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Abstract
Background: Image fusion is the process of combining the information of several input images 
into one image. Projection images obtained from three‑dimensional  (3D) optical coherence 
tomography  (OCT) can show inlier retinal pathology and abnormalities that are not visible in 
conventional fundus images. In recent years, the projection image is often made by an average on all 
retina that causes to lose many intraretinal details. Methods: In this study, we focus on the formation 
of optimum projection images from retinal layers using Curvelet‑based image fusion. The latter 
consists of three main steps. In the earlier studies, macular spectral 3D data using diffusion map‑based 
OCT were segmented into 12 different boundaries identifying 11 retinal layers in three dimensions. 
In the second step, projection images are attained using conducting some statistical methods on the 
space between each pair of boundaries. In the next step, retinal layers are merged using Curvelet 
transform to make the final projection images. Results: These images contain integrated retinal depth 
information as well as an ideal opportunity to better extract retinal features such as vessels and the 
macula region. Finally, qualitative and quantitative evaluations show the superiority of this method 
to the average‑based and wavelet‑based fusion methods. Overall, our method obtains the best results 
for image fusion in all terms such as entropy (6.7744) and AG (9.5491). Conclusion: Creating an 
image with more and detailed information made by the Curvelet-based image fusion has significantly 
higher contrast. There are also many thin veins in Curvelet-based fused image, which are absent in 
average-based and wavelet-based fused images.
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Introduction
Spectral‑domain optical coherence 
tomography (SD‑OCT) is a noninvasive 
imaging method to represent the details 
of the different depths of the retina in the 
micrometer resolution.[1] However, in recent 
years, these data have had worthwhile role in 
analysis, processing, and diagnosis of retinal 
diseases because the retinal diseases such as 
glaucoma, diabetic retinopathy, age‑related 
macular degeneration  (AMD), and central 
retinal artery  (or vein) occlusion cause 
particular effects in the structure of retinal 
components during different stages of the 
disease.[2‑4] These variations in OCT images 
can be processed automatically. In addition, 
the creation of SD‑OCT data focusing on 
the macula and optic disc has provided a 
vast area of evaluations for the extraction 

of desirable characteristics of the retina. In 
recent investigations, two‑dimensional  (2D) 
and three‑dimensional  (3D) segmentation 
of retinal layers and retinal vessels, as well 
as the variation of important regions of the 
retina such as macula and optic disc, has 
gained increased popularity.[5,6] In this regard, 
formed projection images in the X–Y axis 
also render the main tool for the extraction 
of important characteristics of the retina and 
add information to the information content of 
other axes.[7‑9] Projection images show inlier 
retinal pathology and abnormalities that are 
not visible in common fundus images.[9]

The projection image is also widely used to 
localize lesions within intraretinal layers.[10] 
Sayanagi et  al. showed that the projection 
images can identify and localize polypoidal 
lesions in choroidal vasculopathy.[11] 
Gorczynska et al. demonstrated that projection 
OCT images can enhance the visualization 

Submitted: 04-Sep-2019          Revised: 12-Oct-2019          Accepted: 29-Dec-2019          Published: 25-Apr-2020

Access this article online

Website: www.jmssjournal.net

DOI: 10.4103/jmss.JMSS_43_19

Quick Response Code:

[Downloaded free from http://www.jmssjournal.net on Sunday, April 26, 2020, IP: 10.232.74.22]



Jalili, et al.: Retinal projection images using curvelet-based image fusion

Journal of Medical Signals & Sensors | Volume 10 | Issue 2 | April-June 2020� 77

of outer retinal pathology in nonexudative AMD.[9] Stopa 
et  al. compared OCT projection images with the fundus 
photography, autofluorescence, and angiography in AMD 
patients and demonstrated that it enables researchers to link 
the intraretinal pathological information of 3D OCT with 
the other modalities.[12] The benefits of the OCT projection 
images have also been demonstrated to diagnose and monitor 
the cystoid macular edema.[13,14]

The projection image can show the retinal vessels in the 
inner layers of the retina such as choroid, which may not 
be visualized in fundus imaging due to their location, 
below pathologic lesions.[15] Fard et  al. demonstrated the 
facilities of OCT angiography projection images to extract 
peripapillary capillary density in patients with optic disc 
swelling, papilledema, and pseudo papilledema.[16,17]

In other studies, researchers used projection images to 
segment the retinal vessels on three dimensions.[18] For 
this purpose, the researchers generated 3D segmentation 
of the retinal layers using a supervised and pixel 
classification‑based vessel segmentation approach. Then, a 
2D projection image of the vessel is generated based on 
the information each layer. Afterward, the 3D vascular 
structure is extracted using projection images.[19]

The existing studies on the extraction of the important 
retinal properties such as vessels from projection images 
obtained from OCT depend on the simple statistical 
approaches including mean and variance on the entire of 
the 3D OCT data or some specific layers.[7‑11,19] This means 
that the projection image is taken using making an average 
throughout or in a specific section of the retinal layers. 
Although this method is well suitable, is simple, and is time 
efficient, it is associated with some inevitable informational 
deficiencies of retinal depth.[20,21] For example, in the entire 
averaging approach, the resolution of the thin veins is 
generally reduced or eliminated.

Image fusion is one of the most important methods in the 
matching of attained information from different images in an 
image, so that the resulting image contains desirable details of 
all input images.[22] These images may be obtained from a fixed 
section of human tissue using different imaging modalities 
and/or imaging of a fixed landscape, as happens during the 
imaging which different objects lay in the focus. Many 
studies are proposed for image fusion such as multiresolution 
transform, principal component analysis  (PCA), color model, 
and intensity hue starvation; however, these methods have 
many applications and also limitations.[23,24] In medical image 
fusion, multiresolution transforms reveal better results with 
more details rather than other transforms.[25] In this regard, 
another effort for forming optimum projection image over 
retinal layers using wavelet transform is accompanied with 
satisfactory results.[20] This transform with describing the 
precise detail of the image in horizontal, vertical, and diagonal 
axes helps to provide more detail of vessels  –  particularly 
those that are only observed in vertical layers and also other 

useful amplified information and those that are displayed in the 
final projection image.[26] Nonetheless, limitations of wavelet 
transform in representing image details in four subbands and 
three axes divest, creating a fully optimum image, while 
there are always vessels and details in the image which are 
out of the three maximum information axes.[27] As described 
later, Curvelet transform can demonstrate information of 
subbands and different axes  (e.g., more angles).[28,29] Indeed, 
Curvelet transform has emerged for optimum display of 2D 
discontinuities, and it has more distinguished properties than 
conventional wavelet. As whatever said, Curvelet transform 
shows more capability and therefore its applications in image 
fusion are progressively increasing. That is why, the Curvelet 
transform is more powerful in detailed amplification of each 
layer of the retina as well as the fusion of layers for creating 
a more optimal projection image.[30,31] It should be pointed out 
that this approach is conducted for the first time on the 3D 
OCT data. Figure  1 illustrates how averaging misses some 
information for fusion.[20]

In the present study, retinal layers involving important 
information would be fused through image processing 
methods such as the Curvelet method to obtain an optimum 
image with maximum information of depth. The image 
displaying important and highlighted information of each 
layer of retina including distribution of vessels, edge, and 
center of macula; edge and center of optic disc and its 
surrounded rim area; or possible disorders such as deep 
retinal cysts will contain information of the depth of retina 
which none of the other modalities of retinal imaging such 
as fundus imaging method can build.[9]

Figure 1: The obtained image from averaging within boundarie
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Our strategy in the fusion of retinal layers using Curvelet 
transforms is very similar to the present fusion strategies of 
multifocus images.[32,33] Intralayers of the retina containing 
important information in terms of the general distribution 
of vessels and the presence of details in the image were 
very similar, however they were different in representing 
subtle details. Thus, we chose the weighted averaging 
method for fusion of Curvelet coefficients of the images in 
low‑frequency subbands and maximum absolute method, 
with presenting a new approach  (viz., it was concurrently 
used with weighted averaging) for the fusion of Curvelet 
coefficients in high‑frequency subbands to obtain desirable 
results, as described in the results section.

Materials and Methods
The proposed methods were adopted on 13  3D macular 
SD‑OCT images obtained from eyes without pathologies 
using Topcon 3D OCT‑1000 imaging system in the 
Department of Ophthalmology, Feiz Hospital, Isfahan, Iran. 
The size of the obtained volumes was 650 × 512 × 128 voxels 
with a voxel resolution of 3.125 mm × 3.125 mm × 7 mm. 
Then, we choose a diffusion map‑based segmentation for the 
localization of 12 different boundaries in 3D retinal data.[34,35]

Forming projection images from each layer of the retina

In the first step of the effort, with the fusion of levels and 
voxels of each pair of sequential boundaries, a retinal 
layer‑associated image would be acquired. There are 
multiple methods for the projection of levels between each 
pair of boundaries including averaging and highest and 
lowest value methods which determine the average, highest, 
and lowest values of each column of 3D space, between 
each pair of boundaries and pixel value in the output 2D 
image. Figure 1 illustrates the general concept of projection 
image formation of a retinal layer using averaging in the 
space between each pair of boundaries.

Curvelet transform‑based image fusion

Fusion based on Curvelet transform can be described in 
three steps as follows:

1.	 Curvelet transform is performed on each input image 
individually and Curvelet coefficients of each image are 
obtained

2.	 With having a fusion rule, Curvelet coefficients 
associated with images in different subbands are fused 
and thereby fused Curvelet coefficients are acquired. 
The fusion rule and how to execute each program for 
the fusion of Curvelet coefficients in different subbands 
are the most important aspects of image fusion for 
creating an optimum image[36]

3.	 With the performance of inverse Curvelet transform 
on the fused Curvelet coefficients, the final image is 
obtained.

The general steps for the fusion of images using Curvelet 
transform are represented in Figure 2.

Fusion strategy

The key step in image fusion based on Curvelet transform 
is the coefficient combination, namely, the process of 
merging the coefficients in a proper way in order to gain 
the best quality in the fused image. The projection images 
of the retinal layers, in the layers with more information 
of retina, are similar in general view, but they are different 
in subtle details. For example, the last layers of the retina, 
although very similar in structure of large vessels, differ 
in the presentation of thin veins. Thus, coefficients of 
low‑frequency layers have little differences together, 
whereas coefficients of high‑frequency layers have apparent 
differences. High‑frequency coefficients usually fluctuate 
around 0; the larger absolute value of Curvelet coefficients 
show more dramatic changes in the gray scale of the image 
including the edges and details of the vessels. Therefore, 
regarding the features of the Curvelet transform and the 
characteristics of layer‑related images, the proposed method 
puts forward an image fusion strategy that the low‑frequency 
coefficients using the weighted average and high‑frequency 
coefficients using maximum absolute‑based method are 
integrated.[37,38] The Curvelet transform is applied to images 
A and B; next, the corresponding low‑frequency coefficients 
and high‑frequency coefficients are gained, respectively. 

Figure 2: Curvelet‑based image fusion for two input projection images
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Then, fused image coefficients for low‑ and high‑frequencies 
are obtained as follows:

The fusion of low‑frequency coefficients based on the 
weighted average method is performed, which is formalized 
as follows:
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The fusion of high‑frequency coefficients is based on the 
maximum absolute method. Its formula can be stated as:
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It is worth mentioning that we concurrently obtain the 
fused image from the five and/or the six layers  (with the 
most information). Once the OCT image noise is inherently 
high, using the largest size for high frequencies, the noise 
in the merged image is increased, howbeit, all important 
details of each layer are appropriately displayed in the 
final image. To overcome this problem, we perform a new 
method based on the weighted average and high‑frequency 
coefficients using the maximum absolute‑based method. 
The half effect of the fused Curvelet coefficient is integrated 
by the maximum value and another half is integrated from 
average coefficients of other layers.

Two important considerations in the proposed approach

Anatomical features of the retina in optical coherence 
tomography

Each retinal 3D OCT consists of cross‑sectional scans called 
B‑scans or transverse scans. Such datasets include a sizable 
slice of the retina, demonstrating its internal structures in detail. 
Each B‑scan is also composed of sequential one‑dimensional 
scans in z‑direction  –  called A‑scans or axial scans. The 
existence of a blood vessel in the retinal structure leads to 
different indicators in intersecting B‑scan, and thickening 
occurs in retinal nerve fiber layer (RNFL). RNFL thickness is 
unfolded through the formation of projection images as blood 
vessels enclosed in light pixels in the first layers (e.g., second 
and third layers), whereas in the last layers which include the 
shadow of blood vessels, they appear in dark pixels.[39,40] This 
is one of the most important issues based on the anatomical 
properties of retina, and it should take into consideration in 
the case of layer fusion. Complementary image projection 
of the primary layers should be incorporated into the image 
fusion process, until the intensity of the vessels in the different 
layers does not neutralize each other. This anatomical view 
has been first investigated by Hood et al.[40]

Image fusion based on primary images with more 
information

With precise attention to image details obtained from a 

specific layer using different statistical indicators, these 
images are different in subtle details.[21] Although a range of 
difference in certain layers may be trivial, this would enhance 
the existing information in the images by applying different 
statistical approaches. If the difference among the resulting 
images of these approaches is tremendous, it means that if 
each method builds specific details of a layer, its concurrent 
fusion will display integrated information of a layer. If the 
disparity among the resulting images of statistical methods 
over a layer is a minute, the least application of this approach 
will be denoising the original images in the fused images 
without any reduction in the contrast of the details.

Evaluation of image fusion

To verify the performance of image fusion, an evaluation 
approach is needed, which usually can be divided into 
two categories: the subjective evaluation method and the 
objective assessment method. The subjective evaluation 
method is a visual analysis of the fused image. It is simple 
and also remarkably effective in the primary assessment of 
fused images. In a qualitative evaluation of images, many 
questions would be answered by direct visual observation. 
In the next step of subjective assessment in this article, 
the final obtained fused results were evaluated by two 
ophthalmologists and compared with the resultant images 
of fundus imaging. Subjective assessment methods are not 
comprehensive and because of alteration in the observation 
conditions, the evaluation results may be different. 
Moreover, observations maybe performed according to 
personal‑based mode. On the other hand, in the subjective 
evaluation, by conducting different fusion methods (such as 
wavelet, Curvelet, or using a transform in different states), 
results are much related visually and cannot be assessed 
via quantitative evaluation. Hence, investigators devise 
several methods named objective assessments which are 
quantitative analysis. Some quantitative evaluation methods 
of fused images are provided in the following section and 
are used for the evaluation of the proposed method.

Standard Deviation (SD) is an important numerical scale to 
weigh the information capability of images, and it manifests 
the discrete level of gray‑scale image’s mean value. SD can 
be formalized as follows:[41]
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In these equations, M and N reflect the length and the 
width of the image, respectively, and F(i, j) is relevant 
to the gray‑level intensity of a pixel in the ith arrow and 
the jth column. The larger SD provides the more dispersed 
distribution of the gray‑scale image and the better 
quality of the fused image. Namely, it comprises more 
information.

Information entropy of the image is an important indicator 
for assessing the richness of image information; it 
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corresponds to the property of combining between images. 
The entropy of an image is expressed as:[42]

H p logpi ii
L  
 0

1

Where H is the entropy, L is the whole gray scales of the 
image, pi is the probability of ith gray level.

Average gradient  (AG) represents the contrast between 
the  variations  of pattern on the image, so it is frequently 
performed to assess the clarity of the image. Overall, the 
greater value of AG provides a more clear image.[43]
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In this effort, we follow a comprehensive assessment which 
makes the combination of the subjective visual evaluation 
and objective evaluation to produce the assessment of 
image quality more effectively and more comprehensively.

Results
Forming projection images from 11 intraretinal layers

•	 By adopting different statistical indicators on pixels 
between each pair of the image corresponding to each 
layer of the retina, an image relevant to its statistical 
indicator is obtained. Figure  3 shows projection 
fundus images of each of the 11 intra‑retinal layers for 
mean  (up left), median  (up right), maximum  (down 
left), and variance (down right) statistical indicators[14]

•	 Results for some indicators such as mean, average, and 
maximum are significant

•	 Certain indicators such as minimum and variance are 
not represented as significant results.

By simple evaluation of these images, general notes are 
disclosed, including:
•	 Each method is better and more effective in the attaining 

of certain layers  (e.g., the averaging method obtains 
better results for the 2nd and 6th layers than the maximum 
method; also the maximum method provides better 
results for the 3rd layer than the averaging method)

•	 Some layers of intraretinal components contain more 
information (such as 2nd, 6th, and 11th)

•	 Certain layers of intraretinal components do not contain 
appropriate and exclusive information for the fusion of 
images (including 4th, 5th, and 7th layers).

Projection of intraretinal images from the curvelet‑based 
image fusion

First state

Based on retinal anatomy as well as represented images 
in  Figure 3, the 2nd, 3rd, 6th, and last three layers contain the 
most different information of retina. Thus, in the first step of 
the image obtained using the Curvelet‑based image fusion, 

these images are combined with the described methods. 
The resulting image is shown as a first fused Image  (FI1) in 
Figure  4. It should be noted that the veins in the first layers 
have bright pixels and in the later layers have dark pixels, to 
collect information in the combined image, the complement of 
images of the first retinal layers is attained and then brought 
into fusion.

Second state

With respect to the anatomy of retina, we know that more 
information related to retinal vessels exists in the first 
layers  (particularly the 2nd  layer); also, the formed shadows 
of vessels in the last layers of the retina show high‑resolution 
properties. On the other hand, this information is integrated to 
produce a complete image. Thus, from the new point of view, 
first, the primary layers containing suitable information of retina 
together, namely 2nd  and 3rd  layers, as well as the latest retina 
layers, are combined using Curvelet transform. When the image 
containing important information from two areas of the retina is 
formed, the resulting images are combined again. This approach 
helps to make apparent details of each layer effectively. 
Figure  5 represents the fusion of retinal layers  (obtained from 
the averaging method) together. The Curvelet‑based fusion of 
the 2nd  and 3rd  layers of retina together  (CF23) is shown in 
Figure  5a and the Curvelet‑based fusion of the last six layers 
of retina together  (CF612) is shown in Figure  5b. Next, the 
obtained images of CF612 and CF23 are fused together and 
resulted in the second fused image  (FI2) in Figure  5c. Then, 
according to the anatomical considerations, CF612 and the 
complement of the 2nd  layer of retina are fused together and 
resulted in the third fused Image (FI3) as shown in Figure 5d.

Third state

The images for an intralayer of the retina obtained by 
different statistical methods are adopted together using the 
Curvelet‑based image fusion  [Figure  6]. In other words, an 
image of each intraretinal layer contains essential information 
on different statistical operators. The results show that the 
Curvelet‑transform provides the high‑frequency amplified 
information in the new fused image of the second layer. 
Then, the new intraretina layers are fused to compose 
the final  (fourth) fused image  (FI4) as shown in Figure  7. 
Therefore, the final projection image has all the highlighted 
information of the input images in each intraretina layer.

Subjective and objective evaluations

There are two important comparisons of result for the 
subjective evaluation:
•	 The comparison of the resulting projection image due to the 

fusion of the target layers across the entire intra-retinal layer 
with the projection image obtained from the last six layers is 
shown in Figure 8. This is an important evaluation because 
it is not only showing a major part of vessel structure in 
the last six layers of the retina, but also highlights the 
importance of these first target layers of the retina

•	 A comparison of the resulting image obtained from 
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Figure 3: Projection fundus images of each of the 11 intraretinal layers for mean (up left), median (up right), maximum (down left), and variance (down 
right) statistical indicators

the fusion of intraretinal layers using the Curvelet 
transform‑based, wavelet transform‑based,[20] and the 
averaging based methods[21] is shown in Figure  9. The 
obtained image from the Curvelet transform contains 
amplified details and better contrast compared to the 
other two methods. There are also many thin veins in 
Curvelet‑based fused image, which are absent in the 
averaging‑based fused image (AFI) and even some of them 
also not exist in the wavelet‑based fused image (WFI).

Quantitative evaluation

The obtained images from target layers  (which are selected 
based on our knowledge in the anatomy of the retina) using 

the Curvelet‑based image fusion in the different states as 
shown in the result section are very near in the case of 
details and information of images. Thus, they cannot be 
compared via qualitative evaluation exclusively. Therefore, 
the amount of information in the images is assessed by 
applying the formula as represented in the quantitative 
evaluation section. Hence, in this section, we compare the 
results of our new method with those of previously published 
methods, including the averaging based method[14] and the 
wavelet‑based method.[13] The steps of combining images 
for the image obtained for the wavelet‑based method are 
exactly the same as those applied to achieve the FI3 image. 
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According to the obtained numerical results in Table 1, AFI 
has the lowest quality, FI1 and FI2 possess more quality for 
the fusion, and also, FI4 represents the best results overall.

Conclusion
The objective of the proposed method is to form projection 
images from each retinal layer and further use the Curvelet 
transform to fuse the resulting images. The projection image 
from the depth of OCT enhances the contrast and shows inlier 
retinal pathology and abnormalities not visible in common 
fundus images. To form projection images in each layer, 
the simplest and most common methods for data fusion are 
performed. The statistical methods are conducted on the data 
of boundaries between each pair of retinal layers to form each 
layer image as well. Herein, this approach is proposed, for the 
first time, by the authors. In the earlier study conducted by 
the same authors, retinal layers are only formed using mean 

statistical indicators. However, in the present effort, to use the 
capability of the statistical indicators, other approaches are 
applied. Owing to the basic difference in the definition of certain 
methods such as the averaging and maximum methods, these 
approaches manifest details and different information of each 
layer. Concerning data types and the presence of deficiencies 
in the retinal depth caused by the disease or other causes, the 
methods revealed different interpretations. These different 
interpretations provide a suitable opportunity for the authors 
to find a method to combine information on these methods. 
Therefore, the Curvelet transform and the weighted averaging 
fusion methods are used. Different strategies for information or 
data fusion are developed. However, one of the main limitations 
for the selection of other methods is the variability of the depth 
of retinal layers, as the depth of a layer which involves the space 
between each pair of boundaries in different length and width is 

Figure 4: The obtained image from the fusion of the 2nd, 3rd, 6th, and last 
three layers of retina with the Curvelet‑based image fusion (FI1)

Figure 7: The final (4th) fused image (FI4)

Figure 5: The obtained images with the Curvelet transform. (a) The fusion 
of the 2nd and 3rd layers of retina together (CF23). (b) The fusion of the last 
six layers of retina together (CF612). (c) The fusion of CF612 and CF23 (FI2) 
together. (d) The fusion of CF612 and the complement of the 2nd layer of 
retina together (FI3)

dc

ba

Figure 6: The obtained images for an intralayer of retina with adopting 
different statistical methods: (a) the image of the 2nd layer obtained from the 
averaging method. (b) The image of the 2nd layer obtained from the median 
method. (c) The image for the 2nd layer obtained from the maximum method. 
(d) The fusion of the three images together with the Curvelet transform

dc

ba
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varied. It means that, in certain parts, layers’ depth maybe only 
ten pixels, whereas in the other parts, the depth may be extended 
to twenty pixels. Thus, choosing statistical indicators is the 
simplest and most reliable method to overcome all limitations 
of the first step. Another note which is worth to mention is the 
presence of the very close results using both statistical methods, 
averaging and the mean, in the present study. It seems that close 
results in these indicators are owning to very near‑intensity 
values in a layer of the retina (because of anatomical similarity) 
as well as the depth of major layers, particularly the last layers 
of retina are shallow. In the fusion issues, information of both 
methods was considered because, first, differences in the results 
should be considered and second, with respect to the anatomical 

position of the retina (shallow and close intensities in each layer 
in terms of similar type), information of both methods is more 
reliable. Taking into account these two methods in the final 
merging, the contribution of these two methods in the output 
information is highlighted.

In the next step, the present study used various methods to 
merge layers of images using the Curvelet transform. In the 
past, we discussed a similar study on the 3D OCT data, however 
the previous study is based on the wavelet transform. Compared 
to results obtained from the wavelet transform, the results of 
the present study are more significant because the resulting 
images contain more information and details. With the same 
combination process, FI3 provides better quantitative evaluation 
results than WFI. That is because of the difference between the 
wavelet and the Curvelet transforms into the presenting details. 
The wavelet transform represents an image detail only in four 
subbands and three axes: horizontal, vertical, and diagonal. 
Hence, details and input information of images only can be 
merged and amplified in the direction of three axes. In other 
words, the wavelet transform misses more details associated 
with the vessel edge or other small protuberances in the angles 
and axes which are placed out of the three main axes, whereas 
the Curvelet transform owing to its capacity of representing 
details in more high‑frequency subbands and in all the angles, 
it can easily cover this weakness and represents better images.

Overall, FI4 obtains the best results for image fusion in 
all terms such as entropy (6.7744) and AG (9.5491). It can 
be explained by the creation of new intraretinal images 
from the images of different statistical operators as shown 
in Figure  6. Creating an image with more and detailed 
information made by the FI4 has significantly higher 
contrast. There are many arguments in the selection of 
the Curvelet‑based transform as a fusion method. A  list of 
newly proposed ideas is presented as follows:
•	 Rather than the fusion of layers together, it is suggested 

that at first, desirable characteristics of layers be 
extracted and then the characteristics be fused together

•	 Using newer generations of multiresolution transforms 
such as second‑generation Curvelet and Contourlet 
transforms for the fusion of images

•	 Comparison of extracted vessels from formed projection 
images using the Curvelet method with extracted 
vessels from fundus images

Table 1: The quantitative evaluation of fused images 
from different methods in the result section

Fused image SD H AG
AFI (21) 4.0327 5.7939 6.3252
WFI (20) 4.8072 6.3201 8.6096
FI1 5.4237 6.7611 9.6352
FI2 5.0010 6.5602 9.2256
FI3 5.2581 6.7230 9.9192
FI4 5.4529 6.7744 9.5491
SD – Standard deviation; AG – Average gradient; FI1 – First 
fused image; FI2 – Second fused image; FI3 – Third fused 
image; FI4 – Fourth fused image; AFI – Averaging‑based FI; 
WFI – Wavelet‑based FI; H – Entropy

Figure 9: (a) The obtained image from the Curvelet-based method (FI4). (b) The obtained image from the wavelet-based method. (c) The obtained imaged 
from the averaging-based method

cba

Figure 8: (a) The obtained projection image from the fusion of target layers 
in the entire intralayers of the retina.  (b) The obtained projection image 
from the fusion of the last six target layers. More details of the image 
(a) are represented in the specified areas
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•	 Using local selection coefficients such as maximum 
local energy instead of using pixel‑based fusion for the 
selection of Curvelet coefficients

•	 Conducting the proposed method on the OCT data in 
the optic disc area

•	 Extraction of macular and optic disc areas in the layers, 
which are apparent using modern image processing 
approaches.

Financial support and sponsorship

None.

Conflicts of interest

There are no conflicts of interest.

References
1.	 Brezinski  ME. Optical Coherence Tomography: Principles and 

Applications. Elsevier; 2006.
2.	 Regatieri  CV, Branchini  L, Carmody  J, Fujimoto  JG, Duker  JS. 

Choroidal thickness in patients with diabetic retinopathy analyzed 
by spectral‑domain optical coherence tomography. Retina 
2012;32:563‑8.

3.	 Wilde C, Patel M, Lakshmanan A, Amankwah R, Dhar‑Munshi S, 
Amoaku  W, et  al. The diagnostic accuracy of spectral‑domain 
optical coherence tomography for neovascular age‑related macular 
degeneration: A  comparison with fundus fluorescein angiography. 
Eye (Lond) 2015;29:602‑9.

4.	 Fu  D, Tong  H, Zheng  S, Luo  L, Gao  F, Minar  J. Retinal status 
analysis method based on feature extraction and quantitative 
grading in OCT images. Biomed Eng Online 2016;15:87.

5.	 Novosel J, Vermeer KA, de Jong JH, Ziyuan Wang, van Vliet LJ. 
Joint segmentation of retinal layers and focal lesions in 3‑D OCT 
data of topologically disrupted retinas. IEEE Trans Med Imaging 
2017;36:1276‑86.

6.	 Kafieh  R, Rabbani  H, Kermani  S. A  review of algorithms for 
segmentation of optical coherence tomography from retina. J Med 
Signals Sens 2013;3:45‑60.

7.	 Garvin  MK, Abràmoff MD, Lee  K, Niemeijer  M, Sonka  M, 
Kwon  YH. 2‑D pattern of nerve fiber bundles in glaucoma 
emerging from spectral‑domain optical coherence tomography. 
Invest Ophthalmol Vis Sci 2012;53:483‑9.

8.	 Golabbakhsh  M, Rabbani  H. Vessel‑based registration of 
fundus and optical coherence tomography projection images of 
retina using a quadratic registration model. IET Image Process 
2013;7:768‑76.

9.	 Gorczynska  I, Srinivasan  VJ, Vuong  LN, Chen  RW, Liu  JJ, 
Reichel  E, et  al. Projection OCT fundus imaging for visualising 
outer retinal pathology in non‑exudative age‑related macular 
degeneration. Br J Ophthalmol 2009;93:603‑9.

10.	 Heiferman  M, Simonett  J, Fawzi  A. En face OCT imaging in 
retinal disorders. Retin Physician 2015;12:45.

11.	 Sayanagi  K, Gomi  F, Akiba  M, Sawa  M, Hara  C, Nishida  K. 
En‑face high‑penetration optical coherence tomography 
imaging in polypoidal choroidal vasculopathy. Br J Ophthalmol 
2015;99:29‑35.

12.	 Stopa  M, Bower  BA, Davies  E, Izatt  JA, Toth  CA. Correlation 
of pathologic features in spectral domain optical coherence 
tomography with conventional retinal studies. Retina 
2008;28:298‑308.

13.	 Wanek J, Zelkha R, Lim JI, Shahidi M. Feasibility of a method for 
en face imaging of photoreceptor cell integrity. Am J Ophthalmol 
2011;152:807‑140.

14.	 Murakami  T, Nishijima  K, Akagi  T, Uji  A, Horii  T, 
Ueda‑Arakawa N, et al. Optical coherence tomographic reflectivity 
of photoreceptors beneath cystoid spaces in diabetic macular 
edema. Invest Ophthalmol Vis Sci 2012;53:1506‑11.

15.	 Alasil  T, Ferrara  D, Adhi  M, Brewer  E, Kraus  MF, Baumal  CR, 
et  al. En face imaging of the choroid in polypoidal choroidal 
vasculopathy using swept‑source optical coherence tomography. 
Am J Ophthalmol 2015;159:634‑43.

16.	 Fard MA, Jalili  J, Sahraiyan A, Khojasteh H, Hejazi M, Ritch R, 
et  al. Optical Coherence Tomography Angiography in Optic Disc 
Swelling. Am J Ophthalmol 2018;191:116‑23.

17.	 Fard  MA, Sahraiyan  A, Jalili  J, Hejazi  M, Suwan  Y, Ritch  R, 
et  al. Optical coherence tomography angiography in papilledema 
compared with pseudopapilledema. Invest Ophthalmol Vis Sci 
2019;60:168‑75.

18.	 Hong Y, Makita S, Yamanari M, Miura M, Kim S, Yatagai T, et al. 
Three‑dimensional visualization of choroidal vessels by using 
standard and ultra‑high resolution scattering optical coherence 
angiography. Opt Express 2007;15:7538‑50.

19.	 Niemeijer  M, Garvin  MK, van Ginneken  B, Sonka  M, 
Abramoff  MD, editors. Vessel Segmentation In 3D Spectral Oct 
Scans of the Retina. Medical Imaging 2008: Image Processing. 
San Diego, California, United States: International Society for 
Optics and Photonics; 2008.

20.	 Jalili  J, Rabbani  H, Akhlaghi  M, Kafieh  R, Mehridehnavi  A, 
editors. Forming Projection Images from Each Layer of 
Retina Using Diffusion May Based Oct Segmentation. 
2012  11th  International Conference on Information Science.
Montreal, Canada: Signal Processing and their Applications; 2012.

21.	 Jalili  J, Rabbani  H, Mehri‑Dehnavi  A, Akhlaghi  M. Formation 
and fusion of projection images from 11 layers of retina using 
statistical indicators to obtain an image with appropriate contrast 
from the retinal depth. J Isfahan Med Sch 2013;31:255.

22.	 Zhang Y. Understanding image fusion. Photogramm Eng Remote 
Sens 2004;70:657‑61.

23.	 Sahu  DK, Parsai  M. Different image fusion techniques–a critical 
review. Int J Mod Eng Res 2012;2:4298‑301.

24.	 Thakare  VV, Katiyar  P. Review on various image fusion 
techniques. J Multimed Technol Recent Adv 2018;5:14‑7.

25.	 Ali F, El‑Dokany I, Saad A, Abd El‑Samie FE. Curvelet fusion of 
MR and CT images. Prog Electromagn Res 2008;3:215‑24.

26.	 Yelampalli PK, Nayak J, Gaidhane VH. Daubechies wavelet‑based 
local feature descriptor for multimodal medical image registration. 
IET Image Process 2018;12:1692‑702.

27.	 Miri  MS, Mahloojifar  A. Retinal image analysis using 
curvelet transform and multistructure elements morphology by 
reconstruction. IEEE Trans Biomed Eng 2011;58:1183‑92.

28.	 Starck  JL, Murtagh  F, Candès EJ, Donoho  DL. Gray and color 
image contrast enhancement by the curvelet transform. IEEE 
Trans Image Process 2003;12:706‑17.

29.	 Ma  J, Plonka  G. The curvelet transform. IEEE Signal Process 
Mag 2010;27:118‑33.

30.	 Arif M, Wang G. Fast curvelet transform through genetic algorithm 
for multimodal medical image fusion. Soft Comput 2019:1‑22.

31.	 Nencini  F, Garzelli  A, Baronti  S, Alparone  L. Remote 
sensing image fusion using the curvelet transform. Inf Fusion 
2007;8:143‑56.

32.	 Yang  J, Zhao  ZM. Multi‑focus image fusion method based on 
curvelet transform. Opto Electron Eng 2007;6:67‑71.

33.	 Yang  Y, Tong  S, Huang  S, Lin  P, Fang  Y. A  hybrid method for 
multi‑focus image fusion based on fast discrete curvelet transform. 
IEEE Access 2017;5:14898‑913.

34.	 Kafieh R, Rabbani H, Abramoff MD, Sonka M. Intra‑retinal layer 
segmentation of 3D optical coherence tomography using coarse 

[Downloaded free from http://www.jmssjournal.net on Sunday, April 26, 2020, IP: 10.232.74.22]



Jalili, et al.: Retinal projection images using curvelet-based image fusion

Journal of Medical Signals & Sensors | Volume 10 | Issue 2 | April-June 2020� 85

grained diffusion map. Med Image Anal 2013;17:907‑28.
35.	 Kafieh  R, Rabbani  H, Hajizadeh  F, Abramoff  MD, Sonka  M. 

Thickness mapping of eleven retinal layers segmented using 
the diffusion maps method in normal eyes. J  Ophthalmol 
2015;2015:259123.

36.	 Bhateja  V, Krishn  A, Sahu  A, editors. Medical Image Fusion in 
Curvelet Domain Employing PCA and Maximum Selection Rule. 
Proceedings of the Second International Conference on Computer 
and Communication Technologies. Udaipur India; Publisher: 
Association of computing machinery, New York, US, Springer; 
2016.

37.	 Yang  G, Li  M, Chen  L, Yu  J. The nonsubsampled contourlet 
transform based statistical medical image fusion using generalized 
Gaussian density. Comput Math Methods Med 2015;2015:262819.

38.	 Lahmiri  S. Wavelet low‑and high‑frequency components as 
features for predicting stock prices with backpropagation neural 
networks. J King Saud Univ Comput Inf Sci 2014;26:218‑27.

39.	 Kafieh R, Danesh H, Rabbani H, Abramoff M, Sonka M, editors. 
Vessel Segmentation in Images of Optical Coherence Tomography 
Using Shadow Information and Thickening of Retinal Nerve Fiber 
Layer. 2013 IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP), Vancouver, Canada. 2013. p. 
1075-9.

40.	 Hood  DC, Fortune  B, Arthur  SN, Xing  D, Salant  JA, Ritch  R, 
et  al. Blood vessel contributions to retinal nerve fiber layer 
thickness profiles measured with optical coherence tomography. 
J Glaucoma 2008;17:519‑28.

41.	 Yang S, Wang M, Jiao L, Wu R, Wang Z. Image fusion based on a 
new contourlet packet. Inf Fusion 2010;11:78‑84.

42.	 Alipour  SH, Houshyari  M, Mostaar  A. A  novel algorithm 
for PET and MRI fusion based on digital curvelet transform 
via extracting lesions on both images. Electron Physician 
2017;9:4872‑9.

43.	 Singh  R, Khare  A. Multiscale medical image fusion in wavelet 
domain. ScientificWorldJournal 2013;2013:Article ID: 521034.

BIOGRAPHIES

Jalil Jalili received his BSc, Msc and PhD 
degrees all in Biomedical Engineering 
(bioelectrics) from Science & 
Research Branch of Islamic Azad University 
(2009), and Tehran University of Medical 
Sciences (2018, highest honor),  
respectively. His main research interests are 
medical image analysis/processing, multi-

resolution transforms and biomedical optics including 
implementation/construction of retinal imaging systems.

Email: jalil_jalili_am@yahoo.com 

Hossein Rabbani received his BSc degree 
in Electrical Engineering (Communications) 
from Isfahan University of Technology in 
2000 with the highest honors, and his MSc 
and PhD degrees in Bioelectrical Engineering 
in 2002 and 2008, respectively, from 
Amirkabir University of Technology. In 
2007 he was with Queen's University, as a 

Visiting Researcher, in 2011 with University of Iowa, as a 
Postdoctoral Research Scholar, and in 2013-2014 with Duke 
University as a Postdoctoral Fellow. He is now a professor in 
Biomedical Engineering Department and Medical Image & 
Signal Processing Research Center (MISP), Isfahan University 
of Medical Sciences, Isfahan, Iran, and Editor in-Chief of 
Journal of Medical Signals and Sensors (JMSS). His main 
research interests are medical image analysis and modeling, 
statistical (m-D) signal processing, sparse transforms, and 
image restoration.

Email: h_rabbani@med.mui.ac.ir

Alireza Mehri Dehnavi received BSc in 
Electrical Engineering from Isfahan University 
of Technology in 1988, MSc of Engineering in 
Measurement and Instrumentation from Indian 
Institute of Technology Roorkee in 1992 and 
PhD in Medical Engineering from Liverpool 
University in 1996. He is a Professor of 
Biomedical Engineering in School of 

Advanced Technologies in Medicine of Isfahan University of 
Medical Sciences. His research interests are medical optics, 
devices and signal processing.

Email: mehri@med.mui.ac.ir

Rahele Kafieh  received her BSc in 
Bioelectrical Engineering at Sahand 
University of Technology (2004)  and 
completed her Msc and PhD in Bioelectrical 
Engineering at Isfahan University of Medical 
Sciences (2008 and 2014).  She is Assistant 
Professor at School of Advanced 
Technologies in Medicine, Isfahan University 

of Medical Sciences, Isfahan, Iran and guest researcher at 
Neurocure Clinical Research Center, Charite University, Berlin, 
Germany. Her research is concentrated on biomedical image 
analysis, problems in area of graph based image analysis, time-
frequency methods, deep learning and image segmentation.

Email: r_kafieh@yahoo.com

Mohammad Reza Akhlaghi is an Associate 
Professor in Department of Ophthalmology, 
Isfahan University of Medical Sciences, 
Isfahan, Iran. He received his VitreoRetinal 
Fellowship in 2006 from the Tehran 
University of Medical Sciences. 

Email: akhlaghi@med.mui.ac.ir

[Downloaded free from http://www.jmssjournal.net on Sunday, April 26, 2020, IP: 10.232.74.22]


