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Abstract
Background: A simple data collection approach based on electroencephalogram (EEG) measurements 
has been proposed in this study to implement a  brain–computer interface, i.e., thought‑controlled 
wheelchair navigation system with communication assistance. Method: The EEG signals are recorded 
for seven simple tasks using the designed data acquisition procedure. These seven tasks are conceivably 
used to control wheelchair movement and interact with others using any odd‑ball paradigm. The 
proposed system records EEG signals from 10 individuals at eight‑channel locations, during which the 
individual executes seven different mental tasks. The acquired brainwave patterns have been processed 
to eliminate noise, including artifacts and powerline noise, and are then partitioned into six different 
frequency bands. The proposed cross‑correlation procedure then employs the segmented frequency bands 
from each channel to extract features. The cross‑correlation procedure was used to obtain the coefficients 
in the frequency domain from consecutive frame samples. Then, the statistical measures  (“minimum,” 
“mean,” “maximum,” and “standard deviation”) were derived from the cross‑correlated signals. Finally, 
the extracted feature sets were validated through online sequential‑extreme learning machine algorithm. 
Results and Conclusion: The results of the classification networks were compared with each set of 
features, and the results indicated that μ  (r) feature set based on cross‑correlation signals had the best 
performance with a recognition rate of 91.93%.
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Introduction
The fundamental needs of people in 
day‑to‑day routine involve walking 
and interacting with other individuals. 
Individuals with specific disabilities, 
including motor neuron disease, severe 
spinal injuries, involuntary speech failure, 
and brainstem stroke, have limited 
mobility and interaction with each other 
(loss of muscle coordination and speech). 
Such individuals have active brain 
functions, and are often referred to as 
differentially disabled  (DE).[1,2] Under 
these conditions, DE patients have a hard 
time to walk or communicate with the 
outside world. It is, therefore, important 
to provide the DE communities with 
an assistive technology device  (ATD), 
enabling them to lead their healthy and 
normal lives. To date, various ATDs have 

been established using bioamplifiers, 
for example, cursor movement,[3] 
neuroprosthetic arm,[4] whole‑body 
movement,[5] emotion recognition,[6] and 
driver sleepiness detection,[7] motivated 
by the transmission of noninvasive brain 
function measurements through effective 
electroencephalogram  (EEG) amplifiers.[8,9] 
This study currently intended in recognizing 
unspoken speech signals and controlling 
wheelchair mobility without voluntary 
muscle function.[10‑16]

With regard to the BCIs for speech 
communication system,[17] a BCI was 
proposed that can recognize seven words 
using electrical and magnetic brain 
waves, acquired under three experimental 
conditions  (electromyography  [EMG] 
results, single‑trial predictions, and 
subject‑independent predictions). It 
is emphasized from the research that 
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brainwaves contain significant information about the 
mentally processed words and therefore, it is possible to 
recognize thought‑controlled words using signal processing 
algorithms.[18] Researchers carried out experiments 
using five locked‑in patients based on slow cortical 
potentials  (SCPs), self‑regulated as a control signal to 
choose alphabet  (ABCs), words, or pattern symbols in a 
computer‑based language support arrangement. From this 
analysis, it is observed that adequate learning speed and 
success rate are necessary for SCP‑based experiments 
when transmitting binary decisions to the computer. 
Porbadnigk et  al., 2009, introduced a BCI including a 
brief representation of the double‑tree complex wavelet 
transform and linear discriminant analysis  (LDA) 
paradigm for speech production.[19] The developed model 
can recognize five words using a 16‑channel EEG data 
acquisition system, but this methodology is still not 
established in practice and has a low performance rate of 
45.50% percent. Guenther et al., 2011, proposed a practical 
implementation and development of assistive BCI with 
real‑time speech synthesis; the developed system uses the 
formant tuning analysis and a Kalman filter (linear Gaussian 
model) to drive a speech synthesizer.[20] Particularly, this 
approach has been used to recognize vowel productions in 
a customized mode  (subject independent). The electrodes 
were implanted using MRI‑guided stereotactic surgery, and 
the results suggest that the average performance rate hits 
40%–70% and the information transfer rate (ITR) is within 
50 ms, across sessions. Salama et  al.[21] indicated that the 
classification rate for unspoken speech recognition relies on 
the concentration of the individual on the task and captured 
signal with less artifacts. The findings were based on the 
acquisition of a single brainwave electrode channel to 
distinguish two Arabic words “YES” and “NO.”

With regard to the BCIs for navigating an electric 
wheelchair, Tanaka et  al., 2005, used twelve‑channel EEG 
acquisition system to acquire brain signals using motor 
imaginary tasks  (LEFT or RIGHT).[22] The results suggest 
that subject‑independent analysis based on recursive 
training algorithm shows an average classification rate of 
80%. Müller‑Putz et  al., 2008, and Pfurtscheller, 2008, 
have shown that a tetraplegic individual can use brain 
waves to direct wheelchair trajectory in virtual reality using 
the interpretation of DE footstep motions.[4,23] The proposed 
system based on a patient with single‑channel analysis has 
an average performance rate of 90% and single runs up to 
100% using asynchronous tasks. Leeb et al., 2007, presented 
an experiment based on two individuals in five different 
experimental sessions using imaginary tasks and a simulated 
wheelchair.[24] Based on the experiments, the machine 
has a reliable user‑defined EEG feature that improves the 
recognition of imaginary motor activity. From the analysis, 
individual 1 was able to control the wheelchair with an 
average of 80% success rate, and the individual can control 
the dynamic robots autonomously over prolonged periods 

without the use of sophisticated evolutionary algorithms. 
A  research work proposed by[10] introduced a four‑tactile 
stimulator BCI that helped participants maneuver through 
the stimuli shown in the odd‑ball paradigm. The suggested 
procedure can also be used to control the movement of 
wheelchairs and recognition of speech. The results of the 
outcomes were evaluated by the individuals who controlled 
the virtual wheelchair. A  recent review by[25] stated that 
the use of P300, sensory motor rhythms  (SMRs), or 
steady‑state visual‑evoked potential  (VEP) in most BCIs 
has shown promising results, but has been focused on 
offline evaluation of the acquired signals  (database). BCIs 
are under investigation for real‑time implementation with 
actual online testing of new feature extraction algorithms 
and classifiers. It is, therefore, important to use enhanced 
EEG recording technologies, optimized signal analysis 
algorithms, and real‑time integration with online evaluation 
for effective interaction between the user and the BCI.

Lawhern et al., 2018, proposed a compact EEG‑based BCI, 
i.e., EEGNet, using convolutional neural network.[26] The 
proposed network model was evaluated across four BCI 
paradigms: P300 visual‑evoked potentials, error‑related 
negativity response, movement‑related cortical potentials, 
and SMR. Research findings suggest that particular 
EEGNet establishes a reliable framework for learning 
an extensive range of intelligible characteristics across a 
variety of BCI tasks.

From literature, it can be observed that despite the 
discussed articles, there is no research addressed with 
the extended use of BCI technologies enabling both 
mobility and speech communication using a custom brain 
activity measurement approach. Moreover, EEG‑based 
navigation and communication technologies have 
shown that the efficiency of an efficient BCI is largely 
contingent on the tasks being executed, the number of 
EEG channels  (electrode positions) being used, and the 
procedure used for data acquisition. It is also observed 
that BCI’s classification performance or ITR differs with 
different paradigms  (SCPs, P300, YES/NO, and cursor 
movement), individuals  (normal or differentially enabled), 
and process  (custom or generalized mode). The possible 
way to achieve a successful BCI is by choosing proper data 
acquisition tasks, stimuli  (thought‑evoked potential  [TEP] 
or VEP), robust signal processing algorithms, and using 
suitable training for real‑time implementation in different 
circumstances.[10,13,17,21,22,26‑30]

It is also known that certain aspects are important and 
need to be explored in order to potentially develop 
wheelchair navigation system  (WNS) with communication 
assistance, for example, backpropagation‑based multi‑layer 
neural network, hidden Markov modes, support vector 
machine  (SVM), Gaussian mixture models, and LDA 
are the most efficient and widely used algorithms for 
classifying motor imagery tasks, despite the mean 
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University Malaysia Perlis.[41] Prior to initiating the data 
collection process, the experimental procedure has been 
registered and accepted by the “National Medical Research 
Registration”  (NMRR ID: NMRR‑13‑51‑14570) and 
received ethical clearance with  Medical Research Ethics 
Committee (MREC) and Ministry of Health Malaysia 
(Ref:[7]dlm. KKM/NIHSEC/800‑2/2/2Jld2P13‑179).[41] 
The section discusses several basic techniques used for the 
experimental setup, including the configuration of wireless 
bioamplifier and positioning of electrode channels for the 
measurement of brain activities. In addition, appropriate 
task identification, the data capture process, and the 
development of the WNS database were also addressed. 
This procedure is important to classify the tasks captured 
based on the TEPs that control the WNS.

Experimental Setup and Data Acquisition

The experimental setup has been configured with 
a bio‑signal data acquisition system known as 
“g‑mobilab+”  (a device that captures EEG signals from 
eight‑channel positions) to record brainwave responses.[42] 
The data acquisition framework comprises the following 
components:
a.	 Electrode cap with nine individual screw‑in electrodes
b.	 A bio‑signal amplifier
c.	 Electrode gels, and
d.	 Wireless data transmission through the MATLAB® 

integrated programming package.

In the experimental paradigm, it is proposed to attempt 
and establish a BCI device suitable for DE community 
to operate joystick of the wheelchair and interact with 
anyone  (through any odd‑ball paradigm), based on 
brainwave signals.[42,43]

Therefore, three major tasks that describe the movement 
of the robotic wheelchair as well as the selection of 
isolated words/phrases in an odd‑ball paradigm, for 
example, LEFT‑, FORWARD‑, and RIGHT‑hand motion 
control, were incorporated in the data acquisition process. 
To communicate with the outside world and to alert the 
caretaker under an emergency situation, additionally, the 
following three tasks have also been introduced: “Help,” 
“YES,” and “NO” tasks to direct the basic human needs. 
In this experiment, the EEG responses obtained for the 
RELAX  (normal) task have been used as the reference 
signal. The acquisition was performed in a protected 
semi‑sound chamber, in which the individuals were seated 
in comfortable state and performed seven asynchronous 
tasks. The signals are obtained in circumstances where the 
individuals remain stable. There were no overt movements 
allowed during the 12 s data recording process.

In this process, the motor imaginary signals relating the 
tasks are measured from eight electrode locations: they are 
“temporal lobe”  (T3 and T4), “central lobe” (C3 and C4), 
“parietal lobe” (P3 and P4), and “occipital lobe” (O1 and O2), 

square error and number of training iterations can be 
optimized.[19,31‑33] In addition, training time for participants 
to enhance their expertise and effective integration 
with reliable features has been considered for real‑time 
implementation.[16,24] As a result of the above literatures, 
the noninvasive BCIs have given significant contributions 
to the implementation of the proposed WNS system in this 
research as a first stage upward to the potential for speech 
and motor control through the proposed protocol. In the 
absence of muscle coordination and speech, the proposed 
system can be used to assist DE peoples. This research 
attempts to develop a wheelchair that provides mobility 
control and communication assistance via brainwave 
stimulation. The established device could then be used by 
DE and other speech‑impaired individuals to move around 
and express their desires to anyone. The protocol used 
for data acquisition and preprocessing of the recording 
signals is explained in section 2. Cross‑correlation‑based 
techniques have been proposed in this analysis to derive the 
features from the frequency‑band signals at every electrode 
channel.[33] As many classifiers such as backpropagation 
neural network,[34] SVM,[35] and LDA[36] have also shown 
greater efficiency in recognition, the proposed extreme 
learning machine  (ELM) by Huang et  al., 2012, is indeed 
an effective tuning‑free algorithm for training a feature set 
that employs simply single‑hidden layer in feed‑forward 
neural network  (SLFNs).[37,38] The emergence of ELM in 
the artificial neural nets allows reduced time for training 
the network models relative to the artificial neural network, 
which has also been employed in other areas of research, 
particularly in BCI.[37‑39] As a result of the literature, the 
statistical features extracted for the WNS classification 
system are linked with its corresponding imagery tasks and 
evaluated using online sequential  (OS)‑ELM.[40] Section 3 
explain the feature extraction method and the classifiers 
used in this research. Figure  1 illustrates the schematic 
depiction of the proposed WNS system.

Wheelchair Navigation System Database
The data acquisition process was carried out in the laboratory 
environment at the School of Mechatronics Engineering, 

Figure 1: Schematic representation of the proposed wheelchair navigation 
system
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when the individual executes the seven tasks asynchronously. 
Moreover, reference recording schemes have been used in 
the electrode positioning procedure, and the electrodes are 
positioned at the locations  (T3 and T4, C3 and C4, P3 and 
P4, O1 and O2) with one specific electrode on the left ear 
lobe of the individual’s body. The potentials were maintained 
relatively constant.[44,45]

The experimental WNS model measures the patterns 
of brain activity to distinguish the rhythmic pattern for 
an individual’s seven different thoughts. Therefore, the 
brainwave signals were collected from a grid of eight 
Ag/AgCl scalp electrodes with a sampling rate at 256  Hz 
during the data acquisition procedure. The electrodes 
were mounted on the scalp as stated in the international 
10–20 lead system.[46] The electrodes are mounted on scalp 
locations, and g‑tec impedance checker has been used to 
monitor the impedance levels. In addition, the impedance 
level has been subsequently measured after each task was 
completed and kept below 10 kΩ.

Thought‑Evoked Potential Data Acquisition and 
Wheelchair Navigation System Dataset

In the development of WNS dataset, 10 healthy naives to 
BCI were selected as volunteers in the data acquisition 
process  (eight male individuals, aged between 21 and 
30  years, and two female individuals aged 24  years). In 
the data collection of each task, a detailed demonstration 
on the tasks  (simulation of the task) was given to the 
individuals through a liquid crystal display (LCD) monitor. 
The simulation provides a detailed demonstration of the 
movement of wheelchair joystick for LEFT, FORWARD, 
and RIGHT directions using the right hand, both hand, 
and left hand movement. The visual shows a volunteer 
executing up‑down and left‑right head movements 
with tasks involving “YES” and “NO.” For “HELP,” 
the individual was instructed to mentally pronounce 
the term “HELP”  (how he/she normally call for help 
in an emergency), rather than contemplating the hand 
movements. The LCD screen is then switched off, and a 
2‑s blank screen was displayed, while, as shown on the 
simulation, the participant has been asked to perform 
the tasks asynchronously. The participant subsequently 
performs a given task, and the EEG responses were 
collected across the parietal lobe  (P3 and P4), temporal 
lobe  (T3 and T4), central lobe  (C3 and C4), and occipital 
lobe  (O1 and O2) locations for 12 s. According to the 10–
20 method, ground and reference electrodes were placed in 
Fpz and left earlobe location.[47]

At a frequency of 50  Hz, the acquired EEG signal has 
interference of unknown noise characteristics such as 
power line disruption. Hence, a simple 1st‑order IIR notch 
filter has been designed to remove power line disruption 
from signals acquired. Filter center‑frequency  (F0) was 
approximately selected around 50  Hz with bandwidth of 
ΔF  =  4 Hz.[46,48] The recorded signals were subsequently 

quantified into discrete signals using a sampling frequency 
of 256  Hz. Similarly, ten trials were made for each task 
during the acquisition process, and the participants were 
allowed to take breaks between each task for 10  min. 
Additionally, for ten participants, this process has been 
continued, and the captured signals are established in 
this manner and labeled as the WNS dataset. The WNS 
dataset comprises 10participants  ×  7tasks  ×  10trials. The proposed 
TEP‑protocol‑based WNS database will also be established 
for future research using more volunteers to develop 
the generalized system. The database was then used for 
validation using hypothesis testing based on analysis of 
variance algorithm, and P  value was found to be below 
α (significance level: 0.05).[49]

Statistical Cross‑Correlation Based Features
Frame Blocking and Frequency band Extraction

The eight‑channel raw EEG signals were processed to 10‑s 
signal in the feature extraction procedure by excluding one 
second at the beginning and end of the signal to eliminate 
the noise due to electrical inference  (amplifier ON/OFF). 
The segmented signals are also categorized into frames of 
equal length  (2 s with 512  samples/frame) including an 
overlap (1 s with 256 samples).

The first frame is, therefore, composed of 512  samples. 
Following an overlap of m  −  1  (256  samples), the second 
frame was initiated to overlap the second frame with 
the  n  −  m samples  of the first frame. This process was 
performed in the frame segmentation procedure until all 
EEG signals were used as an input signal to derive the 
frequency band.[50]

The frequencies above 100 Hz have very little information 
about the tasks performed on the basis of the TEP 
protocol;[46,51] therefore, the segmented frame signals 
are used with band‑pass filters to remove artifacts and 
EMGs above 100  Hz and below 0.5  Hz. The segmented 
frame signals are split into the following six specific 
bands: delta‑band  (δ), 0.1–4  Hz; theta‑band  (θ), 4–8 Hz; 
alpha‑band (α), 8–16 Hz; beta‑band (β), 16–32 Hz; gamma 
1‑band  (γ1), 32–64 Hz; and gamma 2‑band  (γ2), 
64–100 Hz. The frequency band is implemented over each 
frame signal segmented from the eight different channels, 
and the features are derived using the statistical cross-
correlations (SCC) algorithm.

Statistical Cross-Correlations Based Features

Cross‑corr  (r) analyses were used in this article to 
examine the segmented signals recorded based on the TEP 
procedure. r is a form of template‑matching tool among 
two input sequences, which is especially prominent in 
identifying the significant differences across the active 
potentials of the neuron.[52,53] Considering r is a successful 
method for extracting the features in BCI studies, which 
also offers high‑efficiency level even when the signals 
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are effected by slight variations in the location of the 
electrodes,[33,52] This methodology was implemented in this 
analysis to determine the interrelationship between the 
corresponding sets.

A simple Hamming window has been placed across 
each frame in the feature extraction process, and the 
Fast Fourier Transform Algorithm  (FFT) algorithm was 
implemented to extract the frequency components from the 
time domain sequence.[54] Accordingly, the six frequency 
band signals  (δ, θ, α, β, γ1, and γ2) were extracted using 
Welch’s band‑pass filters for each frame.[50] In addition, 
for all channels, the FFT frequencies are cross‑correlated 
among ith and the  (i  +  1) th frames to determine the 
interrelationship between the two discrete frames. Hence, 
the cross‑correlation sequence ( , 1)

j
i ir δ δ +  for was determined 

one by one from δi band frequencies and the δ + 1 band 
frequencies.

where

i represents the frame index

j represents electrode channel index.

Then, the procedure is repeated to compute 
the cross‑correlation sequence for ( , 1)

j
i irθ θ + , 

( , 1)
j

i irα α + , ( , 1)
j

i ir β β + , ( 1 , 1 1)
j

i ir γ γ + , and ( 2 , 2 1)
j

i ir γ γ + . In addition, the 
cross‑correlated samples are used to derive four distinct 
statistical measures which are minimum  (min  [r]), 
mean  (µ  [r]), maximum  (max  [r]), and standard 
deviation  (σ  [r]). These corresponding feature 
samples are configured to interpret the r sequence 
distribution and minimize the dimensions of the 
set of features.[33] For eight channels, as a result, 
48 features (6 frequency bands  ×  8 channels) were 
obtained between each set of frames. Similarly, for 
each task, features were extracted at each trial, and 
the resulting set of features comprises 6300  samples 
(10 participants × 10 trials × 9 frames × 7 tasks). In similar 
fashion, the features were derived from each task across 
every trial to construct the feature set. Consequently, the 
feature set composed of 6300 samples (10 participants × 10 
trials × 9 frames × 7 tasks) is developed. The set of features 
are then used to design the architecture of the classifier and 
to recognize the tasks.
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where min(r)  –, µ(r)  –  mean, max(r)  –  maximum and 
σ(r)  ‑  standard deviation of the r sequence in the ith frame 
of the jth electrode location.

The procedures to implement the segmentation of frequency 
bands and cross‑correlation features are illustrated 
in Figure 2.

Classification of Thought‑Evoked Potential Tasks 
Using Online Sequential‑Extreme Learning 
Machine Algorithm
ELMs are fundamentally inspired pattern recognition 
techniques built using SLFN that provides quick training 
speed, flexibility in implementation, and reduced manual 
interruptions  (Huang, 2004).[38] The concept of ELM 
becoming a potentially promising technique for BCI 
technologies has been developed significantly over the 
years.[37‑39] Liang et al.[40] introduced an effective OS‑ELM, 
which could sequentially process feature vectors and 
update the existing model with the input of new samples. 
The SLFN algorithm can learn sequentially with “one per 
chunk” or “one by one chunk,” which has a set or different 
chunk size.[40] OS‑ELM comprises of two different stages: a 
first stage and a secondary learning process. Therefore, with 
the OS‑ELM algorithm used in this study,[55] the statistical 
features derived from the cross‑correlation analysis were 
evaluated.

In this analysis, a simple WNS model has been 
implemented employing OS‑ELM for multiclass 
pattern recognition. The set of features based on every 
statistical measure is then processed and linked with the 
tasks  (6300  ×  48 features). In addition, the feature vectors 
are normalized using the bipolar normalization approach, 
which can be seen in Eq. 5, in which the dataset was 
transformed between − 0.9 and 0.9  (Sivanandam, 2009).[56] 
The feature set has been portioned into training and testing 
sets based on 5‑fold cross‑validation method[57] for each 
feature set  (min  [r]), µ(r), max(r), and σ  (r). The training 
set has 5040  ×  48  samples  (80% master data set) as well 
as the test set does have the other 1260  ×  48  samples 
(20% master data set) to recognize the TEP tasks.[58] In this 
analysis, 48 neurons in the input layer, and 7 neurons in 

Figure 2: A flowchart procedure for the segmentation of frequency bands 
and cross‑correlation feature
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the output layer, were formed in OS‑ELM architectures. 
We know that the hyperbolic sigmoidal  (tanh) activation 
feature transforms every value into the  −0.9 to 0.9 range. 
Tanh activation, as shown in Eq. 6, has been used in 
the configured OS‑ELM architectures to activate output 
layers. To improve performance, the hidden neurons 
were increased linearly between 30 and 1400 neurons. 
Eventually, the architecture was trained for ten tests 
with each feature. The primary hidden neuron has been 
configured to be equivalent toward the samples in the 
training data. Figure  3 shows the developed architecture’s 
average training and testing performance across ten trials 
with varying hidden neurons.

The maximum number of hidden neurons, i.e., 1400, 
was chosen based on the highest classification rate. The 
performance rate has increased substantially as hidden 
neurons hit 1400 neurons.

( )

( )
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1

ij

ij ij

eS
e

−

−

−
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+
� (5)

Sij is normalized input sample of the ith row and jth column,
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ij ij

ij ij

e eG ij ij
e e

−

−

−
= =

+
� (6)

Gij is normalized output sample of the ith row and jth 
column.

For each subset, OS‑ELM architectures were trained for ten 
trial weights. With the initial subset, the neural architecture 
has been supervised with 8/10 set of features, and the 
level of recognition was measured with the remaining 
feature sets  (‘2/10’ subset). Kohavi, 1995, proposed a 
cross‑validation method for evaluating the classifiers 
developed from different sets of derived features.[58] 

Table 1: Comparison of wheelchair navigation system classification using statistical features and online 
sequential‑extreme learning machine algorithm

Statistical features 
of cross‑correlation

Comparison of WNS classification using OS‑ELM and statistical features
Training time (min) Training accuracy (%) Testing accuracy (%)

σ (r)
Minimum 60 39.91 20.91
Mean 2950 80.31 65.94
Maximum 10,940 90.69 84.32

Minimum (r)
Minimum 30 26.39 11.80
Mean 3320 79.69 64.97
Maximum 14,210 92.13 85.74

Maximum (r)
Minimum 140 48.30 23.30
Mean 4530 84.23 71.70
Maximum 20,890 94.09 89.25

µ (r)
Minimum 80 44.05 22.48
Mean 6220 86.77 76.33
Maximum 36,610 95.92 91.93

WNS – Wheelchair navigation system; OS‑ELM – Online sequential‑extreme learning machine algorithm

Therefore, the developed classifiers in this experiment were 
validated with each ‘2/10’ feature subset for 10 different 
trials. Table  1 illustrates the performance of the OS‑ELM 
classifier models based on the 5‑fold cross validation 
approach with time taken during training  (seconds), time 
taken during testing  (seconds), training accuracy  (%), and 
test accuracy (%).

Results and Discussion
This work preprocesses and blocks raw EEG signals into 
multiple frame samples. Then, the frame samples are used 
to extract the δ, θ, α, β, γ1, and γ2 band frequencies. The 
statistical features are obtained through the correlation among 
two sequential frequency band frames, and the features 
are linked to a specific TEP task. The features derived 
are characterized with OS‑ELM algorithm. The statistical 
analysis of r features and the recognition rate of the system 
implementations are presented in Table  1. Figures  4 and 5 
indicate the generalized training time and recognition accuracy 
attained through the training and evaluation of feature sets.

Figure 3: Comparison of training and testing accuracy executed during the 
training of online sequential‑extreme learning machine algorithm models
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From Figure  4, it can be emphasized that the statistical 
features of the OS‑ELM model reach the minimal training 
performance  (average) σ(r)  –  39.91%, min(r)  –  26.39%, 
max(r)  –  48.30%, and µ(r)  –  44.05%. It can also be 
emphasized that the classifiers have obtained maximal 
training performance  (average) of σ(r)  –  90.69%, 
min(r)  –  92.13%, max(r)  –  94.09%, and µ(r)  –  95.92%. 
Further, µ(r)‑based classifier model hits the highest accuracy 
95.92%  (average) in recognition and σ(r) reaches the 
average lowest accuracy of 90.69% (average) in recognition.

From Figure  5, it can be emphasized that the statistical 
features of the OS‑ELM model reach the minimal testing 
accuracy  (average) of σ(r)  –  20.91%, min(r)  –  11.80%, 
max(r)  –  23.30%, and µ(r)  –  22.48% and the 
maximal testing accuracy  (average) of σ(r)  –  84.32%, 
min(r)  –  85.74%, max(r)  –  89.25%, and µ(r)  –  91.93%. 

It can be interpreted that the µ(r) reaches the highest 
accuracy of 91.92% (average) in recognition, and σ(r) hits 
the lowest accuracy of 84.32%  (average) in recognition. 
Figures  3 and 6 similarly represent a comparison between 
training and testing performance conducted throughout 
the OS‑ELM modeling and the total overall training time 
attained throughout OS‑ELM training employing µ(r).

From Figure 3, it can be emphasized that the highest training 
accuracy of 95.92% and the highest testing accuracy of 
91.93% have been attained, while the network was trained 
with 1399 hidden neurons. As shown in Figure  3, the 
network’s performance has increased gradually by raising 
the hidden neurons linearly. The analysis suggests that the 
feature set has a robust classification system, based on 
OS‑ELM learning.

From Table  1, it can be emphasized that the statistical 
features of the OS‑ELM model reach the lowest training 
time  (average) for σ(r)  –  60 ms, min(r)  –  30 ms, 
max(r) – 140 ms, and µ(r) – 80 ms and the highest testing 
time  (average) of σ(r)  –  10,940 ms, min(r)  –  14,210 ms, 
max(r)  –  20,890 ms, and µ(r)  –  36,610 ms. It is also 
emphasized that the µ(r) reaches the maximal training time 
of 36,610 ms (average) and σ(r) reaches the lowest training 
time of 60 ms (average).

Confusion Matrix for the Classification of Seven Tasks

The confusion matrix is a visual interface method, which 
provides the classifier’s actual output and predictions. The 
OS‑ELM confusion matrix has the maximal recognition rate 
of 91.93% using μ(r) features, as shown in Table  2. From 
Table 2, it can be emphasized that perhaps the “LEFT” task 
has the lowest recognition rate of 89.53% and the “HELP” 
task has the highest recognition rate of 95.81%. It can be also 
emphasized that perhaps the “RELAX” task has the lowest 
false recognition rate of 41.18%  (7  samples/17  samples) 
and the “RIGHT” task has the highest false recognition rate 
of 76.47% (13 samples/17 samples). In addition, the overall 
accuracy of the total number of correct predictions achieved 
for the proposed model is 91.94%. The results from the 
analysis illustrate that investigation on WNS with the 

Figure 4: Overall training accuracy obtained during training and testing 
the feature sets

Figure 5: Overall testing accuracy obtained during training and testing 
the feature sets
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communication aid using our proposed seven tasks together 
with the SCC‑based features have shown promising results. 
To validate our proposed algorithm in customized modes, 
the data acquired from ten normal controls were used for 
the classification. The proposed cross‑correlation technique 
based on different band frequencies has been used to extract 
the μ(r) features from two consecutive frame samples and 
classified using the OS‑ELM classifier. Figure 7 depicts the 
comparison of average classification accuracy, using μ(r) 
features in customized modes.

The results suggest that the average recognition rate of 
92.59% has been achieved. From Figure  6, it is observed 
that participant 9 has the highest classification rate of 
93.45% and participant 8 has the lowest classification rate of 
86.25% through the customized classification system. The 
results from the generalized and customized classification 
system suggest that OS‑ELM for WNS tasks reaches the 
least training time with a self‑reliant recognition rate, when 
comparing the findings among other nonparametric pattern 
recognition methods found in literature.[10,27,28,33,59]

Conclusion
In accordance with the objectives of this analysis, a 
simple wheelchair navigation system with communication 

assistance  (simulation model) has been established using 
cross‑correlation features and OS‑ELM pattern recognition 
algorithm. The trained OS‑ELM model representing 
the classification system can also be used to control the 
wheelchair or to choose isolated words in an odd‑ball 
paradigm for hardware implantation. The developed 
classification system has shown promising results for 
the signals obtained from normal controls, indicating 
explicitly that the seven tasks introduced in the protocol 
are convenient to memorize and execute. Therefore, it 
can be considered that these tasks are convenient for the 
DE community to grasp and perform the task to navigate 
the wheelchair and letter/word selection in an odd‑ball 
paradigm. From the analyses, the results indicate a robust 
classification rate for the proposed feature extraction 
algorithm; the recognition of tasks reflects on the ability of 
the participant as described in Table  2, and classification 
performance differs with the participants as shown in 
Figure  6. During the training stage, the obtained results 
from this research indicate a minimal misclassification of 
0.0454%  (229/5040) samples and 0.0952%  (120/1340) 
during the testing stage. In comparison with the study by 
Lawhern, 2018,[26] the researcher used the Morlet wavelet 
approach to analyze EEG signals  (0–40  Hz). In this 
research, the protocol was specifically designed to elicit 

Figure 6: The mean maximum training time obtained during the training of 
online sequential‑extreme learning machine algorithm using μ(r)

Figure  7: The comparison of mean classification accuracy, using μ(r)
features in customized modes

Table 2: Confusion matrix for maximum classification accuracy of 91.93% using µ(r) feature set and online 
sequential‑extreme learning machine algorithm classifier

Confusion matrix for the generalized classification system using mean feature set
Tasks Left Forward Right Help Yes No Relax Accuracy (%)
Left 171 1 1 0 0 1 1 89.53
Forward 2 180 3 0 1 1 0 94.24
Right 0 1 174 2 1 1 2 91.1
Help 1 4 2 183 5 2 2 95.81
Yes 2 0 3 0 173 3 1 90.58
No 1 0 2 0 1 174 1 91.1
Relax 3 1 2 2 0 1 177 91.24
Miss classification rate of unclassified samples (%) 45 63.64 76.47 50 44.44 52.94 41.18
Number of misclassifications 57 Minimum (%) 89.53
Number of unclassified samples 108 Mean (%) 91.1
Misclassification (%) 52.78 Maximum (%) 95.81
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the tasks linked to the objectives of this research work. The 
EEG signals are, therefore, evaluated with the six different 
frequency bands, as each frequency band has meaningful 
information related to brain function. For the classification 
of WNS tasks, selection of frequency bands is, therefore, 
important to obtain more discriminating and dominant 
features.[26] The results were based on the mean and standard 
error of classification performance for different paradigms. 
In this study, the cross‑correlation features extracted from 
two consecutive frames of each band frequencies are used 
for the classification based on OS‑ELM pattern recognition 
algorithm. The overall performance of the designed 
classifiers was compared based on the overall training time, 
testing accuracy, and misclassification errors. The results 
are robust, and the time taken for training the network was 
also less for the acquired database.

This proposed study provides the DE community several 
potential applications and enhancements in WNS, 
as compared with related works such as EEG‑based 
communication systems[17‑19,21,60,61] and EEG‑based 
navigation systems.[4,10,22,24] Also, these BCIs were 
developed using multi‑electrode brainwave data‑capturing 
devices (up to 16 electrodes) to recognize only two to 
five tasks. This can also be noted that the overall BCI 
recognition levels vary from 40% to 80% in the database 
of 5-23 subjects and patients. However, there are needs 
in development; in future analyses, feature extraction 
algorithm based on connectivity features, statistical 
features and power connectivity features,[62,63] deep learning 
algorithms, and interactive training and testing modules 
should be considered to enhance the recognition of tasks 
used in the WNS system. Finally, it is also useful to 
explore the useful properties of brain patterns based on the 
spatial and frequency domain, feature extraction algorithm, 
and classification techniques.
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