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Abstract
Background: Human gait as an effective behavioral biometric identifier has received much 
attention in recent years. However, there are challenges which reduce its performance. In this 
work we aim at improving performance of gait systems under variations in view angles, which 
present one of the major challenges to gait algorithms. Methods: We propose employment of a 
view transformation model based on sparse and redundant (SR) representation. More specifically, 
our proposed method trains a set of corresponding dictionaries for each viewing angle, which are 
then used in identification of a probe. In particular, the view transformation is performed by first 
obtaining the SR representation of the input image using the appropriate dictionary, then multiplying 
this representation by the dictionary of destination angle to obtain a corresponding image in the 
intended angle. Results: Experiments performed using CASIA Gait Database, Dataset B, support 
the satisfactory performance of our method. It is observed that in most tests, the proposed method 
outperforms the other methods in comparison. This is especially the case for large changes in the 
view angle, as well as the average recognition rate. Conclusion: A comparison with state‑of‑the‑art 
methods in the literature showcases the superior performance of the proposed method, especially in 
the case of large variations in view angle.

Keywords: Biometrics, gait analysis, human identification, sparse and redundant representation, 
view transformation model, view‑invariant

A View Transformation Model Based on Sparse and Redundant 
Representation for Human Gait Recognition

Original Article

Abbas Ghebleh, 
Mohsen Ebrahimi 
Moghaddam
Department of Computer 
Engineering and Science, 
Shahid Beheshti University, 
Tehran, Iran

How to cite this article: Ghebleh A, Moghaddam ME. 
A view transformation model based on sparse and 
redundant representation for human gait recognition. 
J Med Signals Sens 2020;10:135-44.

This is an open access journal, and articles are 
distributed under the terms of the Creative Commons 
Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows 
others to remix, tweak, and build upon the work non‑commercially, 
as long as appropriate credit is given and the new creations are 
licensed under the identical terms.

For reprints contact: reprints@medknow.com

Introduction
Human gait enjoys distinctive features 
such as recognition from distance and 
unobtrusiveness. Moreover, a typical gait 
recognition system does not require high 
quality video, which makes it inexpensive 
and easy to set up since one can use existing 
security cameras for gait recognition. These 
characteristics have helped the popularity 
among research community of human gait 
in recent years as a behavioral biometric 
identifier. Gait is particularly applicable 
in criminal cases. As a matter of fact, a 
number of criminal cases have already 
used gait, for example in identifying a 
bank robber[1] and a burglar.[2] However, 
human gait recognition suffers from 
some challenges and difficulties such as 
variations in viewpoint,[3] walking speed,[4] 
clothing,[5] and carry conditions.[6] Since 
gaits from the same person vary drastically 
from different viewpoints and camera view 

is always unconstrained in real scenarios, 
this variation is one of the most critical 
challenges in human gait recognition. 
Therefore, gait recognition performance 
is dramatically dropped by changing in 
viewing angles.[7]

This work proposes a robust scheme for gait 
recognition which is shown to be tolerant 
against variations in the viewing angle. 
The proposed scheme uses a cross‑view 
approach to gait recognition, where the 
probe and gallery gaits are captured from 
two distinct viewpoints. Other approaches 
to this problem include fixed‑view, where 
probe and gallery sequences are captured 
from the same viewpoint, and multi‑view, 
where the probe sequence is recorded 
from single view and is processed against 
gallery gaits from multiple views. The 
most common approach among these in the 
literature is the cross‑view approach.

The proposed scheme employs a view 
transformation model (VTM) based on 
sparse and redundant (SR) representation. 
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The VTM tries to learn an association between gait features 
from different viewing angles to map gait features from 
one view to another, and in turn facilitates comparison of 
probe gait from one viewpoint with gallery gaits of another 
viewpoint.

This paper is structured as follows: Section 2 gives a brief 
review of some existing schemes related to the present 
work. Section 3 provides the necessary background. The 
proposed scheme is recounted in Section 4. Section 5 
presents empirical results showcasing the performance 
of the proposed scheme, as well as comparison with the 
existing work. Section 6 contains some concluding remarks.

Related Work
Human gait recognition schemes are typically categorized 
as model‑based schemes and appearance‑based schemes. 
Considering the model‑based approaches like those in 
some studies,[8‑16] one aims at fitting each frame of the 
input gait sequence to a specific model of the human 
body. This is achieved via determination of the parameters 
(e.g., joint angles) of the model at hand. The obtained 
parameters of the model are then used as features for 
identification of a probe sequence against stored gallery 
data. In contrast, appearance‑based approaches such as 
described in various studies[17‑31] focus on the shape of 
the subject’s silhouettes in input frames and uses these to 
compute the desired feature. This usually leads to a single 
representation for a gait cycle. The most common of such 
representations is the gait energy image (GEI)[17] which 
is simply the statistical mean, after alignment and 
normalization, of all silhouettes of a gait cycle.

The model‑based approach seems to be more appropriate for 
cross‑view gait recognition since given certain geometric 
assumptions, the calculated model have a view‑invariant 
nature. However, these approaches generally suffer from 
model fitting errors due to typical low spatial resolution 
of the input frames.[32] Appearance‑based approach on the 
other hand, can recognize a subject even from relatively 
low spatial resolution images, while its performance suffers 
drastically under variations in the viewing angle. While 
the proposed scheme is based on the appearance‑based 
approach, it aims at mitigating the challenge of viewpoint 
variations.

Appearance‑based cross‑view gait recognition schemes 
typically fall under one of the following descriptions:[33] 
(1) those that use multiple cameras or camera calibrations 
to construct a three‑dimensional (3‑D) model; (2) those that 
aim at extracting view‑invariant gait features; and (3) those 
that aim at learning cross‑view mapping relationships of 
gait features.

Schemes following the first approach[14,16,34‑39] construct a 
3‑D model using cooperative multiple cameras or camera 
calibration and then project the obtained 3‑D gallery into 
a 2‑D silhouette. In theory, 2‑D gaits for any desired view 

can be obtained from the 3‑D model, yet there are some 
practical limitations to this.[3] This approach is suitable for 
a fully controlled and cooperative multi‑camera setting, 
for example, a biometric tunnel[40] which is expensive and 
complicated. Also, the processes of 3‑D reconstruction and 
2‑D rendering are computationally demanding.

The second approach employs view‑invariant features to 
facilitate cross‑view gait recognition. A brief description 
of some examples of this approach follows. The method 
of BenAbdelkader et al.[41] uses a self‑similarity plot to 
achieve robustness against limited view changes which 
achieved good performance with a limited range of 
view changes. Kale et al.[42] make use of a perspective 
projection model to compute from an arbitrary view the 
side‑view gaits. Jean et al.[43,44] normalize all input data 
(from any view) onto a fixed plane, thus allowing direct 
comparison in that plane. Han et al.[45] propose to select 
only parts of GEIs that overlap between various views 
to make a representation for the cross‑view comparison. 
Finally, a joint subspace learning method is proposed by 
Liu et al.[46] to mitigate the view variations challenge. This 
category works well when the angle between the sagittal 
plane of the person and the image plane is small; otherwise 
it fails.[33] Furthermore, these methods are sensitive to noise 
which negatively affects recognition rates.[3]

The third category of appearance‑based cross‑view gait 
recognition schemes maps gait features from one view to 
another by first training on the projection rule between 
the two views. Makihara et al.[28] propose a VTM based 
on singular value decomposition (SVD). In addition to 
the SVD‑based VTM, Kusakunniran et al.[47] approaches 
optimization of the GEI feature through linear discriminant 
analysis (LDA). In a study by Zheng et al.,[48] a method 
is proposed to obtain the VTM using robust principal 
component analysis. Other approaches to construction of 
appropriate VTMs include those that employ tools such as 
support vector regression,[49] multilayer perceptron,[50] and 
sparse regression.[3] The method presented in Chen et al.[51] 
constructs a VTM based on projection of gravity center 
trajectory and Kusakunniran et al.[29] further improve the 
performance of this method. The method in study by Liu 
and Tan[52] trains LDA‑subspaces for constructing a VTM 
and Bashir et al.[53] use canonical correlation analysis. 
The method in Kusakunniran et al.[49] reformulates VTM 
construction as a regression problem. Hu et al.[54] propose 
to apply a projection named view‑invariant discriminative 
projection. Hu[55] proposes enhanced Gabor gait which is a 
gait feature that includes a nonlinear mapping of statistical 
and structural characteristics of gait. Muramatsu et al.[56,57] 
propose to use 3D training gait models to create a VTM.

Comparing to the first category, methods in this category 
are more feasible and less expensive since they do not 
use complicated multi‑camera systems. Besides, they are 
more efficient and stable than the second category because 
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they are less sensitive to noise.[3] Also, these methods can 
be applied for scenarios with no explicit interaction with 
the subjects, and can also be directly applied to views 
which are significantly different from the side view.[58] One 
limitation of the third category is that these methods rely on 
supervised learning and it will be difficult for recognizing 
gait under untrained viewing angles.[3] There are some 
works to address this challenge. For instance, Tian et al.[59] 
proposes an innovative view‑adaptive mapping approach. 
However, as mentioned in Yu et al.,[60] small changes in 
view angles do not affect the recognition rates significantly, 
and if a sufficient number of cameras are employed, this 
challenge would be negligible. Another challenge in 
the third category is that most of the above mentioned 
methods train multiple mapping matrices, one for each 
pair of viewpoints.[58] Also, performance of cross‑view 
gait recognition drops when the change in viewing angle 
is large.[3] The proposed method tries to mitigate these 
limitations. It creates a dictionary per each view angle and 
as the results show it performs well for big changes in 
view angle.

Background
VTM‑based human gait recognition

The flowchart in Figure 1 presents a general outline of 
a VTM‑based human gait recognition scheme. Such a 
scheme generally consists of three phases:[33] Training, 
transformation and matching. In the training phase, the 
gait features of multiple training subjects are used to 
construct the appropriate VTM. This VTM is then used in 
the transformation phase to compute an input gait feature 
for a destination view from the source view. Finally, the 
matching phase calculates a score of recognition between 
the gait features of the probe and every gallery subject.

It should be noted that prior to these phases, a 
preprocessing module is needed which removes the 
background and extracts the silhouette from each frame. 
A simple yet effective method is to record the background 
in advance and subtract this recorded image from the input 
frame. The silhouette of the person is then obtained using 
some morphological operations. This method is easily 
applicable for security cameras in real applications. Some 
other methods for background detection and removal are 
described in study by Piccardi.[61] The extracted silhouettes 
are then passed on to a feature extraction module which 
computes the desired features. These features are then 
passed to the training phase. Another important operation 
in preprocessing module is to detect the view angle of 
input sequence. In this work like most VTM methods, we 
assume that this angle is known. However, there are some 
methods like study by Chtourou et al.[62] which can be used 
for walking direction estimation.

Sparse and redundant representation

The SR representation model has attracted great attention 
in past decades. This model is used to represent signals and 
images and yields great performance in many applications 
such as noise removal, image separation, and image 
compression. The main idea behind this model is that each 
signal can be obtained by a weighted sum of some basic 
atoms.[63] More specifically,

x Dα=  (1)

Where x is the signal, D is a full‑rank matrix called 
dictionary in which each column is an atom, and α is the 
SR representation of the signal x. In other words, α is a 
vector containing the weights of atoms. So, we can say 
that:

Figure 1: A general framework for VTM-based human gait recognition
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D xα +=  (2)

Where D+  is a pseudoinverse of D. The number of 
atoms is typically more than the signal length (m > n), 
so the representation is called redundant. Furthermore, an 
important property of this model is sparsity, which means 
most values in α are zero. α is defined as the sparsest 
vector that can model x with at most ε errors:

0 2
argmin         Subject to D x

α
α α α ε= − <  (3)

Where 
0

.  is the 0l  norm counting the nonzero entries of a 
vector. Solving the above equation is an NP‑Hard problem 
but there are some estimation approaches that calculate α 
with good precision such as orthogonal matching pursuit 
which is used in this work.[64]

Another challenge in this model is the dictionary. The 
dictionary must be rich enough to adequately describe the 
input signal in a sparse manner. There are some methods 
like K‑SVD[63] which are used to train and obtain the 
desired dictionary.

Proposed Method
We propose a VTM based on SR representation. Given the 
input from angle vs, this model generates the corresponding 
output in another angle vt.

Main idea

Assume that 
tvD  and 

svD  are two dictionaries containing 
m atoms each. We call these dictionaries a transform pair 
if and only if for each 1 i m≤ ≤ , the ith atom of them were 
transform pair. Two atoms are called transform pair if and 
only if they correspond to same regions in different view 
angles.

Assume that 
tvD and 

svD  are two dictionaries for view 
angles vt and vs respectively. If they are a transform pair 
then:

t t t s sv v v v vx D D D xα += =  (4)

Where svx  and tvx  represents the image in source and 
target view angles and 

svD  and 
tvD  denote the dictionaries 

corresponding to these angles. Loosely speaking, the input 
image ( svx )  is coded using the corresponding dictionary 
(

svD ) to obtain α  which is then multiplied to the 
dictionary of target view (

tvD ) that produces the image in 
target view (

tvx ). The next section describes how to obtain 
a transform pair of dictionaries.

Training the VTM

As mentioned before, the K‑SVD algorithm is used to train 
a dictionary using training data. Hence, we can use samples 
of each view to train a dictionary for that view. However, 
in our method, the corresponding atoms of the dictionaries 
must be correlated. For example, if the patch related to head 

area is composed of atoms number 1, 3, 6, and 7 of 
svD , 

then composing these exact atoms of 
tvD  should make the 

head area in vt. Training dictionaries independently loses 
these constraints. To mitigate this issue we propose the 
scheme presented in Figure 2. In this scheme, at first the 
corresponding patches from training samples in both view 
angles are extracted and linearized and then concatenated to 
form a bigger train sample. Samples obtained in this way 
are then used to train a dictionary ( allD ). After that, allD
is split horizontally to make the desired dictionaries. Note 
that in this way, corresponding atoms in the dictionaries are 
correlated.

Transformation

Let svp  be a probe sample captured in vs view angle. We 
first split 

svp  into n patches 1 2, , ,
s s s

n
v v vp p p… . Each patch 

s

i
vp  is encoded using 

s

i
vD  which is trained using patches 

from the same location of train samples in vs. The result 
would be the SR representation of the patch (

s

i
vα ) which 

is then decoded using 
d

i
vD  to make 

d

i
vp , the transformed 

patch in vd. Finally, the transformed patches are merged to 
make the transformed probe (

dvp ). More formally:

( ( , ), )
d s d

i i i i
v vs v vp d e p D D=  (5)

Where (.)e  and (.)d  denotes encoding and decoding 
respectively. The transformation process is presented in 
Figure 3.

Matching

After obtaining the transformed probe in the same view 
angle as gallery, we can compare them and find the 
similarity of the probe with each gallery sample using any 
criterion such as Euclidian distance. Then a classifier such 
as nearest neighbor is used to find the most similar sample. 
However, using the above method for transformation leads 
to some artifacts such as chessboard effect which affect the 
recognition process. To eliminate the chessboard effect we 
could use overlapping patches but this process increases 
the computational cost significantly. An alternate less costly 
approach is to use 

s

i
vα  as a feature instead of decoding to 

obtain the patch. We refer to this feature as SR feature in 
the following.

Instead of comparing two images we may compare their 
SR representation with respect to the same dictionary D. 
More formally, let x1 and x2 be two patches. Then:

1 1x Dα=  (6)

2 2x Dα=  (7)

Hence, the similarity of x1 and x2 can be estimated by 
similarity of α1 and α2. In this way, the computation cost is 
reduced and the effect of artifacts is mitigated. In addition, 
using SR representation mitigates noises and less important 
data. Evaluation results show that using this representation 
leads to acceptable recognition rates.
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Figure 4 illustrates the transformation and matching 
processes. Probe sample is split and each patch s

i
vp  is 

encoded using 
s

i
vD . Similar process is performed for each 

patch at location i of jth the gallery sample 
,

d

j i
vg  using 

d

i
vD . 

After that, the dissimilarity of probe and gallery samples is 
calculated using their sparse and redundant representation. 
More formally:

( ) ( )
1

, , 
s d s d

n
j i i

v v v v
i

D p g f α α
=

= ∑  (8)

Where f (.) denotes the Euclidian distance. Finally, the 
gallery sample with minimum distance represents the subject.

Computational complexity

Considering the proposed method, the critical 
modules for analyzing the computational complexity 
are training VTM which is performed once and 
transformation that is executed for each probe. 
According to Rubinstein et al.,[65] the computational 

Figure 2: The scheme of training view transformation model

Figure 3: The view transformation process

Figure 4: The transformation and matching processes
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complexity for K‑SVD algorithm which is used for 
training VTM is:

0 10 20 30 40 50 60 70 80 90

Baseline [60]
View-rectification [26]

FT-SVD [28]
GEI-SVD [47]
GEI-SVR [49]
GEI-CCA [30]

GInI-EF [31]
GInI-SF [31]

Co-clustering [29]
GEI-DPLCR [39]
GII-DPLCR [39]

Proposed

Gait Recognition (%)

Probe view is 90°

0° 18° 36° 54° 72° 108° 126° 144° 162° 180°Figure 9: Performance comparison between rank-1 recognition rates of 
different methods for probe view 90° and various gallery views in the 
range from 0° to 180°
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View-rectification [26]
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GEI-SVD [47]
GEI-SVR [49]
GEI-CCA [30]

GInI-EF [31]
GInI-SF [31]
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GEI-DPLCR [39]
GII-DPLCR [39]

Proposed

Gait Recognition (%)

Probe view is 126°

0° 18° 36° 54° 72° 90° 108° 144° 162° 180°

Figure 10: Performance comparison between rank‑1 recognition rates of 
different methods for probe view 126° and various gallery views in the 
range from 0° to 180°

Figure 5: Average rank‑1 recognition rates against dictionary size Figure 6: Average rank‑1 recognition rates against patch size with 40 as 
dictionary size

Figure 7: Average rank‑1 recognition rates when probe and gallery are from 
the same angle using SR and GEI as feature

0 10 20 30 40 50 60 70 80 90

Baseline [60]
View-rectification [26]

FT-SVD [28]
GEI-SVD [47]
GEI-SVR [49]
GEI-CCA [30]

GInI-EF [31]
GInI-SF [31]

Co-clustering [29]
GEI-DPLCR [39]
GII-DPLCR [39]

Proposed

Gait Recognition (%)

Probe view is 54°

0° 18° 36° 72° 90° 108° 126° 144° 162° 180°

Figure 8: Performance comparison between rank‑1 recognition rates of 
different methods for probe view 54° and various gallery views in the 
range from 0° to 180°
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2.( 2 )K SVDT n K L NL− ≈ +  (9)

Where n is the number of training signals, k is target 
sparsity, L denotes number of atoms in dictionary and N is 
the signal length.

As mentioned before, we use OMP for transformation 
module. Its computational complexity is:

3 2OMPT K KNL= +  (10)

Experimental Validation

Dataset

The CASIA gait database, Dataset B[48,60] is utilized to assess 
the proposed method which contains sequences from 124 
subjects. Eleven view angles (0°, 18°, 36°, 54°, 72°, 90°, 108°, 
126°, 144°, 162°, and 180°) are considered and for each angle 
6 sequences are recorded with normal clothing. Four sequences 
are used as gallery and others are used as probe samples.

Selection of parameter values

There are two main parameters which affect the 
performance of the proposed approach: Size of dictionary 
and patch size. To obtain the appropriate size of dictionaries 
and patch size, we have tested multiple values for these 
parameters. Dictionary size varies from 10 to 80, and seven 
different values for patch size are considered. The gallery 
view is 90° and all angles are used as probe view.

We use the average recognition rates with all angles 
and patch sizes per dictionary size to find the 
appropriate dictionary size as depicted in Figure 5. 
It is obvious that 40 has the best performance among 
others.

To find the appropriate patch size, using 40 as 
dictionary size the average recognition rates with all 
angles per each patch size is obtained that depicted in 
Figure 6. We can see that the 80 is the best choice for 
patch size.

Figure 11: Plot of CMS curves of the methods in comparison for gallery 
view  90° and probe view (a) 36° and (b) 54°
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Figure 12: Plot of CMS curves of the methods in comparison for gallery 
view 90° and probe view (a) 72° and (b) 108°
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Sparse and redundant feature

The performance of SR representation as a gait feature 
is investigated in this section. Towards this end, we have 
compared SR feature with the case which uses GEI as 
feature using Cumulative Matching Score (CMS) curves.[66] 
The CMS or Cumulative Matching Characteristic is a rank 
based method of showing measured accuracy performance 
of a biometric system. The horizontal axis of the CMS 
graph is rank and the vertical axis is the recognition rate. 
The value for rank r shows the recognition rate within first 
r ranks.

Figure 7 shows the CMS curves of average recognition 
rates of GEI and SR features when gallery and probe 
are from the same angle. It can be observed that SR 
feature almost performs as well as GEI and both 
features have good performance when there is no view 
change. Therefore, using SR feature instead of GEI is 
acceptable.

Recognition rates

In study by Kusakunniran et al.,[29] the angles 54°, 90°, 
and 126° of the dataset are used as probe views, while the 
remaining ten viewing angles are taken as gallery views 
for training the VTM. We follow these choices in testing 
the performance of the proposed method. We then use 
the obtained results to compare the performance of the 
proposed scheme with the algorithm of Zhaoxiang Zhang 
et al.[39] and all the algorithm compared there‑in. It is worth 
to mention that the baseline method as explained in Yu 
et al.[60] is a simple method that does not do any action to 
mitigate the view angle challenge. It simply extracts GEI 
as feature, measures the distances using Euclidian distance 
and uses nearest neighbor as classifier. The reason of 
comparing this method is to highlight the effectiveness of 
other methods.

Comparisons of the rank‑1 recognition rates according 
to each probe view 54°, 90°, and 126° are presented in 
Figures 8‑10. It is observed that in most tests, the proposed 
method outperforms the other methods in comparison. This 
is especially the case for large changes in the view angle, 
as well as the average recognition rate. For example, when 
the probe view is 54°, the recognition rate of the proposed 
method is 46%, 40%, and 47% higher than the second 
best method with 0°, 162°, and 180° as gallery views, 
respectively. In addition, the proposed scheme performs 
approximately 16% better than GII‑DPLCR which is the 
second best method. Similar results can be observed when 
the probe view is 90° and 126°.

Figures 11‑13 report CMS curves for gallery view of 
90° and various probe views in the range from 36° to 
126° (except 90°). Investigating these curves, it is seen that 
for 36°, 54°, and 144° view angles, the proposed method 
outperforms others while it has competitive performance 
for the other view angles.

Concluding Remarks
Using SR representation, we propose in this work a VTM 
for cross‑view gait recognition. We verify satisfactory 
performance of the proposed scheme using the CASIA 
Gait Database, Dataset B. These test results illustrate 
superiority of the proposed method in comparison with 
several state‑of‑the‑art methods, especially in the case of 
large changes in the view angle. It is also observed that 
the average recognition rates for all angles are higher than 
these existing methods.
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Figure 13: Plot of CMS curves of the methods in comparison for gallery 
view 90° and probe view (a) 126° and (b) 144°

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20

G
ai

t r
ec

og
ni

tio
n 

(%
)

Rank

Probe view is 126°

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20

G
ai

t r
ec

og
ni

tio
n 

(%
)

Rank

Probe view is 144°

a

b

[Downloaded free from http://www.jmssjournal.net on Saturday, July 4, 2020, IP: 10.232.74.23]



Ghebleh and Moghaddam: SR‑VTM for human gait recognition

Journal of Medical Signals & Sensors | Volume 10 | Issue 3 | July-September 2020 143

References
1. Larsen PK, Simonsen EB, Lynnerup N. Gait analysis in forensic 

medicine*. J Forensic Sci 2008;53:1149‑53.
2. BBC. How can you Identify a Criminal by the way they Walk? 

BBC Magazine; 2008. Available from: http://news.bbc.co.uk/1/
hi/magazine/7348164.stm. [Last accessed on 2019 Oct 20].

3. Kusakunniran W, Wu Q, Zhang J, Li H. Gait recognition under 
various viewing angles based on correlated motion regression. 
IEEE Trans Circuits Syst Video Technol 2012;22:966‑80.

4. Kovač J, Štruc V, Peer P. Frame–based classification for cross‑
speed gait recognition. Multimed Tools Appl 2019;78:5621‑43.

5. Ghebleh A, Moghaddam ME. Clothing‑invariant human gait 
recognition using an adaptive outlier detection method. Multimed 
Tools Appl 2018:77;8237‑57.

6. Sarkar S, Phillips PJ, Liu Z, Vega IR, Grother P, Bowyer KW. 
The humanID gait challenge problem: Data sets, performance, 
and analysis. IEEE Trans Pattern Anal Mach Intell 
2005;27:162‑77.

7. Yu S, Tan D, Tan T. Modelling the effect of view angle variation 
on appearance‑based gait recognition. In: Asian Conference on 
Computer Vision. Springer, Berlin, Heidelberg; 2006. p. 807‑
816.

8. Bobick AF, Johnson AY, editors. Gait recognition using static, 
activity‑specific parameters. Proceedings of the 2001 IEEE 
Computer Society Conference on Computer Vision and Pattern 
Recognition. IEEE; 2001.

9. Cunado D, Nixon MS, Carter JN. Automatic extraction and 
description of human gait models for recognition purposes. 
Comput Vis Image Underst 2003;90:1‑41.

10. Zhang R, Vogler C, Metaxas D. Human gait recognition at 
sagittal plane. Image Vis Comput 2007;25:321‑30.

11. Wang L, Ning H, Tan T, Hu W. Fusion of static and dynamic 
body biometrics for gait recognition. IEEE Trans Circuits Syst 
Video Technol 2004;14:149‑58.

12. Dockstader SL, Berg MJ, Tekalp AM. Stochastic kinematic 
modeling and feature extraction for gait analysis. IEEE Trans 
Image Process 2003;12:962‑76.

13. Haiping L, Konstantinos NP, Anastasios NV. A full‑body layered 
deformable model for automatic model‑based gait recognition. 
EURASIP J Adv Signal Process 2007;2008:1‑13.

14. Zhao G, Liu G, Li H, Pietikainen M, editors. 3D gait recognition 
using multiple cameras. In: 7th International Conference on 
Automatic Face and Gesture Recognition. IEEE; 2006.

15. Ariyanto G, Nixon MS, editors. Model‑based 3D gait 
biometricsInternational Joint Conference on Biometrics. IEEE; 
2011.

16. Bodor R, Drenner A, Fehr D, Masoud O, Papanikolopoulos N. 
View‑independent human motion classification using 
image‑based reconstruction. Image Vis Comput 
2009;27:1194‑206.

17. Han J, Bhanu B. Individual recognition using gait energy image. 
IEEE Trans Pattern Anal Mach Intell 2006;28:316‑22.

18. Wang L, Tan T, Ning H, Hu W. Silhouette analysis‑based gait 
recognition for human identification. IEEE Trans Pattern Anal 
Mach Intell 2003;25:1505‑18.

19. Bobick AF, Davis JW. The recognition of human movement 
using temporal templates. IEEE Trans Pattern Anal Mach Intell 
2001;23:257‑67.

20. Liu J, Zheng N, editors. Gait history image: A novel temporal 
template for gait recognition. In: IEEE International Conference 
on Multimedia and Expo. IEEE; 2007.

21. Lam TH, Cheung KH, Liu JN. Gait flow image: 

A silhouette‑based gait representation for human identification. 
Pattern Recognit 2011;44:973‑87.

22. Yang X, Zhou Y, Zhang T, Shu G, Yang J. Gait recognition based 
on dynamic region analysis. Signal Process 2008;88:2350‑6.

23. Zhang E, Zhao Y, Xiong W. Active energy image plus 2DLPP 
for gait recognition. Signal Process 2010;90:2295‑302.

24. Bashir K, Xiang T, Gong S. Gait Recognition Using Gait 
Entropy Image; 2009.

25. LI X, Chen Y. Gait recognition based on structural gait energy 
image. J Comput Inf Syst 2013;9:121‑6.

26. Goffredo M, Bouchrika I, Carter JN, Nixon MS. Self‑calibrating 
view‑invariant gait biometrics. IEEE Trans Syst Man Cybern B 
Cybern 2010;40:997‑1008.

27. Kusakunniran W, Wu Q, Zhang J, Ma Y, Li H. A new 
view‑invariant feature for cross‑view gait recognition. IEEE 
Trans Inf Forensics Secur 2013;8:1642‑53.

28. Makihara Y, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y, 
editors. Gait recognition using a view transformation model in 
the frequency domain. In: European Conference on Computer 
Vision. Springer; 2006.

29. Kusakunniran W, Wu Q, Zhang J, Li H, Wang L. Recognizing 
gaits across views through correlated motion co‑clustering. IEEE 
Trans Image Process 2014;23:696‑709.

30. Bashir K, Xiang T, Gong S, Mary Q, editors. Gait Representation 
Using Flow Fields. BMVC; 2009.

31. Arora P, Hanmandlu M, Srivastava S. Gait based authentication 
using gait information image features. Pattern Recognit Lett 
2015;68:336‑42.

32. Chai Y, Ren J, Han W, Li H. Human Gait Recognition: 
Approaches, Datasets and Challenges; 2011.

33. Muramatsu D, Makihara Y, Yagi Y. View transformation model 
incorporating quality measures for cross‑view gait recognition. 
IEEE Trans Cybern 2016;46:1602‑15.

34. Shakhnarovich G, Lee L, Darrell T, editors. Integrated face and 
gait recognition from multiple views. In: Proceedings of the 
2001 IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition. IEEE; 2001.

35. Zhang Z, Troje NF. View‑independent person identification from 
human gait. Neurocomputing 2005;69:250‑6.

36. López‑Fernández D, Madrid‑Cuevas FJ, Carmona‑Poyato A, 
Muñoz‑Salinas R, Medina‑Carnicer R. A new approach for 
multi‑view gait recognition on unconstrained paths. J Vis 
Commun Image Represent 2016;38:396‑406.

37. Goffredo M, Seely RD, Carter JN, Nixon MS, editors. Markerless 
view independent gait analysis with self‑camera calibration. In: 
8th IEEE International Conference on Automatic Face & Gesture 
Recognition. IEEE; 2008.

38. Iwashita Y, Baba R, Ogawara K, Kurazume R, editors. Person 
identification from spatio‑temporal 3D gait. In: International 
Conference on Emerging Security Technologies (EST). IEEE; 
2010.

39. Zhaoxiang Zhang, Jiaxin Chen, Qiang Wu, Ling Shao. 
GII representation‑based cross‑view gait recognition by 
discriminative projection with list‑wise constraints. IEEE Trans 
Cybern 2018;48:2935‑47.

40. Seely RD, Samangooei S, Lee M, Carter JN, Nixon MS, editors. 
The university of southampton multi‑biometric tunnel and 
introducing a novel 3d gait dataset. In: 2nd IEEE International 
Conference on Biometrics: Theory, Applications and Systems. 
IEEE; 2008.

41. BenAbdelkader C, Cutler RG, Davis LS. Gait recognition 
using image self‑similarity. EURASIP J Adv Signal Process 
2004;2004:572‑85.

[Downloaded free from http://www.jmssjournal.net on Saturday, July 4, 2020, IP: 10.232.74.23]



Ghebleh and Moghaddam: SR‑VTM for human gait recognition

144 Journal of Medical Signals & Sensors | Volume 10 | Issue 3 | July-September 2020

42. Kale A, Chowdhury AR, Chellappa R, editors. Towards a view 
invariant gait recognition algorithm. In: Proceedings IEEE 
Conference on Advanced Video and Signal Based Surveillance. 
IEEE; 2003.

43. Jean F, Bergevin R, Albu AB, editors. Trajectories normalization 
for viewpoint invariant gait recognition. In: 19th International 
Conference on Pattern Recognition. IEEE; 2008.

44. Jean F, Bergevin R, Albu AB. Computing and evaluating 
view‑normalized body part trajectories. Image Vis Comput 
2009;27:1272‑84.

45. Han J, Bhanu B, Roy‑Chowdhury AK, editors. A study on 
view‑insensitive gait recognition. In: IEEE International 
Conference on Image Processing. IEEE; 2005.

46. Liu N, Lu J, Tan YP. Joint subspace learning for view‑invariant 
gait recognition. IEEE Signal Process Lett 2011;18:431‑4.

47. Kusakunniran W, Wu Q, Li H, Zhang J, editors. Multiple 
views gait recognition using view transformation model based 
on optimized gait energy image. In: IEEE 12th International 
Conference on Computer Vision Workshops. IEEE; 2009.

48. Zheng S, Zhang J, Huang K, He R, Tan T, editors. Robust 
view transformation model for gait recognition. In: 18th IEEE 
International Conference on Image Processing; 2011: IEEE; 
2011.

49. Kusakunniran W, Wu Q, Zhang J, Li H, editors. Support vector 
regression for multi‑view gait recognition based on local 
motion feature selection. In: CVPR, 2010: IEEE Conference on 
Computer Vision and Pattern Recognition; IEEE; 2010.

50. Kusakunniran W, Wu Q, Zhang J, Li H. Cross‑view and 
multi‑view gait recognitions based on view transformation 
model using multi‑layer perceptron. Pattern Recognit Lett 
2012;33:882‑9.

51. Chen X, Yang T, Xu J. Cross‑view gait recognition based on 
human walking trajectory. J Vis Commun Image Represent 
2014;25:1842‑55.

52. Liu N, Tan YP, editors. View invariant gait recognition. In: 
IEEE International Conference on Acoustics, Speech and Signal 
Processing; 2010.

53. Bashir K, Xiang T, Gong S, editors. Cross View Gait Recognition 
Using Correlation Strength. BMVC; 2010.

54. Hu M, Wang Y, Zhang Z, Little JJ, Huang D. View‑invariant 
discriminative projection for multi‑view gait‑based 

human identification. IEEE Trans Inf Forensics Secur 
2013;8:2034‑45.

55. Hu H. Enhanced Gabor feature based classification using a 
regularized locally tensor discriminant model for multiview gait 
recognition. IEEE Transactions on Circuits and Systems Video 
Technol 2013;23:1274‑86.

56. Muramatsu D, Shiraishi A, Makihara Y, Uddin MZ, Yagi Y. 
Gait‑based person recognition using arbitrary view transformation 
model. IEEE Trans Image Process 2015;24:140‑54.

57. Muramatsu D, Shiraishi A, Makihara Y, Yagi Y, editors. Arbitrary 
view transformation model for gait person authentication. In: 
2012 IEEE Fifth International Conference on Biometrics: Theory, 
Applications and Systems (BTAS). IEEE; 2012.

58. Wu Z, Huang Y, Wang L, Wang X, Tan T. A Comprehensive 
Study on Cross‑View Gait Based Human Identification 
with Deep CNNs. IEEE Trans Pattern Anal Mach Intell 
2017;39:209‑26.

59. Tian Y, Wei L, Lu S, Huang T. Free‑view gait recognition. PLoS 
One 2019;14:e0214389.

60. Yu S, Tan D, Tan T, editors. A Framework for Evaluating the 
Effect of View Angle, Clothing and Carrying Condition on 
Gait Recognition. 18th International Conference on Pattern 
Recognition. IEEE; 2006.

61. Piccardi M, editor. Background Subtraction Techniques: 
A Review. IEEE International Conference on Systems, Man and 
Cybernetics (IEEE Cat No 04CH37583). IEEE; 2004.

62. Chtourou I, Fendri E, Hammami M. Walking direction 
estimation for gait based applications. Procedia Comput Sci 
2018;126:759‑67.

63. Aharon M, Elad M, Bruckstein A. K‑SVD: An algorithm for 
designing overcomplete dictionaries for sparse representation. 
IEEE Trans Signal Process 2006;54:4311‑22.

64. Elad M. Sparse and Redundant Representations: From Theory to 
Applications in Signal and Image Processing. Berlin: Springer 
Science & Business Media; 2010.

65. Rubinstein R, Zibulevsky M, Elad M. Efficient Implementation of 
the K‑SVD Algorithm and the Batch‑OMP Method. Department 
of Computer Science, Technion, Israel, Technology Report; 2008.

66. Phillips PJ, Grother PJ, Micheals RJ, Blackburn DM, Tabassi E, 
Bone M. Face Recognition Vendor Test 2002: Evaluation Report; 2003.

BIOGRAPHIES

Abbas Ghebleh is a PhD student of Software 
Engineering at Shahid Beheshti University, 
Tehran, Iran. He received his B.Sc. and M.
Sc. in Software Engineering from Shahid 
Beheshti University, Tehran, Iran (2006 and 
2010). His research interests are Digital 
Image Processing and Computer Vision 
including human gait recognition and 

action recognition.

Email: a_ghebleh@sbu.ac.ir

Mohsen Ebrahimi Moghaddam is a 
professor in computer engineering and 
science department, Shahid Beheshti 
university of Iran since 2006. He has got his 
Ph.D., M.Sc., and B.Sc. from Sharif University 
in Iran. His research interests are image 
processing and pattern recognition specially 
using artificial intelligence techniques such 

as image security, watermarking, deblurring, and biometrics. 
He is the image processing lab chief in his department.

Email: m_moghadam@sbu. ac.ir

[Downloaded free from http://www.jmssjournal.net on Saturday, July 4, 2020, IP: 10.232.74.23]


