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Abstract
Background: How to explore the dynamics of transition probabilities between phases of budding 
yeast cell cycle (BYCC) network based on the dynamics of protein activities that control 
this network? How to identify the robust structure of protein interactions of BYCC Boolean 
network  (BN)?  Budding  yeast  allows  scientists  to  put  experiments  into  effect  in  order  to  discover 
the intracellular cell cycle regulating structures which are well simulated by mathematical modeling. 
Methods: We extended an available deterministic BN of proteins responsible for the cell cycle 
to a Markov chain model containing apoptosis besides G1, S, G2, M, and stationary G1. Using 
genetic algorithm (GA), we estimated the kinetic parameters of the extended BN model so that the 
subsequent transition probabilities derived using Markov chain model of cell states as normal cell 
cycle becomes the maximum while the structure of chemical interactions of extended BN of cell 
cycle becomes more stable. Results: Using kinetic parameters optimized by GA, the probability 
of the subsequent transitions between cell cycle phases is maximized. The relative basin size of 
stationary G1 increased from 86% to 96.48% while the number of attractors decreased from 7 in 
the original model to 5 in the extended one. Hence, an increase in the robustness of the system has 
been achieved. Conclusion:  The  structure  of  interacting  proteins  in  cell  cycle  network  affects  its 
robustness and probabilities of transitions between different cell cycle phases. Markov chain and BN 
are good approaches to study the stability and dynamics of the cell cycle network.
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Introduction
One of the main goals in biology is 
to discover the fundamental design 
principles that govern the structures 
and functions of cells.[1,2] To have 
a better understanding of complex 
biological behaviors, mathematicians in 
collaboration with biologists have designed 
computer algorithms and mathematical 
relations that imitate biological 
phenomena.[3] Computational models are 
based on computer algorithms that mimic 
a natural process with every level of 
complexity such as models of thymocyte 
development, biochemical processes, and 
cell fate specification during Caenorhabditis 
elegans development.[4‑6] The quantitative 
relationship between variables (gene activity 
level and molecular concentration) have 
been designed to indicate cell signaling 
pathways in a biologically and physically 
realistic manner and generate innovative 
and useful hypotheses.[1,7] In situations 

whereby the quantitative relationship 
is unknown, computational models are 
effective  alternatives  because  they  can 
qualitatively and without experimental 
data or with missing data describe the 
biological process and predict quantitative 
responses.[4,8‑11] Moreover, since they can be 
nondeterministic or stochastic, they produce 
outputs with a range of uncertainties which 
are natural in biological processes.[12,13] 
The goal of computational modeling is 
to comprehend the general properties of 
complex networks by quantitative or 
qualitative terms in order to address the 
structure of cellular networks and modeling 
subtle dynamics from molecular levels 
that contribute to biological functions to 
intracellular levels that show the average 
behavior of biological systems.[14‑16]

Biological network modeling has largely 
been developed by new computational 
methods  that  comprise  the  identification 
and  mathematical  definition  of  restrictions 
due to cellular regulations as well as 
biochemical and biophysical laws.[17‑19] 
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Systematic characterization of biochemical reactions 
and prediction of novel reactions and pathways largely 
developed with computational methods for attaining 
automatic reconstruction of regulatory networks.[20‑23] 
Lee et al. revealed that eukaryotic cellular function in 
a regulatory network is highly related to a network of 
transcriptional regulations and they are assessed in the 
eukaryote saccharomyces cerevisiae, where most of the 
transcriptional factors are encoded.[24]

Yeast is an organism widely used as a model system and 
allows the scientist to put the essential experiments into 
effect.[25,26] Budding yeast (Saccharomyces cerevisiae) is a 
simple model system with a single cell eukaryote which 
grows and then divides into two daughter cells.[27,28] It is 
one of the best understood model systems with varieties 
of tools which are accessible or under development. The 
cell cycle process consists of four phases: G1, S, G2, and 
M. There are several checkpoints that guarantee every step 
in cell cycle has been fully achieved.[29] In the cell cycle 
process of budding yeast, nearly 800 genes interact with 
each other. However, the main genes that are responsible 
for the regulation and dynamic control are very little.[30]

Modeling  approaches  have  demonstrated  benefits 
in unraveling the dynamics of cell proliferation in 
fission  yeast,  fruit  fly  embryos,  frog  eggs,  and  budding 
yeast.[31,32] Comprehensive literature studies about 
quantitative modeling of budding yeast cell cycle (BYCC) 
network have been conducted.[33] For answering many 
biological questions, such as stem cell control and 
differentiation,  cell  commitment  (e.g.,  to  apoptosis)  and 
cell cycle progression, the sole prediction of consecutive 
patterns of states of the control circuit of a cell without 
detailed information about the sojourn time in each state, 
or exact time period of the control circuit dynamics 
could  progress  our  knowledge  efficiently.[34] Modeling the 
path that a cell takes depends on the aim of the study. 
We did not require the exact time periods of the control 
circuit dynamics. Therefore, without a knowledge about 
the numbers of biochemical parameters related to time 
evolutions which are hardly obtained, a model can be 
built.[34] Recently, a lot of attention has been paid to 
mathematical modeling of yeast cell cycle regulation.[34‑36] 
For instance, Chen et al. constructed a comprehensive 
mathematical model of the yeast cell cycle with ordinary 
differential  equations  (ODE)  which  consists  of  many 
parts such as: equations that describe cyclin‑dependent 
kinase dynamics, inhibitors of Clb‑dependent kinase 
dynamics,  Clb  degradation  dynamics,  DNA  synthesis, 
spindle formation, and transcription factor dynamics.[37] In 
another study conducted by Li et al., they constructed a 
Boolean network (BN) of BYCC and compared it with a 
random network and mathematically demonstrated that the 
biological network of BYCC is extremely stable. Hence, 
robustness of system with respect to little perturbations and 
noise will be preserved.[30] BN is widely used for studying 

the robustness and stability of biological systems.[30,34,38] 
The main disadvantage of BN is that they cannot be used 
to model large networks.[4] A study conducted by Mura 
and  Csikász‑Nagy  defined  a  stochastic  Petri  net  (PN) 
model  of  BYCC  from  deterministic  ODE  model.[36]  PN 
is very appropriate for the quantitative and qualitative 
modeling of concurrent, asynchronous and distributed 
systems and widely used for modeling of biological 
networks.[39‑44] Steggles et al. introduced a method for 
automatic  translation of BN into PN model.[45] Zhang et al. 
created a stochastic model of BYCC and defined 2048 cell 
states whose transition probabilities between these states 
are  affected by noise parameter. They  found out  that when 
the noise (perturbation) is larger than the amount of the 
order of interaction intensity, the network dynamics rapidly 
becomes noise dominating and unstable.[33]

Randomness in gene regulation and expression is a 
natural subject in biological systems.[46‑50] It includes 
cell cycle since stochastic models that can capture this 
randomness matches some characteristics of the cell 
cycle that cannot be achieved with the deterministic 
models.[51,52]  ODE  models  of  the  BYCC  has  many  kinetic 
parameters that can hardly be approximated. These models 
are deterministic and cannot capture randomness in gene 
interactions.  Similarly,  BN  is  deterministic.  Despite  the 
fact that previous stochastic models of BYCC can model 
randomness in gene regulation, however, we will consider 
cell cycle phases as states of Markov model (MM) and 
we will construct a new computational model. Hence, we 
can compute the transition probabilities between cell cycle 
phases. In addition, we will consider apoptosis state in cell 
cycle according to biological evidences.

Estimating  the  weight  of  interactions  between  genes  or 
proteins as kinetic parameters is an interesting aspect for 
researchers.[53,54] Moles et al. estimated the parameters of 
a biochemical pathway using optimization methods.[55] 
Estimation  of  kinetic  parameters  can  be  done  with  global 
optimization methods. These methods can be classified into 
deterministic and stochastic strategies. Stochastic methods 
have a weak assurance of convergence to the global optima. 
There are many stochastic methods such as: Adaptive 
random search, clustering methods, multi‑start methods 
(that identify the vicinity of local optima) and evolutionary 
computation (biologically inspired methods which uses the 
notion of reproduction, mutation, and principle of survival 
in  finding  the  best  solution  by  iteratively  constructing 
new  generation).  Evolutionary  computation  methods 
can  be  classified  into  three:  evolutionary  programming, 
evolutionary strategies, and genetic algorithm (GA).[56] 
In this study, we aim to optimize the kinetic parameters 
of BYCC by GA that fully will be described in the next 
sections.

In this section, the importance of modeling in biology is 
pointed out and some computational models of the yeast 
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cell cycle have been reviewed. In this study, our aim was 
to construct an extended BN based on an existing BN of 
BYCC to achieve more robustness and also to construct 
an MM for analyzing the state space of cell cycle network 
which results from extended BN. By extended BN, the 
dynamics of protein activities that control cell cycle 
network can be achieved while the MM is constructed to 
find  the  dynamics  of  transition  probabilities  of  the  cell 
between its phases (states of MM).

Structure

Our model is constructed according to BN of a protein 
interaction model of Li et al., which is depicted in 
Figure 1. This model contains four classes of members: 
(1) transcription factors (SBF, MBF, complex Mcm1/SFF, 
Swi5); (2) the inhibitors, degrades of the cyclin/Cdc28 
complexes (Cdc20, Cdc14, Cdh1, Sic1); (3) cyclins 
(Clb1, ‑2, ‑5, and ‑6, as well as Cln1, ‑2, and ‑3 which bind 
to the kinase Cdc28); and (4) checkpoints (the cell size, 
DNA replication and  injury, and spindle assembly).[30] SBF 
and MBF are important cell cycle transcription factors. It 
has been proven that either SBF or MBF by cyclin Clb5 is 
enough  for  budding  yeast  cells  to  initiate DNA  replication 
and duplication of the spindle pole body. The activation 
of SBF and MBF initiates the synthesis of Clb5,‑6, and 
Cln1,‑2 cyclins, and stimulates the transcription of G1/S 
genes (Cln1,‑2, Cb5,‑6). Afterwards, the following actions 
by other factors occur respectively: DNA synthesis, nucleus 
movement to the bud neck, constitution of an intra‑nuclear 
spindle and a gathering of repeated chromosomes to the 
metaphase plate. Monitoring successful completion of 
these events is performed at the metaphase checkpoint. 
Anaphase, telophase, and cell division will go after 

metaphase respectively. In the S phase, cyclin Clb5 
begins  DNA  replication,  then  G2/M  genes  such  as  Clb2 
are transcribed by means of activation of transcription 
factor complex Mcm1/SFF. Finally, with inhibition and 
degradation of Clb2 by Cdc20, Cdh1 and the Sic1 cell will 
exit from mitosis into two cells.

BNs are deterministic computational models. They were 
first  represented  by  Kauffman  in  1970.  BNs  estimate  the 
dynamics of biological networks by assigning active 
state  (“on”  or  logic  1)  or  inactive  state  (“off”  or  logic  0) 
to each molecule (e.g., gene or protein) while intermediate 
expression levels are neglected. State of each molecule 
is active if the sum of its activation becomes larger than 
its inhibition and is inactive if the sum of its inhibition 
becomes larger than its activation.

In Figure 1, arrows and dotted arrows represent positive 
regulation  (activation  effect)  and  negative  regulation 
(deactivation, repression, inhibition, or degradation) 
respectively. In Figure 1, 11 key regulators that are 
responsible for the regulation and control of this 
complex network are considered.[30] The dynamics of 
cell cycle network is modeled by assigning active state 
(“on” or logic 1) or inactive state (“off” or logic 0) to each 
of 11 nodes. Therefore, each of the 11 nodes namely MBF, 
SBF, Cln3, Cdh1, Swi5, Mcm1/SFF, Cln1, Sic1, Clb5, 
Clb1, and Cdc20 has two states, _ iS P  = 1 (state of ith 
protein is 1 or protein is active) and _ iS P  = 0 (state of 
ith protein is zero or protein is inactive). Since the model 
has 11 binary nodes, it has 11_ {0,1} iS C =  state spaces. 
Cell state is a row vector with 11 elements and 2048 (211) 
different  initial  states  for  executing  the  rule  1.  The  cell 
state can be determined as: S_C= (Cln3, MBF, SBF, Cln1, 
Cdh1, Swi5, Cdc20, Clb5, Sic1, Clb1, Mcm1) so that each 
element of vector can be zero or one.

In BN, the time evolution of protein states is determined 
via the following rule (30):

1 _ ( ) 0

0 _ ( ) 0
_ ( 1)

_ ( ) _ ( ) 0

i j j

ij j
i

i ij j

W S P t
j

W S P t
S P t

j
S P t W S P t

j

Σ >


 Σ <+ =

 Σ >



 (1)

In BN the value of Wij is equal to 1 or‑1 for arrows 
and dotted arrows in Figure 1. In the extended BN, 
Wij represents the weight of interaction of protein j to 
protein  i.  It  represents  stoichiometric  coefficients  of  a 
biochemical reaction between protein (or gene) j and 
protein (or gene) i in BYCC. In Figure 1, arrows represent 
activation of protein i by protein j and the value of Wij 
is positive while the dotted arrows represents inhibition 
of protein j by protein i, and the value wij is negative. 
For each of the initial states of extended BN, we have 

Figure 1: The cell cycle network of budding yeast. Nodes represent proteins 
or protein complexes, arrow represent activation effect and dotted arrow 
represent inhibition effect
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implemented the rule 1. For all arrows, Wij is a positive 
integer ϵ (1, 10), and in all dotted arrows, wij is a negative 
integer ϵ (−10, −1), until the cell states become stable and 
reach the steady state. By further execution of rule 1, 
the cell state does not change. Li et al. have shown that 
special biological phases of cells in the BYCC (G1 phase, 
S phase, G2 phase and M phase) correspond to the special 
states of proteins.[30] We used the MM to investigate the 
transitions of cell phases due to extended BN during the 
dynamics of the BYCC.

We  defined  six  states:  (1)  stationary  state  equal  to 
stationary G1 state (SG1), (2) G1 state (Gap 1 phase), 
(3) S state (synthesis phase), (4) G2 state (Gap 2 phase), 
(5) M state (Mitosis phase) and (6) “other” state respectively 
as first  to  sixth  states of MM. Stationary  state  corresponds 
to stationary G1 while “other” state represents the state 
of  cell  at  some  point  between  both  of  the  five  predefined 
states like when the cell evolves from G2 to M phase. 
Before reaching M phase, the state of cell is not the same 
as G2 and M state, it corresponds to “other” state. This 
MM has six states. An addition of apoptosis state to MM 
makes a total of 7 states. BN model of yeast cell cycle was 
introduced by Li et al. It consists of 34 arrows between 
genes or proteins that describe their interaction. Li et al. 
considered same intensity for all interactions. Our aim 
to optimize the intensity or weight of these interactions 

0 , 1,2,....,11Wij for i j≠ =   (to  find  extended  BN)  by 
GA led to maximum dedicated probability of a special 
biological pathway that can be computed with MM 
(with seven states) and to achieve more stable extended 
BN.  The  GA  is  based  on  an  interpretation  of  Darwinian 
evolution. In this approach, a population of individuals was 
created.  Each  individual  is  indicated  by  a  “chromosome” 
that encodes a possible answer of the optimization 
problem.  Each  chromosome  contains  some  genes.  The 
number of genes is equal to the number of unknown 
parameters  that  must  be  estimated.  We  defined  a  fitness 
function, as a measure of the correctness of the answer. 
By applying the data encoded on the chromosome, we 
calculated  the  value  of  fitness  function.  The  fitness  of  the 
individual represents the likelihood that the individual 
genes advance to the next generation. The value of each 
gene determines the value of the corresponding unknown 
parameter. The evolution of solution can be done similar 
to real organisms, with techniques such as “crossover” 
and “mutation”.[56] Therefore, the weight of interactions 
between genes or proteins of BYCC extended BN can be 
estimated by GA.

We considered the population of chromosomes with each 
chromosome having 34 genes. Each gene represents one of 
the kinetic parameters (the value of Wij) of yeast cell cycle 
extended BN model of Li et al. in Figure  1. At  first,  we 
considered a vector (with length 34) of random integer 
numbers  in  a  range  ([1,  10]  for  activation  effects  and 
[−10, −1]  for  inhibition effects) of chromosomes. Then, by 

calculating the value of fitness function computed with MM 
and extended BN corresponding to each chromosome and 
applying GA techniques such as crossover and mutation of 
best  chromosomes, we  found  the best  solution. The fitness 
function is a summation of the subsequent probability 
of transition between cell cycle phases (to maximize 
occurrence of the G1‑>S‑>G2‑>M‑>G1‑>SG1 cycle) and 
the relative basin size of SG1 as the major attractor of 
extended BN. Therefore the fitness function of GA is:

( )G1 S G2 M G1 SG1P − > − > − > − > − >  + normalized 
basin size of SG1. For creating an MM with six states 
(and then add the seventh state as apoptosis), the following 
actions must be done. By executing rule 1 for each of the 
2048 initializations until cell state reaches steady state. 
Afterwards, checking that the cell states are equal to which 
of  the  six  predefined  states  (SG1,  G1,  S,  G2,  M,  and 
“other” state).

Hence, the data sequence ( ){ }nX  containing subsequent 
cell states are taken from a deterministic extended BN 
model with weights proposed by GA results.

Therefore, this data sequence has the form:
( ) (1) (2) (2048){ } { , ,..., }nX X X X=

( ){ }iX  = Cell state for the ith initialization (until steady state), 
1,2,3..., 2048i=  In the data sequence, finding the transition 

frequency rates Fij is done by counting the number of 
transitions from state i to j in one step. For the sequence 

( ){ }nX , one can create the one‑step transition matrix F and 
the estimation for Pij as follows:

11 16 11 16

11 66 11 66

... ...
... ... ... ... ... ...

... ...

F F P P
F P

F F P P

   
   = =   
      

06 6

1 1

0 06

1

F Fij ijif
F Fij ij

j j
Pij Fijif

Fij
j















>
∑ ∑
= =

=

=
∑
=

 (2)

Therefore, each element pij of the matrix p represents 
the probability of transition from state i to j in one step. 
Actually, this probability is as a result of using the concept 
of frequency rate.

So far, we have assumed six cell states according to 
deterministic extended BN. When the cell is arrested 
in each of the cell cycle checkpoints, it may undergo 
apoptosis. Therefore, the seventh state of MM as apoptosis 
state must be added and MM is improved to seven states. 
According to Figures 2 and 3, after G1 phase, the cell 
may evolve to S or to “other” state and then to S, or 
may  be  arrested  in  G1  by  checkpoint  that  checks  DNA 
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damage. When arrested, the cell may undergo apoptosis 
or recover and evolve to next state, S. After S phase, the 
cell may evolve to G2, or to “other” state and then to G2, 
or may be arrested in S by checkpoint that checks correct 
replication of DNA. When arrested,  the cell may undergo 
apoptosis or recover and continue to the next state, G2. 
After G2 phase, the cell may evolve to M, or to “other” 
state  and  then  to  M,  or  may  be  arrested  in  G2  by  DNA 
damage checkpoint. When arrested, the cell may undergo 
apoptosis or recover and evolve to the next state, M. 
Finally, after M phase, the cell may evolve to G1, or to 
“other” state and then to G1, or may be arrested in M 
because of improper spindle formation. When arrested, 
the cell may undergo apoptosis or recover and evolve to 
the next state, G1. According to the result of deterministic 
extended BN model of yeast cell cycle, the stationary 
state is only accessible after G1 state. Therefore, after G1 
state, the next state may be stationary G1. The ith state is 
named absorbing state of Markov chain if Pij in transition 
probability matrix, and actually, once the system hits ith 
state, it loses ability to escape. Therefore, stationary G1 
state and apoptosis state are absorbing states of Markov 
chain because the stationary state is an attractor of this 
system. After attaining this state, cell state will not change 
and after apoptosis, the cell dies. At the absorbing state, a 
new routine of cell cycle program will start. Therefore, 
these elements of transition probability matrix must 
be zero. The transition probability matrix P is given as 
follows:

12 13 14 15 16 17 72 73 74 75 76 0P P P P P P P P P P P= = = = = = = = = = =

1 0 0 0 0 0 0
' ' ' ' '0 01 1 1 1 1 11

' ' ' '0 0 02
' ' ' '0 0 0 2 2 2 22

' ' ' '0 0 01
' ' '0 1 2

P

p p p p pG SG G G G S G ApptosisG Other

p p p pS S S G S ApoptosisS Other

p p p pG G G M G ApoptosisG Other

p p p pM MM G M ApoptosisM Other

p p p pOther G Other S Other G Ot

=

− − − −−

− − −−

− − −−

−− −−

− − −
' ' 0

0 0 0 0 0 0 1

pher M Other Other− −

 
 
 
 
 
 
 
 
 
 
  

Some elements of this transition probability matrix must 
be zero because they represent an unusual phenomenon 
in biology. For example, the probability of transition from 
S to G1 is zero. This probability matrix P which results 
from  the  definition  of  six  predefined  states  do  not  have 
apoptosis state. Therefore, we built a new stochastic chain 
and considered the apoptosis state according to transition 
probability matrix p. The next state of the cell during 
time steps was determined according to the structure of 
extended BN that deterministically regulate biochemical 
interactions  between  genes  or  proteins,  can  be  affected  by 
randomness.[33,46‑49] Randomness in protein interactions by 
transition probability matrix is as a result of deterministic 
extended BN and roulette wheel selection technique

By assigning the numbers one to six to states: SG1, G1, 
S, G2, M and “other” respectively, we have state space A 
= {1, 2, 3, 4, 5, 6}. If the present state in stochastic Markov 
chain corresponds to {1,2,3,4,5,6}i∈ , creating a vector Vi 
of nonzero elements of the ith row of matrix P is as follow: 

{ 0}, 1,2,...,6 1,2,...,6iVi Pij j i= ≠ = =  nj = number of 
elements of vector Vi.

Then, generating a random number between minimum 
and maximum of the numbers of the vector Vi, which is 

7pi  (that is ( 1)ni +  an element of the vector Vi) and then 
normalizing the numbers of the vector Vi to their sum, 
thereby generating the numbers between zero and one that 
are elements of the vector Vi that has ( 1)ni +  elements.

Then creating a roulette wheel with ( 1)ni +  sections in 
which the length of each section is equal to probabilities of 
vector Vi and generating a random number with the uniform 
distribution between zero and one. As shown in Table 1, by 
examining that this number corresponds to which section 
of the roulette wheel, the state corresponding to that section 
wins and next state of the cell is determined.

For example, if the present state in stochastic chain is 
S (corresponds to state 3). For creating probability of 

Figure 2: Cell cycle checkpoints, in certain places of cell cycle may cell to 
be arrested and then undergo apoptosis or evolve to next phase

Figure 3: Seven states of Markov model and possible interactions between 
states. Apoptosis state and SG1 state are absorbing states of Markov chain
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transition from S state to apoptosis state, we first generated 
a random number between minimum and maximum of the 
numbers { , , }33 34 36p p p P∈  such that p37 normalizes 
the numbers to their summation. Thereby generating the 
numbers { , , , }33 34 36 37p p p p  between zero and one that 
are elements of vector:. 

(1) ( ) ( 1), 2
{ }

( ){ }
' ' ' ', ,33 34 36 37

n nh p and for n h p hikij ij ij kjk S j
nX

p p p and p

−= ≥ = ∑
∈ −

That 
' ' ' ', ,33 34 36 37p p p and p  represent the probability of 

transition from S to G2, “other”  and  finally  to  apoptosis 
state in one step, then creating a roulette wheel with four 
sections (equal to the number of elements of the vector '

3v ), 
followed by generating a random number with a uniform 
distribution between zero and one and examining that this 
section of a roulette wheel and state corresponding to that 
section wins and the next state of the cell is determined.

Generally, if the current state of the cell is G1, S, G2 or 
M, exactly similar to predefined procedure, we respectively 
compute these probabilities 

' ' ' ', , , 5727 37 47p p p p  and 
implement roulette wheel selection technique. Therefore, 
repeating this procedure results into a new data sequence 

( ){ }nY . This data sequence or stochastic chain is created 
based on the notion that the next state of the cell is 
determined stochastically according to the current state 
of the cell while the data sequence ( ){ }nX  is as a result 
of the deterministic rules of extended BN. For the data 
sequence ( ){ }nY ,one can create the one‑step transition 
probability matrix P2 using rule 2. Transition probability 
matrix P2  is  different  from  transition  probability  matrix 
P because it regards apoptosis as the 7th state and describes 
probabilities of transition between all states to apoptosis. 
Furthermore, this matrix is as a result of randomness in 
gene regulation while the transition matrix P is due to 
deterministic extended BN. Transition matrix P2 can be used 
for  constructing  the  fitness  function  of GA. The  network’s 
evolution has Markov property because statistically, cell 
state at the next time step only depends on cell state at 
the present time step. The stochastic process presumed to 
be time‑homogeneous. Since all states are not accessible 
from each other, Markov chain is non‑reducible. The time 
steps are logical steps that describe causality rather than 
actual time steps. Under the Markov assumption, transition 
probability of the Markov chain ( ( ){ }nY ) is computed. 
Therefore, transition matrix P2 according to Markov 
assumption is given as:

Pr( _ ( ) | _ ( 1) , _ ( 2) ,...)0 1 2
Pr( _ ( ) | _ ( 1) )0 1

S C t Y S C t Y S C t Y

S C t Y S C t Y

= − = − =

= = − =
 (3)

Our aim was to extend an existing BN model of Li et al. 
by optimizing its kinetic parameters according to one 
criterion computed from MM introduced in this paper 
to produce a gold standard behavior. The purpose of 
gold standard behavior is that the probability of special 
biological pathway is maximized, and based on attraction 
of stationary G1 state (S_G1), the biggest attractor of 
BYCC network is increased.

Let { , ,..., ,...}, {0,1,2,...},0 1Y Y Y k Y Skk ∈ ∈  be a Markov 
chain with state space {1,2,3,4,5,6,7}S ∈  and transition 
probability matrix p. According to MM, the probability of 
transition from state i to j after n steps provided that this 
transition has a certain way to win is computed via rule 4:

{ , ,...., | }1 1 1 1 0 0
...0 1 1 2 1

P Y j Y j Y j Y jn n n n
p p pj j j j j jn n

= = = =− −
= × × ×

−
 (4)

Therefore, we find the probability of special pathway in the 
BYCC via rule 4. The known pathway is the subsequent 
transition  from G1  to S, S  to G2, G2  to M and finally G1 
to stationary G1. These probabilities from transition matrix 
p2 are obtained as:

{ 1, 1, , 2, | 1}5 4 3 2 1 0
...1 2 2 1 1 1

P Y SG Y G Y M Y G Y S Y G

p p p p pG S SG G M MG G SG

= = = = = =

= × × × × ×  (5)

Finding  the  probabilities  of  the  first  arrival  to  each  of 
these seven states from other states can be interesting for 
biologists to compute using MM rules. According to MM, 
the first passage  time from the state  i  to  j  is  the number of 
time steps, Tij  required  to  attain  state  j  for  the  first  time, 
given that the chain was initially in state i. The first passage 
time is a random variable with probability distribution 
defined  with  rule  6.  It  can  be  computed  recursively  using 
rule 7 as follows:

( ) ( ) ( , ,..., | )1 1 0
nh P T n P Y j Y j Y j Y jnij ij n= = = = ≠ ≠ =−

 (6)

(1) ( ) ( 1), 2
{ }

n nh p and for n h p hikij ij ij kjk S j
−= ≥ = ∑

∈ −
 (7)

Results
The kinetic parameters of extended BN of the cell cycle 
are optimized by GA as illustrated in Table 2. By applying 
these kinetic parameters to the network, the relative basin 

Table 1: Roulette wheel selection technique
Rule Action

If random number ϵ '(0, )33p
S state wins

If random number ϵ ' ' '( , )33 33 34p p p
G2 state wins

If random number ϵ
' ' ' ' '( , )33 34 33 34 36p p p p p+ + +

‘Other’ state wins

If random number ϵ ' ' '( ,1)33 34 36p p p+ +
Apoptosis state wins
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size of stationary G1 state increased from 86% to 96.48% 
while the number of attractors decreased from 7 to 5. The 
probability of special pathway in the BYCC via rule 3, 
which is a known pathway and is the subsequent transition 
from G1 to S, S to G2, G2 to M, M to G1, and finally G1 to 
stationary G1 is maximized. This represents the increment 
of  robustness  of  the  system.  Despite  the  randomness  and 
stochastic gene regulations modeled by MM which enables 
random cell state selection, the convergence to stationary 
G1 state as seen in Table  3  shows five fixed points of  cell 
cycle  network  and  their  basin  of  attractions.  Execution  of 
deterministic extended BN begins from each of the 2048 
initial states using the optimized parameters of Table 2 
results  to  one  of  the  five  attractors.  This  extended  BN  is 
extremely robust because in 1976 cases from 2048 different 
initializations of extended BN, cell state reaches stationary 
G1 state (relative basin size is 96.48%).

Figure 4, shows the histogram of the incidence of each of 
the cell states in the extended BN of the cell cycle with 
optimized kinetic parameters for all 2048 initializations 
until cell state reaches steady state. The X and Y axes 
represent the decimal equivalent of the protein states in 
the network and the number of incidence of each cell state 
respectively. The decimal equivalent number is attained 
by the composition of the 11‑bit vector number that each 

Figure 4: Histogram of occurrence each of cell states in extended BN of 
budding yeast cell cycle with optimized kinetic parameters for all 2048 
initialization until cell state reaches to steady state. X axis and Y axis 
represent the states and their histograms, respectively

of its elements corresponds to an active state or inactive 
state of the proteins in the network. The two maximums 
of Figure 4 depict G1 and SG1 states respectively and are 
subsequent states in cell cycle process. Figure 4 shows that 
in 1976 from 2048 initializations of cell cycle processes, 
the subsequent transition of G1 to SG1 and trap of process 
in SG1 is seen.

As illustrated in Figure 2, the checkpoints which control 
decency and integrity of the cell cycle progression may 
interrupt the cell cycle in certain phases and arrest the 
cycle.[57] Hence, the cell may undergo apoptosis or may 
recover and evolve to next phase of cell cycle if the 
problem is fixed.

The  probability  of  the  first  arrival  to  each  of  the  seven 
states after exiting from other states by rule 5 can be 
computed. Figure  5  depicts  the  probabilities  of  the  first 
arrival to apoptosis state after exit from each of the G1, S, 
G2 and M states while Figure 6 depicts the probabilities of 
the first arrival to SG1 state after exit from each of the G1, 
S, G2 and M states. These probabilities decrease with time. 
Figures 5 and 6 also depicts the dynamics of the probability 
of  the  first  arrival  to  apoptosis  (to  SG1)  state  after  exiting 
other states. By these probabilities, we can predict the 
behavior of BYCC network. As future work, you can apply 
some interventions to the structure of BYCC network and 
find  its  relation  with  these  probabilities  or  identifying  the 
best intervention in the structure of abnormal (unregulated) 
mammalian cell cycle network that cause increment in 
the  probability  of  first  arrival  to  apoptosis,  therefore,  the 
proliferation of cells will be prevented.

Discussion
In most gene regulatory networks, kinetic parameters are 
unknown and can hardly be achieved. Obtaining kinetic 
parameters requires designing expensive experiments. 

Figure 5: X axis represents the time steps to reach apoptosis state after 
exit from each of the four states: G1, S, G2 and M. Y axis represents the 
probability of first arival to apoptosis state after exit from each of the G1, 
S, G2, M respectively

Table 2: The kinetics parameters of budding yeast 
cell cycle network optimized by genetic algorithm for 

reaching to robust structure with maximum probability 
of special pathway in the cell cycle

W1=2 W6=3 W11=10 W16=4 W21=10 W26=7 W31=2
W2=2 W7=9 W12=5 W17=8 W22=6 W27=6 W32=1
W3=3 W8=6 W13=6 W18=1 W23=10 W28=1 W33=5
W4=6 W9=10 W14=10 W19=10 W24=7 W29=6 W34=9
W5=10 W10=10 W15=2 W20=4 W25=8 W30=8
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We have designed a procedure to optimize the kinetic 
parameters of gene regulatory network of BYCC. For this 
aim and for modeling randomness in gene regulation, we 
have constructed an MM whose states correspond to four 
phases of cell cycle (G1, S, G2 and M phases), stationary 
G1 state and apoptosis state (in each of the checkpoints of 
cell cycle, the cell may be arrested and undergo apoptosis). 
In  addition  to MM,  probabilistic  BN  (PBN)  is  one  of  the 
best methods for modeling intrinsic noise in molecular 
interactions.  PBN  is  subset  of  several  BNs  with  various 
probabilities and predict the next state of each gene as well 
as the inherent stochastic nature of molecular interactions. 
In each time step, the state of the target gene is predicted 
by  a  specific  vector  of  functions,  such  that  each  element 
of  this  vector  is  specified  by  a  specific BN. These  vectors 
for  different  genes  are  numerous.  Each  gene  according 
to  particular  BNs  with  specific  probabilities  predicts 
its future state. This paper has described a method for 
modeling molecular interactions based on single BN. By 
MM, we can model intrinsic noise (randomness) in gene 
regulation that in deterministic models are not considered. 
Our stochastic model is constructed based on transition 
rates derived from deterministic extended BN model. The 
dynamics of the network is as a result of randomness in 
gene regulation which causes a cell in each of the cell 
cycle phases, according to probabilities derived from 
deterministic extended BN model select its next state, 

while in deterministic BN model of yeast cell cycle or in 
ODE  model  of  BYCC,  the  time  evolution  of  cell  states 
according to deterministic rules as a result of randomness 
in gene regulations are neglected.

Li et al. introduced a BN model of yeast cell cycle network 
that genes or proteins interact with each other by deterministic 
rules and the dynamics of the network during the time steps 
is achieved.[30] Hence, the cell evolves from one cell cycle 
phase to the next. They considered all biochemical kinetic 
parameters of this network to have the same value. In other 
words, they considered that all genes or proteins interact 
with each other with same weights. We have optimized the 
biochemical kinetic parameters of deterministic extended 
BN model with GA that causes the probability of special 
biological pathway to be maximized and basin size of the 
stationary G1 state to rise. Therefore, the occurrence of the 
G1‑>S‑>G2‑>M‑>G1‑>SG1 cycle is maximized. In addition, 
the number of attractors of deterministic extended BN 
decreased from 7 to 5 while basin size of stationary G1 state 
increased from 86% to 96.48%. This results in increasing 
robustness of extended BN with optimized kinetic parameters. 
The present study, similar to the studies,[30,33] was designed to 
analyze the stability and dynamics of the BYCC network and 
like these study, which lacks experimental data, according to 
expert knowledge of gene‑gene or protein‑protein interactions 
of BYCC constituents simulates the cell cycle behavior and 
demonstrates the stability of the system.

Zhang et al. in an interesting study constructed a stochastic 
MM of BYCC.[33] Their stochastic model having 2048 states 
and in each time step, cell state with certain probabilities 
evolved to the next state. The BYCC network of their 
study is similar to our model and consists of 11 proteins 
(with two active/inactive states), resulting in a total of 2048 
states. Their model consist of two noise parameters α and β 
to describe the level of noise in cell state transitions. If these 
parameters  are  infinite  (α=β=∞),  their  probabilistic  model 
will behave similar to the deterministic BN model. They 
considered randomness in gene regulation by neglecting 
kinetic parameters and assumed that all biochemical kinetic 
parameters have the same value except negative feedbacks of 
genes on themselves that have another weight. In our MM, 
we considered seven states. In our model, the time evolution 
of protein states considering apoptosis state was studied.

In  an  interesting  study,  Kraikivsk  et al. describe the 
cell  cycle  process  from  DNA  replication  to  mitosis 

Figure 6: X axis represents the time steps to reach stationary G1 state fter 
exit from each of the four states: G1, S, G2 and M. Y axis represents the 
probability of first arival to stationary G1 state after exit from each of the 
G1, S, G2, M respectively

Table 3: The fixed points of the cell cycle network and their basin sizes
Number of attractors Basin size Cln3 MBF SBF Cln1, 2 Cdh1 Swi5 Cdc20 Clb5, 6 Sic1 Clb1, 2 Mcm1
1 1976 0 0 0 0 1 0 0 0 1 0 0
2 60 0 0 1 1 0 0 0 0 0 0 0
3 7 0 0 0 0 0 0 0 0 1 0 0
4 4 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 1 0 0 0 0 0 0
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(cell  division)  by  a  system  of  differential‑algebraic 
equations.[31] Their model is constructed by the hypothetical 
regulatory mechanism of cell cycle control in budding 
yeast that has good agreement with experimental data. The 
model is calibrated by data set of observed phenotypes of 
257 mutant yeast strains. The calibrated model is used to 
predict the phenotypes of 30 novel combinations of mutant 
alleles (the mutations are simulated by parameter changes). 
Therefore, the aim of their study was to predict the state 
of  genes  or  proteins  in  different  phenotypes  of  BYCC 
by a deterministic model, while the aim of our study 
is to develop an extended BN model of BYCC for the 
dynamic and stability analysis of cell cycle constituents 
(genes or proteins). In our study, we optimized the weight 
of protein‑protein interactions by GA to create an extended 
BN of the BYCC that is robustly designed. In general, the 
purpose of our study was to evaluate the stability of the 
cell cycle system and to estimate the rate of protein‑protein 
or gene‑gene interactions to obtain a more robust and stable 
network that has a reliable function in the context of noise. 
Noise refers to the uncertainty in the transition from one 
state to another in the cell cycle process that is simulated 
by Markov chain.

In another study, Barik et al. constructed a computational 
model to describe how a cell control cell cycle progression 
and prevents daughter cell birth with abnormal genetic 
features. The simulation of the model is performed by 
deterministic (to capture the events of bud emergence 
and  DNA  synthesis)  and  stochastic  methods  (to  simulate 
chemical  reactions  of  cell  cycle  network).  Deterministic 
simulation of the model is carried out by parameter 
estimation  toolkit  that  generates  the  ODE  of  model 
variables and stochastic simulation is performed using 
Gillespies’  stochastic  simulation  algorithm.  This  model  is 
used to simulate variable phenotypes of 20 mutant yeast 
strains and to investigate the role of feedbacks regulations 
in the reduction of noise in cell cycle progression. In 
addition  to  the  difference  in  modeling  strategies  of  our 
study with respect to this study, the constituent proteins of 
the cell  cycle network of  this  study are  also different  from 
our study. In present study, we used MM to analyze the 
state space created by extended BN and all steps of model 
construction are described in detail. The importance of MM 
for achieving the dynamics of the transition probability 
of states in the extended BN are referred to. In addition, 
the importance of using optimization methods to increase 
the stability of BN has been mentioned. Although the 
proposed method was  applied  to BYCC,  it  is  not  confined 
to modeling and analysis of this network. It can be utilized 
for modeling and analysis of state space of any signaling 
pathway or biological network. We believe that the major 
contribution  of  our  survey,  in  addition  to  the  offer  of  the 
use of MM and GA in biological network modeling, is that 
a deeper understanding and comprehensive analysis of the 
biological network can be achieved and besides dynamical 

behavior of BN, dynamics of transition probabilities 
between states of BN can be achieved. Finally, by 
optimizing the kinetic parameters of BNs, extended BNs 
with more robustness can be achieved.
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