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Abstract
Background: Careful design in the primary steps of a next‑generation sequencing study is critical 
for obtaining successful results in downstream analysis. Methods: In this study, a framework is 
proposed to evaluate and improve the sequence mapping in targeted regions of the reference genome. 
In this regard, simulated short reads were produced from the coding regions of the human genome 
and mapped to a Customized Target‑Based Reference (CTBR) by the alignment tools that have been 
introduced recently. The short reads produced by different sequencing technologies aligned to the 
standard genome and also CTBR with and without well‑defined mutation types where the amount 
of unmapped and misaligned reads and runtime was measured for comparison. Results: The results 
showed that the mapping accuracy of the reads generated from Illumina Hiseq2500 using Stampy 
as the alignment tool whenever the CTBR was used as reference was significantly better than 
other evaluated pipelines. Using CTBR for alignment significantly decreased the mapping error in 
comparison to other expanded or more limited references. While intentional mutations were imported 
in the reads, Stampy showed the minimum error of 1.67% using CTBR. However, the lowest error 
obtained by stampy too using whole genome and one chromosome as references was 3.78% and 
20%, respectively. Maximum and minimum misalignment errors were observed on chromosome Y 
and 20, respectively. Conclusion: Therefore using the proposed framework in a clinical targeted 
sequencing study may lead to predict the error and improve the performance of variant calling 
regarding the genomic regions targeted in a clinical study.
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Introduction
Knowing about next‑generation 
sequencing  (NGS) and its evolution during 
the past few years has led genomics to be 
more accurate in the diagnosis of hereditary 
disorders . Analyzing NGS data provides us 
with massive information, hence choosing 
the best processing steps to preserve 
valuable information is an important 
pace in detecting and understanding the 
genetic variants.[1] However, complexity 
and intensity of early steps in NGS 
analysis, lack of a standard and global 
pipeline, technical errors introduced during 
sequencing and analysis, and variety 
of abounding incomplete tools are the 
main limiting factors for a successful 
analysis.[2,3] The first step to have a reliable 
interpretation on the analysis results 
is to produce high‑quality data using 

appropriate technology. Fortunately, there 
are computational simulation tools that can 
produce synthetic NGS data by emulating 
base error rate due to sequencing faults in 
different technologies, which could be used 
for comparison and evaluation of various 
NGS analytical pipelines.[4]

Today, the use of targeted panel sequencing 
that tags only a small and specific 
portion of the genome is very popular in 
clinical diagnostics.[5‑7] Clinical targeted 
sequencing studies differ in the location 
of known hotspots and such data require 
an optimization procedure with a different 
standard from that of whole‑genome  (WG) 
sequencing. Furthermore, selecting an 
optimal tool and tuning its parameters for 
such variations in data is a very crucial 
process for individualized medicine.[5]

Alignment or mapping, which is the 
most important step of NGS analysis, 
especially for targeted sequencing, is the 
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process of finding the possible location of short reads 
along a reference genome that leads to finding possible 
variants. Alignment tools use built‑in algorithms to locate 
matching reads or tags of a sample to different regions of 
the reference genome. In practice, <75% of short reads 
efficiently map to the reference genome because a single 
read may appear more than once in the reference genome.[8] 
On the other hand, an observed short read may not exactly 
pair any position in the reference genome due to mutations 
or a bad sequencing readout. As the number of acceptable 
mismatches increases, the number of positions for mapping 
tags goes up but so does the number of incorrectly aligned 
reads. Giving erroneous output of the alignment step, many 
false‑positive variants could be called and a lot of variants 
in unmapped or misaligned regions would be missed. There 
are mathematically optimal solutions for this problem, but it 
requires a lot of hardware resources and a long processing 
time to reach the answer, which makes them infeasible.[8,9]

This study aimed to optimize a part of the bioinformatic 
pipeline for analyzing the targeted sequencing data. First, 
we have compared some recent NGS technologies using an 
appropriate NGS data simulator. Second, we have used the 
human coding genome constructed from standard databases 
as the reference to mapping. Third, we have compared recent 
alignment tools using simulated data with different depth of 
coverage and their performance on different chromosomes 
was reported individually for comparison. Our results have 
demonstrated error‑prone targeted regions, which govern the 
stabilization of new mapping quality measures or statistical 
significance estimates for improving the performance in the 
next step of analysis (e.g., variant calling).

Subjects and Methods
Simulated data

Most of the studies hold WG data to follow the workflow 
and report the best aligner by simulating short‑read 
sequences.[2,3] Whereas only a small portion  (<1%) of the 
human genome would be usually focused on clinical tests, 
processing of the WG is a waste of time. On the other hand, a 
small part of the genome known as coding sequences (CDS) 
or exome includes 85% of the known mutations that cause 
Mendelian disorders.[10] Therefore, whole‑exome sequencing 
as a massively parallel examination that strengthened by the 
high resolution of NGS technology provided a cost‑effective 
method for analyzing of the exons to accelerate disease 
gene finding. Recently, some collaborative projects, such 
as GENCODE[11] and CCDS,[12] have been introduced to 
provide standard databases for organizing all gene features 
in the human and mouse protein‑coding regions. The final 
goal of these projects is to care convergence to a standard set 
of gene interpretations for the benefit of biological research. 
However, the challenge is to afford extensive designs that 
supply more coverage of targets to increase confidence in 
variant calling. The SureSelect Human All Exon (SSHAE)[13] 
is a good design that targets updated records relevant to 

different clinical research (~60 megabases). Specifying a 
customized target‑based reference (CTBR) genome, SSHAE 
version  7 (Agilent Technologies, Santa Clara, California, 
United States)  was chosen to generate in silico short reads. 
It contains regions between the start and stop codons and 
splice junctions in the genome of Homo sapiens in the 
form of a BED file, which can be used for generating 
corresponding FASTA sequences using in‑house written 
Linux scripts (https://github.com/mrsehhati/SNV‑importer).

To simulate synthetic paired‑end short reads, artificial 
read transcription (ART)  is chosen because unlike other 
read simulators, it emulates errors caused by sequencing 
platforms and technologies and generates a sequence 
alignment mapping  (SAM) file in addition to FASTQ files 
simultaneously.[14] To evaluate the performance of pipelines 
in both the presence and absence of mutations, we have 
used two versions of CTBR in FASTA format as inputs 
of ART. The first input is the FASTA file that is directly 
generated from hg38 according to SSHAEv7 using in‑house 
written script. The second input is the modified version of 
the first input that includes intentional mutations, which 
are recently reported in ClinVar (released on 2019.6.29) 
database that imported in the CTBR using an appropriate 
script. Investigating system‑specific errors, different 
Illumina systems were used for emulating base error 
rates due to sequencing faults. It mimics various error 
rates and distributions to arrange bases in short reads of 
different lengths. Hiseq 1000, 2000, and 2500 which adopt 
sequencing by synthesis strategy were selected because of 
their popularity. Coverage of ×10, ×25, ×50, and ×100 was 
chosen for data generation to check coverage effect on the 
number of correctly aligned reads on each chromosome. 
Fragment length and standard deviation were considered 
175 and 51.85, namely. Using a fixed integer number 
for random seed parameter (–rndSeed) which stands for 
random seed, guaranteed identical short reads are generated 
for all different runs.[14] A 100  bp length for short reads 
was considered to simplify comparison. Using the SAM 
file obtained as an output of ART, simulated reads could 
be evaluated whether they were mapped correctly to the 
regions generated from.

Quality control

The first step in the processing of FASTQ files is quality 
control that can be performed using appropriate tools. 
A  general preprocessing task in every NGS analysis 
pipeline is trimming the adapters and removing the 
low‑quality bases  (Q  <  20) from two tails of short reads. 
A  sample quality score diagram obtained by FaQCs tool[15] 
for one of the generated FASTQ files  (Hiseq 1000, fold 
of coverage  ×10) is illustrated in Figure  1. In contrast to 
traditional NGS analysis workflows and to be able to 
evaluate different NGS technologies, here, we did not 
perform any filtering/trimming on artificially generated tags.
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Alignment

Algorithms applied for alignment fall into three major 
categories: hash table, array scanning, and Burrows–Wheeler 
Transform  (BWT) backtracking. They create secondary 
data to facilitate mapping and to overcome the limitation in 
hardware resources. Hash table employs a seed‑and‑extend 
paradigm semi‑similar to BLAST with spaced seeds which 
results in a table.[16] Two algorithms employed for seed 
alignment are Smith and Waterman[9] and Needleman and 
Wunsch[17] that are slow but accurate. The aforementioned 
combination of algorithms leads to an indel‑sensitive 
alignment accepting a limited number of mismatches and 
gaps. In contrast to the hash table which localizes seeds 
in short reads and aligns them to subsequences of the 
reference genome, BWT backtracking[18] attempts mapping 
whole read to reference via compressing data structure of 
genome reference. As it seems to be a time‑consuming 
process, suffixes of reference are built preliminary to speed 
the alignment up. Prefix/suffix tree,[19] suffix array,[20] and 
Ferragina‑Manzini  (FM) index[21] are different algorithms 
employed in BWT backtracking. No multiple identical 
reads shall be aligned to the same place and it is more 
advantageous than the hash table in some cases.[22]

Agrawal and Huang reported that using sequence‑specific 
information in estimating pairwise statistical significance 
provides a more reliable measure to improve the alignment 
results rather than using database statistical significance 
estimates in calculating the alignment score.[23] Thus, 
aligners should be carefully chosen according to data 
being analyzed and using incompatible aligner may cause 
errors in secondary data and lead to mistaken alignment 
and misinterpretation. This study aims to align short reads 
without‑SNV (with no single nucleotide variant)  and 

SNV‑imported ones to three kinds of references: WG 
reference  (hg38), target regions of SSHAEv7 whose input 
short reads are generated from, and each chromosome 
separately. This helps to understand how different 
references affect mapping accuracy.

Two popular mappers known as Burrows-Wheeler Aligner 
(BWA)[20] and Bowtie2[24] utilizing the indexing method 
accept mismatches and gapped alignment. Bowtie2 
utilizes BWT on FM‑indexes of FASTA file, but for 
high‑speed search through subsequences of reference, 
BWA[20] constructs suffix arrays. An academic version of 
Novoalign[3] mapping tool which adopts hash table performs 
optimized alignment for 30‑300  bp reads. Stampy[25] is 
another alignment tool which uses a hybrid method to 
write a hash table and look it up to facilitate mapping. The 
divide and conquer strategy is employed in Kart[26] to create 
a faster alignment using BWT backtracking and hash table 
simultaneously. All the selected tools accessible for free and 
could perform paired‑end alignment allowing mismatches, 
gaps, and indels. The five described mapping tools and 
their basic features are listed in Table 1. This study aims to 
assess the performance of each aligner in correct mapping 
on each chromosome using simulated short reads. All input 
parameters of different software were chosen based on the 
recommended default values in the utilized tools.

Performance evaluation

For every considered sequencing system and coverage 
folds, simulated short reads were mapped to the SSHAEv7 
targets as the reference genome using BWA, Bowtie2, Kart, 
Novoalign, and Stampy. The aforementioned aligners were 
used to map 100  bp short reads compiled in FASTQ files 
of samples against the reference. Then, SAM files, which 
are the primary output of alignment tools, were converted 
to binary alignment mapping  (BAM) format and sorted 
utilizing Sambamba tool.[27] Then, the sorted BAM was 
converted back to SAM format again to be comparable 
with the reference SAM. Then, the first, third, and fourth 
columns of the lastly sorted SAM files, which contained 
required information about the position of aligned reads 
that were extracted. To perform the evaluation, the 
extracted information  (i.e., QNAME, RNAME and POS) 
was compared with the firstly produced  (reference) SAM 
file by the ART from SSHAEv7 targets. The number of 
aligned short reads in each sorted SAM file was counted 
and compared to find exact matches of alignment. Finally, 
the number of unmapped tags and accuracy, which is 
defined as the ratio of properly aligned reads to the total 
number of short reads generated from each chromosome in 
the simulation step, was reported.

To discover the regions on the genome that are error prone 
in the alignment process, we defined a Normalized Matrix 
of Mapping Error (NMME) as Eq. 1. In this regard, we first 
calculated the Number of Misaligned Readss (NMR(i, j)) 
originated from chromosome i and erroneously aligned to 

Figure  1: A sample quality score diagram. Quality boxplot obtained by 
FaQCs tool for the short reads simulated for Hiseq 1000 with fold of 
coverage ×10
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chromosome j. Afterward, NMR (i, j) is divided by the Total 
Length of Targeted Regions on Both Chromosomes i and 
j  (TLC  (i, j)). Then, the obtained values were divided into 
the maximum value of Misaligned Reads Ratio  (MRR). 
MPR is the number of reads that originated from one 
chromosome or originated from multiple chromosomes 
and erroneously aligned to a common target chromosome 
and then divided by the length of targeted regions on that 
chromosome.

NMME (i, j) = (NMR (i, j)/TLC (i, j))/MPR� (1)

Results
Mapping accuracy and average computational time are 
the two parameters to be satisfied, illustrating the basic 
performance of aligners. The first measure  (Eq. 2) used to 
compute the efficiency of aligners in this study is based on 
how much coding regions of each whose based on CCDS, 
are correctly covered by the aligned short reads.

Properly mapped reads Accuracy = 
Total number of short reads 

generated for each chromosome

� (2)

Figure 2 shows the accuracy of mapping for various aligners 
using data of Hiseq systems  (10, 20, and 25) with coverage 
of  ×  10. It is obvious that by optimization of sequencing 
chemistry in developing newer technologies, the mapping 
accuracy was significantly improved. The results were 
similarly replicated for different depth of coverage  (×10, 
×25, ×50, and ×100). Based on the results shown in Figure 2, 
Stampy showed the best performance among five evaluated 
aligner tools regarding accuracy for all technologies and 
it could map almost all the simulated reads to the proper 
position in all chromosomes for Hiseq 25. BWA and 
Bowtie2 could correctly map about 60% of the short reads 
generated from Hiseq 20 and 25 where the coding genome 
of humans  (CCDS‑hg19) used as a reference. It is basically 
because of BWT‑based algorithm applied in these aligners.[28] 
Furthermore, the academic version of Novoalign showed the 
lowest accuracy and could not correctly map more than 40% 
of short reads even for Hiseq 2500. It agrees with the Shang’s 
study that states that Novoalign has low performance due to 
its overmapping at both ends of short reads.[29]

Based on the primary results demonstrated by Figure  2, 
which obtained for a limited mapping reference customized 
by CCDS on hg19, maximum and minimum mapping 
accuracies were observed on chromosome 19 and Y 
obtained by Stampy and Novoalign, respectively.

According to the average of mapping accuracy for 
all technologies and all examined fold of coverage, 
Stampy, Bowtie2, and BWA were selected as the best 
mappers which are able to cover  >50% of short reads 
on autosomal chromosomes. It should be noted that 
there was no significant difference in accuracies between 
the four experiments using different folds of coverage 
(×10, ×25, ×50, and ×100) for each aligner.

Runtime is another important factor for comparison of the 
mapping tool, but speaking of other performance measures 
according to the results of different algorithms, one should 
compromise. Alignment time, which is the duration time 
between the time of execution of aligner tool command 
and the end time of generating the SAM output, usually 
depends on the reference genome size and the number of 
reads and their length.[3] These parameters were optimally 
chosen and remained constant in our study, and thus, 
the measured runtime would only depend on the aligner 
performance. Figure  3 shows the average runtime of each 
aligner on  ×10 reads. According to Figure  3, Kart is the 
fastest tool, followed by BWA and Bowtie2. Stampy was 
the worst tool in terms of computational speed contrary 
to its superiority in mapping accuracy. The results 
approve the literature,[20,30] which expresses acceptable 
time consumption and memory occupancy  (overall 
computational efficiency) and confirms that multithreading 
improves computational efficiency.

For further evaluation of the best aligners introduced in 
the previous experiment  (Stampy, BWA, and Bowtie2), 
two versions of short reads containing without‑SNV and 
SNV‑imported simulated reads were mapped to three types of 
references: WG (hg38), CTBR (SSHAEv7‑based reference), 
and each chromosome individually. Table  2 reports 
mapping error rate, which is the ratio of total number 
of misaligned short reads to the whole simulated short 
reads (1,315,770 reads), for three mappers evaluated on two 

Table 1: List of selected mapping tools and their basic features
BWA Bowtie2 Kart Stampy Novoalign

Version 0.7.17 2.3.3.1 2.4.4 1.0.32 3.0802
Mapping algorithm BWT FM‑Index and BWT Hash table and BWT Improved hash table and SIMD Hash table
Multithreading Yes Yes Yes No No
Optimized read length (bp) 4‑200 4‑5000k 150‑7k 4‑4k 30‑300
Seed mismatches Yes Yes Yes (0.15 read length) 8
Indel 8 Yes 5 30 7
Gap Yes Yes 5 No Yes
Alignment Global Global/local Local Global Global
Mapping quality 0‑60 0‑42 0‑60 0‑99 0‑70
FM – Ferragina‑Manzini; BWT – Burrows‑Wheeler Transform; SIMD – Single instruction, multiple data; BWA – Burrows-wheeler aligner

[Downloaded free from http://www.jmssjournal.net on Sunday, January 31, 2021, IP: 10.232.74.27]



Nodehi, et al.: Selection and optimization of bioinformatics pipelines

Journal of Medical Signals & Sensors | Volume 11 | Issue 1 | January-March 2021� 41

types of data  (without SNV and SNV imported) using three 
references  (WG, CTBR, and Chr#). It is obvious from the 
last column of Table  2, using single chromosomes as the 
reference led to a high error rate (minimum error of 20%) for 
all tools. Thus, limiting the reference to a target whenever 
short reads came from a wider region results in increasing 
the false‑positive alignment error.

According to Table  2, all mapping tools reached the 
minimum error rate  (1.3  ±  0.01%), where the simulated 

short reads did not contain intentional mutations and 
CTBR was used as the reference [third column of Table 2]. 
Whereas in the presence of mutations in FASTQ 
data (SNV‑imported data), Stampy showed the best 
result (1.67%) using CTBR as reference. For SNV‑imported 
data, Bowtie2 is the worst tool considering the error rate 
of 5.37% and 3.04% using WG and CTBR as reference, 
respectively. Regardless of selected mapping tools and the 
type of input data, choosing CTBR rather than WG as the 

Figure 3: Average runtime in minutes for mapping ×10 reads using five 
selected aligners

Figure 2: Mapping accuracy for various aligners using data of Hiseq systems ((a) 10,(b) 20, and (c) 25) with coverage of × 10

c

b

a

Table 2: Mapping error rate (%) of different aligners 
in alignment of with and without mutation short reads 

using three types of references
Without SNV SNV imported

WG CTBR WG CTBR Chr#

BWA 3.60 1.31 4.2 1.84 > 30
Bowtie2 3.60 1.29 5.37 3.04 > 30
Stampy 3.35 1.30 3.78 1.67 > 20
#Reported value is the minimum error rate observed in the set of all 24 
chromosomes individually (chr1‑chr22, chrX and chrY). WG – Whole 
genome; CTBR – Customized target‑based reference; SIMD – Single 
instruction, multiple data; BWA – Burrows-wheeler aligner
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reference for mapping the simulated short reads generated 
from coding regions of human genome led to more than 
2% improvement in the mapping accuracy.

Figure  4 shows the scheme of normalized mapping 
error (Eq. 1) in different chromosomes for various aligners 
in which without‑SNV data aligned to WG. However, 
a similar pattern was observed for all other conditions 
[as considered in Table  2] which is the same as the 
scheme obtained for different mapping tools  [Figure  4]. 
Thus, for all tools in all conditions, maximum and 
minimum of normalized mapping error were observed 
for chromosome Y and 20, respectively. According to the 
observable points in the main diagonal of the displayed 
matrixes in Figure  4, the main part of misaligned reads 
is mispositioned on the right chromosome. Therefore, it 
can be concluded that the source of the most part of the 
measured error is the misalignment between neighbor 
genes/regions. It should be noted that the observed error 
is independent of the number of short reads generated 
from each chromosome.

To see the pattern of misaligned reads between different 
chromosomes, namely   Cross‑Chromosome Mapping 
Error  (CCME) that is unobservable in Figure  4, 
the diagonal elements of NMME were removed 
and other elements were renormalized to make too 
small non‑diagonal values observable. Due to the 
high misalignment error of chromosome Y to other 
chromosomes, we removed the last row and column of 
NMME to make other renormalized CCMEs observable 
as shown in Figure  5. According to Figure  5, using WG 
as a reference [first and third columns in Figure 5], there 
is a high tendency of mapping the reads originated from 
chromosome 16 to chromosome 1 using all mapping 
tools. Another common pattern among different aligners 
is the misalignment of reads from chromosomes 
6 and 14 to chromosomes 7 and 22. Using CTBR as a 
reference, there is no evidence of mapping error between 
chromosomes 16 and 1, which was the main source of 

error using WG. However, CCME between chromosomes 
6 and 7 is the most significant error pattern that remains 
in both cases of using WG and CTBR by all tools.

Discussion
Due to a variety of abounding incomplete bioinformatic 
tools that demonstrated inconsistent performance in 
different applications, it is necessary to have a framework 
for evaluating different tools to optimize an imperfect 
analytical pipeline. This work presents a straightforward 
approach for evaluation and selection of bioinformatic 
tools in a clinical application using simulated data. 
The results showed that limiting the mapping reference 
from WG to a customized one, considering the genomic 
region selected as the target of study, may lead to the 
improvement of mapping performance, while narrowing 
the reference to one chromosome, when the input data 
includes all exonic regions, caused high error rates in the 
alignment.

Providing a fair comparison among different mapping 
tools and demonstration of chromosome‑specific pattern 
of alignment error, in this study, may provide an 
illustrative framework for designing a careful targeted 
sequencing study. The results of such a simulation can 
be used to construct a new quality measure, such as a 
mapping quality for different genomic regions according 
to this work; which guides us to focus on more reliable 
results for interpretation and ignore the low‑quality 
ones. Based on the obtained results, independent 
sequencing of neighbor genes in different experiments 
may lead to a reduction in the alignment error, which 
improves the final performance of an NGS study. The 
main limitation of this study is relying on simulated 
data. In our future work, we aim to run the proposed 
framework for evaluating a list of specific genes on 
real datasets demonstrating misaligned reads between 
different genes.

Figure 4: Scheme of normalized mapping error in different chromosomes using SNV‑imported data and customized target‑based reference as reference 
for (a) BWA, (b) Bowtie2, and (c) Stampy

cba
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