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Abstract
Background: In diffuse optical tomography, determining the optimal angle between the source and 
detector is an effective method to reduce the number of projections while maintaining the quality of 
the reconstructed images. In this study, a new parameter is introduced to evaluate the source‑detector 
geometries. Methods: A  two‑dimensional mesh with the radius of 20  mm and 7987 nodes were 
built. In each reconstruction, 0.5  mm heterogeneity with the absorption coefficient of 0.06 mm−1 
and the dispersion coefficient of 0.6 mm−1 was added in different parts of the sample randomly. The 
relationship between the mean square error (MSE), sensitivity Laplacian ratio (SLR), and sensitivity 
standard deviation ratio  (SSR) was evaluated based on their correlation coefficients. The quality of 
the images achieved using the optimized projections were compared with that of the full projections 
for the same depths. Results: MSE decreases by increasing the SLR magnitudes which indicate that 
the parameter could be used to evaluate the scanning geometries. There was a negative correlation 
coefficient  (R = −0.76) with the inverse relationship between the SLR and MSE indices. SSR does 
not have a significant relationship with the quality of the reconstructed images. For each scanning 
depth, the comparison of the images obtained using the full and optimized‑selective projections did 
not show any considerable difference despite the decrease of the projection numbers in scanning 
geometry with the optimized‑selective projections. Conclusion: The unnecessary projections could 
be eliminated by placing the detectors at the specific angles, which were determined using the SLR. 
Thus, a proper compromise between the quality of the reconstructed images and reconstruction time 
might establish.
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Introduction
Optical diffuse tomography is a powerful 
noninvasive method for animals 
imaging. Determination of the optimal 
source‑detector geometry has been a 
challenging topic for many years, because 
of its close relationship with the quality 
of the reconstructed images. In pioneer 
studies, various methods such as singular 
value analysis  (SVD) and orthogonality 
have been used to evaluate different 
source‑detector geometries and to optimize 
the parameters such as sampling frequency 
and field of view. These parameters were 
applied to the Jacobian matrix.[1‑6] These 
methods were so time‑consuming due 
to the large dimensions of the Jacobian 
matrix. For solving the time‑consuming 
problem, the number of nodes must be 

reduced as much as possible, or the simple 
two‑  or three‑dimensional geometries 
were used.[7] Furthermore, the mentioned 
methods  (SVD and orthogonality) alone 
could not evaluate different geometries. 
They do not change continuously 
by changing the location of the 
source‑detector due to their mathematical 
characteristics.[8] In many studies, the 
uniformity of the sensitivity matrix was 
used to evaluate different geometries.[9‑12] 
The sensitivity matrix is derived from 
the sum of the Jacobian matrix rows and 
represents the sensitivity of the sample 
points for all of the source‑detector pairs. 
The sensitivity matrix is the function of the 
imaging geometry and sampling strategy. 
Therefore, their profiles were drawn for the 
evaluation of the sensitivity changes.[13‑15] 
The investigation method based on the 
sensitivity profile is merely a qualitative 
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approach and changes must be evaluated quantitatively. 
The nonuniformity of the sensitivity matrix could be 
quantitatively calculated using a Laplacian operator, which 
is considered as an appropriate method for evaluating the 
source‑detector geometries.[8,16] This numerical parameter 
indicates that an optimal geometry has a uniform 
sensitivity. However, the nonuniformity of the sensitivity 
matrix alone cannot provide a precise prediction for the 
optimal geometry. In the present study, a new parameter 
is introduced to evaluate the source‑detector geometries 
by considering both the uniformity and mean magnitude 
of the sensitivity. Based on the proposed method, the 
optimum angle between the source and detector determined 
to reduce the number of projections while maintaining the 
quality of the reconstructed images.

Methods
Description of a new parameter for the geometric 
evaluation of the optical scanners

For Laplace parameter of p, the photon density in r 
obtained by the first Born approximation as the following 
equation:[17]

� � �( , ) ( , ) ,r p r p r pbg pert� � � � � (1)

Where φbg r p( , )  is the background photon density of a 
homogeneous tissue in r and φpert r p( , )  is the scattering 
field due to the perturbation in the optical properties of 
the tissue. If only the absorption coefficient was taken into 
account:
� ��pert

V
d a sr p G r r p r G r r p d r, , , , ,� � � � � � � � �� 0 0
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If the equation was written in the form of a matrix:
� �pert J� � � (3)

Where φpert  is a vector with dimensions of M  ×  1 which 
represents the detector measurement. δ is the perturbation 
of the absorption coefficient, and J is the Jacobin matrix 
which its element described by Eq. 4:

Ji,j = G r r p G r r p dvdi j si j0 0, , , ,� � � � � (4)

Where rsi is the source position in the ith measurement, 
rdi is the detector position in the ith measurement, rj is the 
position of the jth voxel, and dv is the voxel size.

For each point, the overall sensitivity matrix achieved 
by the sum of Jacobian rows  (as the Eq. 5). This matrix 
represents the sensitivity of the point for each pair of the 
source‑detector.[8]
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Where S is the sensitivity matrix, and m is the number of 
source‑detector pairs.

Two parameters were introduced to evaluate the sensitivity 
matrix in different geometric conditions, which were 

applied to the sensitivity matrix. The sensitivity matrix was 
first normalized as the Eq. 6:
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Where Sj(n) is the normalized sensitivity matrix.

The first introduced parameter is sensitivity Laplacian 
ratio  (SLR). This parameter is the ratio of the mean 
sensitivity to the mean Laplacian applied to the sensitivity.
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Where ( ) j ns is the normalized mean sensitivity, and n is the 
number of voxels.
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A Laplacian operator was applied to the sensitivity matrix, 
which differentiated twice from the discrete space to 
determine the changes. Then the average of the changes in 
all adjacent nodes determined to eliminate the error. The 
SLR parameter was calculated by the following equation:

SLR
s

l
j n� � � � (9)

Sensitivity standard deviation ratio  (SSR) is the second 
parameter which proposed for geometry evaluation of the 
scanning systems. This parameter is the ratio of the mean 
sensitivity to the standard deviation of the sensitivity 
matrix:

SSR
s j n� ( )

�
� (10)

� �
� � �� �� �
�

�� j

n
j jS n S n

n
1

2
1
2

1

( )

� (11)

In the Eq. 11, σ is the standard deviation of the sensitivity 
matrix.

The proposed parameters were evaluated based on their 
relationship with the quality of the reconstructed images. 
These assessments were performed using the  NIRFAST 
simulation software (NIRFAST; Dartmouth College 
and University of Birmingham, Birmingham, UK).[18‑20] 
This software is an open‑source light modeling package 
developed in Dartmouth. In this software, the optical 
phenomena were simulated based on the finite element 
method. A two‑dimensional mesh with the radius of 20 mm 
and 7987 nodes  (with the absorption coefficient of 0.011 
mm−1 and the reduced scattering coefficient of 0.33 mm−1) 
were built. In each reconstruction, 0.5  mm heterogeneity 
with the absorption coefficient of 0.06 mm−1 and the 
scattering coefficient of 0.6 mm−1 was added in different 
parts of the sample randomly. The source and detector 
in different geometric conditions, including the different 
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angles between the source and detector, were simulated 
randomly. In the present study, 36 sources were located 
around the sample for all scanning geometries. Then, the 
forward and reconstruction were performed.[19] For each 
reconstructed image relate to a special imaging geometry, 
the mean square error  (MSE) was calculated. The MSE is 
obtained according to the following equation:

MSE = i

n
ai a ix
n

�� �
1 0

2( ),�
� (12)

Where n is the number of voxels, µai �  is the absorption 
coefficient of the reconstructed image, and xa i0,  is the 
absorption coefficient of the true image.

For each geometry, the Jacobian matrix was calculated 
using NIRFAST software. Then, the normalized sensitivity 
matrix was obtained, and the SLR and SSR parameters 
were applied. The relationship between the MSE, SLR, and 
SSR was evaluated based on their correlation coefficients.

Determining the optimal angle between the detector and 
the source for different depths

After validation of the optimal parameter, it was used 
to determine the appropriate angle between the source 
and detector for the different scanning depths. After 
defining a two‑dimensional mesh with the radius of 
20  mm, and 7987 nodes  (with the absorption coefficient 
of 0.011 mm−1 and the reduced scattering coefficient 
of 0.33 mm−1), different angles between the source and 
detector including the 180 degrees (in opposite state) up 
to 0° (in the consistent situation) with 10° precession were 
simulated. The mesh depth was divided into 10 separate 
depths with a 2 mm gap. Jacobian and the sensitivity matrices 
were calculated for different angles between the source and 
detector, and the specified region of interests (ROIs) relates to 
each depth. The verified parameter was separately applied to 
ROI on the sensitivity map of the scanning depth to find the 
optimal angles in which the SLR magnitude is maximized.

After determining the optimum angles between the source 
and detector, the quality of the images achieved using 
the optimized projections were compared with that of the 
full projections for the same depth. Four heterogeneities 
with the radius of 0.5  mm, the absorption coefficient of 
0.06 mm−1, and reduced scattering coefficient of 0.6 mm−1 
were placed in different coordinates of the same depth 
to cover all points of the depth  (for each inhomogeneity, 
separate reconstruction was performed). For the different 
samples, the reconstructions were carried out using the 
mentioned geometries, and the MSE of the reconstructed 
images was evaluated.

Results
The evaluation of the SSR and MSE indices showed that 
SSR does not have a significant relationship with the 
quality of the reconstructed images. There was a negative 
correlation coefficient  (R = −0.76) with the inverse 
relationship between the SLR and MSE indices [Figure 1].

MSE decreases by increasing the SLR magnitudes which 
indicate that the parameter could be used to evaluate the 
scanning geometries. The calculation of SLR index at 
different angles between the source and detector shows that 
the maximum SLR for each depth achieved at a particular 
angle between the source and detector [Figure 2].

For each scanning depth, the comparison of the images 
obtained using the full and optimized‑selective projections 
did not show any considerable difference  [Figure  3]. 
Reconstructed images for both geometries are shown in 
Figure 4.

Discussion
In pioneer studies, the nonuniformity of the sensitivity 
matrix was determined for geometric evaluation of the 
imaging systems. If there were different sensitivities at the 
adjacent points with the same absorption and dispersion 
coefficients, they would be reconstructed with different 

Figure 1: (a) Bin scatter plot between the mean square error of the reconstructed images and sensitivity Laplacian ratio applied to the sensitivity matrix 
in different source‑detector geometries. There was a high correlation coefficient (R = −0.76). (b) Bin scatter plot between the mean square error of the 
reconstructed images and sensitivity standard deviation ratio applied to the sensitivity matrix in different source‑detector geometries. There was a no 
significant correlation

ba
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optical properties. So that the sensitivity coefficients must 
be uniform for all sample points.[8] The proposed parameters 
in the present study indicate that only nonuniformity 
examination is insufficient for sensitivity assessment of 
different imaging points. For different scanning points, the 
average sensitivity increasing is also an important element 
in the study of the imaging geometry. For the confirmed 
SLR parameter, the Laplacian operator differentiated twice 
from the discrete space of the sensitivity. Therefore, this 
parameter determined minor variations precisely. The 

Laplacian operator does not have a specific direction and 
calculates the changes in all directions. In Eq. 8, after 
applying the Laplacian operator, an average magnitude 
determined instead of norm calculation. In the case where 
the SLR parameter is applied, the possibility of the local 
error would be eliminated. There was no significant 
relationship between the SSR parameter and the quality 
of the reconstructed images due to the mathematical 
properties of the standard deviation. This parameter 
calculates the sensitivity variation of the points relative 
to the mean sensitivity, but the difference in sensitivity 
for a point relative to its adjacent points is important 
which could be calculated using the Laplacian operator. 
For each depth, the optimal angle between the source and 
detector was determined using the new parameter. The 
results of the comparison of the reconstructed images for 
the full and optimized‑selective projections show that the 
number of projections reduced using the optimal geometry 
while preserving the quality of the reconstructed images. 
Therefore, computer workload and calculation time 
reduced. In the present study, the SLR parameter is used 
to optimize the angle between the source and detector, but 
this parameter could be used to optimize other geometric 
parameters such as the number of source‑detectors.

Conclusion
In the diffuse optical tomography, the large numbers of 
projections increase the duration of the forward stages and 
reconstruction procedures. Therefore, reducing the number 
of projections by maintaining the quality of the reconstructed 
images has a particular importance. The SLR is an applied 
method to determine the optimal geometry for diffuse optical 
tomography. The unnecessary projections could be eliminated 
by placing the detectors at the specific angles; thus, a proper 
compromise between the quality of the reconstructed images 
and reconstruction time might establish.
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Figure 2: The sensitivity Laplacian ratio magnitudes for the different angles 
between the source and detector at 10 separate depths. The angles between 
the source and detector were selected from the 180° angle up to 0° with 
10° precession

Figure 3: For two scanning geometries using the full and optimized‑selective 
projections, reconstructions have been made by placing inhomogeneities 
at 10 separate depths and mean square error of the reconstructed images 
determined. The horizontal axis denotes the depth number. The sample 
space is divided into 10 depths with 2 mm gap. Depth numbers increased 
from the center to the surface

Figure 4: The first row of the images represents the true images. The second and third rows represent the reconstructed images. Reconstructions have 
been made by placing inhomogeneities at 10 separate depths
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