposition. The wavelet family is vital for the 
success of signal denoising applications, but wavelet‑based 
notch filters cannot completely cancel PLI. Indeed, the 
residual traces may interfere with the ECG waves  (P, Q, 
R, S, and T), make the detection of their onsets and offsets 
difficult,[13‑16] and corrupt the proper function of automatic 
ECG analysis. Interference can also disturb the correct 
measurement of the RR interval (heart rate).[17]

Traditional analog and digital filters are not very selective 
and have the drawback of reducing or suppressing the ECG 
components near the power line frequency. Despite their 
limitations, different types of digital notch filters are still 
used.[17‑19] To avoid affecting the signal components near 
the power line frequency, the cutoff band must be narrow, 
which leads to inefficient filtering with significant power 
line frequency deviation. Moreover, the resulting transient 
time is often unacceptably long.

PLI may be suppressed by adaptive filtering 
approaches.[20‑24] However, this may be paid by a large 
transient response time.[17] Moreover, adaptive and 
nonadaptive notch filters introduce significant distortions 
in the QRS and ST‑segment portions.[25] Soo‑Chang and 
Chien‑Cheng[18] tried to reduce the convergence time using 
a vector projection to find better initial values for infinite 

impulse response band‑stop filters. Yoo et al.[19] put forward 
an adaptive central frequency hardware notch filter to track 
the frequency changes in the power line, thus reducing the 
bandwidth size. According to the results presented in Yoo 
et  al.’s study,[19] the signal distortion cannot be adequately 
evaluated because of the small size of the used examples.

The Fourier decomposition method proposed in Singh 
et  al.’s study[26] was an adaptive signal decomposition 
method that used the Fourier theory and aimed to remove 
baseline wander  (BLW) and PLI. It could be considered as 
an adaptive and spectral denoising method. The experiments 
were done on real‑life ECG data with synthetic BLW and 
PLI noise. In the best cases, the signal‑to‑noise ratio (SNR) 
did not exceed 15 dB.

Some methods have presented a lack of completeness, 
such that the authors have not shown the effectiveness of 
their denoising algorithms clearly enough in order to use 
them for PLI removal. In other methods, sometimes, the 
original signal has not been provided.[17,27] This is to say 
that no differences between original and processed signals 
are shown[28] and that the performance is only measured as 
a function of the mean square error instead of amplitude 
differences.

Methodology
Data collection

To evaluate the performance of the proposed technique, 
we have built a new database[29] using a wireless PC‑based 
ECG device. By doing so, we have fixed the frequency 
sampling to 300  samples per second. The analog to digital 
conversion has been realized with the ADS1298 IC from 
Texas Instruments company, which is an eight‑channel 
24‑bit ΔΣ simultaneous‑sampling ADC.

For each subject, we have only recorded two limb 
leads  (lead I and lead II) since lead III  (aVR, aVL, and 
aVF) can be deducted automatically. The chest leads have 
not been collected. This database comprises one hundred 
subjects which have been collected by disabling the notch 
filter. This is to say that the recordings are contaminated 
with PLI at different levels.

Fast Fourier transform‑based estimation of 
instantaneous power line amplitude

Fast Fourier transform basics

The Fourier transform Eq.  (1) consists in representing a 
signal by a sum of sinusoids of frequencies and amplitudes 
as follows:
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Where n is the frequency index, Fs is the sampling 
frequency, N is the number of samples, and An is the spike 
amplitude at frequency fn.
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The value f1 = Fs/N is called the frequency resolution or the 
frequency step; it defines the fineness of the decomposition. 
The lower the value, the better the resolution.

Let us consider, for example, a sinusoidal signal of a 
frequency equal to 50 Hz, as for the power line, with 
an amplitude equal to 1. If this signal is sampled at a 
frequency Fe fixed to 300 Hz and the sample number N is 
equal to 100, then the frequency step will be equal to 3 Hz.

This means that we will get the amplitudes of the sinusoids 
of frequencies belonging to the set F = {0, 3,…, 297, 300}. 
In this case, we find that 50 Hz is not a part of this set. 
Accordingly, the signal will be distributed over a plurality 
of sinusoidal signals whose frequencies are the closest to 
50 Hz. As depicted in Figure  1, the amplitude of these 
signals will tend to become weakened with an increasing 
distance from the signal frequency.

Finding the correct representation of this sinusoidal signal 
requires the 50 Hz frequency to be present on the  X‑axis; 
i.e., the 50 Hz frequency must be a multiple of the 
frequency step. By taking a window of 60  samples, the 
frequency step will be equal to 5 Hz, which is a divisor 
of 50 Hz. Accordingly, the signal will be represented by 
a single spike centered on the 50 Hz frequency whose 
amplitude is equal to 0.5  (half of the real amplitude), as 
shown in Figure 2.

We can deduce from this short analysis that it is possible to 
determine the amplitude of a sinusoidal signal embedded in 
another one through the Fourier transform.

Factors influencing filter parameters

In this section, we will determine the relationship between 
the frequency resolution r  =  Fs/N and the filter cutoff 
frequencies. Therefore, we will vary the filter size N 
while maintaining the sampling frequency FS  =  300 Hz. 
The used window is the Hanning one. Using the rectangle 
window gives a response with an increase in the oscillation 
amplitude when approaching the cutoff frequency. The 
amplitude of oscillations decreases as the frequency 
resolution becomes finer. This concept is illustrated in 
Figure  3, whereas the corresponding zoomed version is 
depicted in Figure 4.

By varying the analysis window size N and preserving the 
sampling frequency Fs, the frequency resolution r  =  Fs/N 
varies. When r varies, the high and low cutoff frequencies 
vary [Figure 4 for n = 120 and n = 300].

Figure  5 shows the relationship between the frequency 
resolution and the cutoff frequencies. By examining the 
two curves, we can clearly notice that the filter response 
is linear with the two parameters, which makes it easier to 
determine the cutoff frequencies if the frequency resolution 
is known, and vice versa.

Performance evaluation with respect to the power line 
interference amplitude

To adapt our method for real‑time processing, an 
N‑length shift register is used to store the last samples. 
A point‑by‑point FFT is then applied to this set of samples 
with instant processing.[30] To determine the interference 

Figure 1: Graphical illustration of signal spectrum (f = 50 Hz, FS = 300 Hz, 
and n = 100)

Figure  4: Effects of frequency resolution and window shape on filter 
response (zoomed plots)

Figure  3: Effects of frequency resolution and window shape on filter 
response

Figure 2: Graphical illustration of signal spectrum (f = 50 Hz, FS = 300 Hz, 
and n = 60)
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frequency, the spike amplitude corresponding to the 50 Hz 
is compared to that corresponding to the 60 Hz. It is worth 
noting that the power line frequency corresponds to the 
spike that has the highest amplitude.

Once the main frequency is set, the instantaneous value of 
the PLI amplitude can be subtracted from that of the noisy 
signal. This is expressed by Eq. (2):
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Where n̂ is the estimated noise at the moment 
t  =  ts  (N  –1)/2, s, is the estimate of the denoised signal at 
the same moment s, is the noisy signal, S is the Fourier 
transform of s, and I is the spike index corresponding to the 
power line frequency which can be determined according 
to Eq. (3):

0 ,= = Sf F
I with r

r N
� (3)

Where f0 is the PLI frequency  (50 or 60 Hz) and r is the 
frequency resolution.

To obtain a fair value of the PLI amplitude, we have to 
multiply the amplitude value of the spike that corresponds 
to the noise frequency by 2. Then, we divide it by the area 
of the analysis window that corresponds to the average 
of its coefficients. It is worth pointing out that since the 
window is centered with respect to the sample index 

2
N , 

this technique will result in a time delay of about 
2S
Nt . 

Moreover, the choice of the window size should be fixed 
according to the frequency variation in the power line 
amplitude. The higher the frequency variation is, the more 
reduced the window size must be. However, when filtering 
physiological signals such as ECGs, we are compelled 
to reduce the width of the stopband to remove only the 
interference and preserve the useful data. This reduction in 
the size of the stopband requires increasing the size of the 

window. A  compromise between the bandwidth cutoff and 
the temporal localization should be considered. Notably, the 
automated choice of the analysis window size as a function 
of the frequency variation in the interference amplitude 
will be subject of future research work. Figure 6 represents 
the block diagram of the proposed filtering method.

To evaluate the performance of the proposed filtering 
technique, simulation tests have been conducted on two 
synthetic signals. The first one, “s1” is expressed by Eq. (5). 
It consists of a sine wave “s” given by Eq.  (4), which has 
been contaminated with the PLI of a constant amplitude. The 
second signal “s2” is expressed by Eq. (6). It consists of the 
same sine wave “s” which, in turn, has been contaminated 
with the PLI of a variable amplitude. The graphical aspects 
of the two noisy signals are depicted in Figure 7.

( )( ) 0.5 2 1.25π=s t sin t � (4)

( )1( ) s(t) 2 50π= +s t sin t � (5)

( )( ) ( )2 ( ) s(t) 0.5 2 0.5 1  2 50π π= + × +s t sin t sin t � (6)

We have tested the proposed technique using a 300‑sample 
window, which corresponds to a 1 Hz frequency resolution 
and a stopband in the range of 48.75, 51.25 for FS = 300 Hz 
[Figure 4].

Figure  8 depicts the filtering result when using the 
Hanning window on a noisy signal altered by PLI with a 
constant amplitude. From this figure, we can see a 0.5 s 
delay corresponding to half of the analysis window length. 
To calculate the value of the filtered signal at t  =  0.5 s, 
samples belonging to the interval (0, 1) are required.

The SNR is expressed by:
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Where o is the original signal, f is the filtered one, and M 
is the number of signal components. This SNR has been 

N samples shift register s(n)

S(n)

Estimated 50Hz PLI  = real(S(n=50/r)); r= Noisy sample s(N/2)

Estimated noiseless signal s(N/2)- 

Windowed FFT

New noisy sample Oldestnoisy sample

n(N/ 2)^ Fs/N

s(N/ 2)^ n(N/2)^=

Figure 6: Block diagram of proposed method
Figure 5: Graphical relationship between frequency resolution and cutoff 
frequencies
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used to quantitatively compare the original signal to its 
filtered version. According to our experiments, the obtained 
SNR is equal to 217.0 dB.

Figure  9 shows the filtering result when using the 
Hanning window on two noisy signals, x1 and x2, with 

varied PLI. In both signals, the noise amplitude is the 
same. For the first signal, x1, the frequency variation in 
the noise amplitude is equal to 0.5 Hz, whereas in the 
second signal, x2 is equal to 0.25 Hz. After performing 
our filtering process on the two noisy signals, x1 and x2, 

Figure 8: Graphical illustration of PLI removal in case of constant amplitude

Figure 7: Graphical illustration of two simulated noisy signals: (a) “s1” (b) “s2”
b

a

Figure 9: Graphical illustration of PLI removal in case of variable noise frequency: (a) f = 0.5, (b) f = 0.25
b

a
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we obtain an SNR value of about 39.8 dB and 58.7 dB, 
respectively.

It is clear that when the frequency of the noise amplitude 
increases, the determination of the instantaneous value of the 
noise becomes a difficult task. This is principally due to the 
fact that the analysis window has a temporal size of 1s. Thus, 
the interference amplitude varies several times along the 
window, which makes the determination of the instantaneous 
amplitude more difficult. This problem may be alleviated by 
reducing the size of the analysis window. However, this will 
be at the expense of the stopband width, which will be wider.

Experiments conducted on synthetic and real 
electrocardiogram signals

At this stage, we have conducted the first set of experiments 
on synthetic ECG signals to evaluate the performance of the 
proposed technique. Our choice has been justified by the 
fact that synthetic ECG signals allow a direct quantification 
of the difference between original and filtered signals.

The second set of experiments has been conducted on 
real ECG signals from our database.[29] For this kind of 
data, the performance evaluation is based on two criteria. 
The first one is a visual assessment of the quality of the 
filtered signal. The second criterion is quantitative. More 
specifically, we have proposed to carry out a quantitative 

assessment of PLI attenuation in the stopbands and a 
quantitative assessment of the conservation of ECG 
components outside the rejection bands.

Comparisons have been made with Butterworth and 
wavelet notch filters. The Butterworth filter[8] is set to a 4th 
order with a rejection band (49 Hz, 51 Hz), whereas for the 
wavelet‑based filter, the algorithm suggested in Aqil and 
Jbari study[14] is used.

Since the power line frequency varies by  ±  0.5 Hz, the 
size of the Hanning window is selected in a way that the 
minimum attenuation in the range of 49.5, 50.5 or 59.5, 
60.5 is not less than 20 dB. The value of the window 
length that provides a step, which is a divisor of almost 
50 and 60, ensures that minimum attenuation of 20 dB 
in the two intervals is 150. This value corresponds to a 
frequency resolution of 2 Hz and a stopband width equal to 
2 × 2.512 Hz [Figure 5]. The filter responses are presented 
in Figure 10 for the two PLI frequencies: 50 Hz and 60 Hz.

The plots of the synthetic signal, the modeled noise n 
(expressed in Eq. 8), and the filtered signal are shown in 
Figure 11.

The synthetic is obtained with the NI LabVIEW Biomedical 
Toolkit. The sampling frequency is 300 Hz and the heart 
rate frequency is 60. The computed SNR for this simulation 
test is equal to 200.9 dB.

( )( ) ( )0.25 2 0.25 1 2 50π π= × +n sin t sin t � (8)

Figure  12 shows an example of the application of the 
proposed filtering technique on a real ECG signal extracted 
from our database.[29] Particularly, this trace corresponds to 
lead II. It is obtained by bringing an electric cord closer 
to the right arm electrode. This cord is connected to the 
220 V 50 Hz mains. This permits obtaining a very noisy 
signal and consequently testing the limit of the proposed 
technique under extreme conditions.Figure 10: Filter response for f = 50 Hz and f = 60 Hz

Figure 11: Graphical illustration of (a) synthetic noisy signal, (b) modeled noise, and (c) filtered electrocardiogram signal

c

b

a
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From Figures  12 and 13  (zoomed version), we can see a 
complete separation between the ECG waveform  (blue) 
and PLI  (green) whose peak‑to‑peak amplitude is almost 
twice that of the ECG waveform. This visual comparison, 
although appears very satisfactory, cannot, in any case, 
prove the selectivity of the filter.

For real signal filtering, the transfer function of the 
filter cannot be obtained  (as it is the case of adaptive 
and wavelet‑based filters). For this reason, we put 
forward the spectra comparison criteria, as illustrated 
in Figure  14. For greater accuracy, Figure  15 shows the 
zoomed version of the spectra of the noisy ECG signal 
and that of its filtered version, which is depicted in 
Figure 12.

From these spectra, we observe that the spikes 
corresponding to the PLI  (located near the frequencies 
50 Hz, 100 Hz, and 150 Hz) have been removed without 
affecting the other frequencies, which demonstrates the 
selectivity of the suggested filtering method.

To evaluate quantitatively the selectivity capability, we 
propose to assess the spikes amplitude attenuation on 

the rejection band and their conservation outside of the 
rejection band using the SNR metric.

As stated before, this metric is of great use if the transfer 
function of the filter cannot be determined.

In our experiments, we use an analysis window of length 
300 (step  =  N/FS), which corresponds to a frequency 
step equal to 1. According to the graphical relationship 
illustrated in Figure  5, the rejection band around 50 Hz 
is 48.74Hz, 51.26 Hz. Since we need to filter the 50 Hz 
multiple frequencies, the rejection bands (98.74 Hz, 101.26 
Hz and 148.74 Hz, 150 Hz) should be considered as well.

Finally, to evaluate the noise cancellation, the SNR 
is computed only on the positive intervals  (48.74 Hz, 
51.26 Hz; 98.74 Hz, 101.26 Hz; and 148.74 Hz, 150 Hz). 
On the other side, to evaluate the signal conservation, the 
SNR is computed on the complementary intervals  (0 Hz, 
48.74 Hz; 51.26 Hz, 98.74 Hz; and 101.26 Hz, 150 Hz).

It is worth noting that outside the stopband, a high 
SNR value implies the good preservation of the signal 
components. Conversely, inside the stopband, the SNR 

Figure 13: Graphical illustration of zoomed real electrocardiogram filtered with Hanning window (n = 300)

Figure 12: Graphical illustration of real electrocardiogram signal filtered with Hanning window (n = 300)
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value must be as small as possible. In fact, a small value 
indicates good noise cancellation.

According to our experiments, the computed value of the 
SNR outside the stopband is equal to 70.9 dB, whereas that 
calculated inside the stopband is equal to  −  51.6 dB. This 
value demonstrates the accurate selectivity of the proposed 
filter.

Finally, the suggested method is compared to the 
Butterworth and wavelet notch filters. Figure 16 shows the 
filtered signals for each method, and Table  1 provides the 
obtained SNRs.

From Table  1, we can see that all of the three methods can 
appropriately and identically remove PLI. Indeed, in the three 
cases, the SNR in the rejection band is approximately equal 
to − 51 dB. However, the proposed method has a better SNR 
outside the rejection band. This proves the filtering selectivity 
of the suggested method. Furthermore, and according 
to Figure  17, we can see a less perfect filtering quality 
obtained by the Butterworth and wavelet filters  (presence of 
oscillations near the QRS waves) despite a quite similar SNR 
for the Butterworth filter compared to our method.

Conclusion
In this study, we have presented a real‑time filter 
for single‑frequency noise cancellation based on a 

point‑by‑point FFT. This method has the advantage 
of being effective in the presence of interference with 
variable amplitudes. Nevertheless, to effectively suppress 
interference, the period of the amplitude variation must 
be lower or equal to the extent of the analysis window. 
This hypothesis has been proved according to the tests 
conducted on the signals extracted from the created ECG 
database.

The proposed filter has a stable response and a very narrow 
cutoff band ensuring the minimal attenuation of 33dB in 
the band (49.8 Hz, 50.2 Hz).

Unlike the conventional filtering techniques which allow 
attenuating the noise amplitude in a well‑defined band‑stop, 
the suggested method can estimate the instantaneous 
power line amplitude with excellent accuracy and 
consequently allows suppressing it completely. Besides, 
we have determined the relationship between the frequency 
resolution and the cutoff frequencies of the notch filter to 
adapt the filter size according to the denoising requirements.

Experiments have been conducted on synthetic ECG 
signals affected with PLI with constant and variable 
amplitudes. Based on the experimental results, it has been 
shown that the proposed filtering method can effectively 
remove PLI without introducing significant distortions in 
the ECG waves  (P, Q, R, S, and T). By considering real 
ECG signals, comparisons between noisy and filtered ECG 
spectra outside the rejection bands have given satisfactory 
results.

Table 1: Signal‑to‑noise ratio obtained for filtering 
methods

SNR outside 
rejection band (dB)

SNR inside 
rejection band (dB)

Proposed method 70.9 −51.6
Butterworth 69.4 −51.1
Wavelet 13.4 −51.0
SNR: Signal‑to‑noise ratio

Figure  15: Zoomed spectrum of original signal and filtered one using 
proposed method

Figure 14: Spectrum of (a) original signal and (b) that of filtered signal using suggested method
ba
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Comparisons between our method and two others showed a 
similarity on PLI rejection and a better signal preservation 
outside the rejection band for our method.

For the purpose of quantitative assessments, the use of the 
SNR metric is hampered by some serious limitations in the 
case of signals with fine sensitive structures. In our future 
work, we plan to alleviate this problem using an objective 
quality metric that takes into consideration the structural 
similarity.
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