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Abstract
Background: Radiotherapy is a main method for the treatment of breast cancer. This study aimed 
to measure the absorbed dose of thyroid gland using Gafchromic EBT2 film during breast cancer 
radiotherapy. In addition, the relationship between the absorbed dose and thyroid hormone levels was 
evaluated. Methods: Forty‑six breast cancer patients, with the age ranged between 25 and 35 years, 
undergoing external radiotherapy were studied. The patients were treated with 6 and 18 MV X‑ray 
beams, and the absorbed thyroid dose was measured by EBT2 film. Thyroid hormone levels, 
thyroid‑stimulating hormone (TSH), triiodothyronine (T3), and thyroxin (T4), were measured before 
and after the radiotherapy. Pearson’s, Spearman’s, and Chi‑square tests were performed to evaluate 
the correlation between the thyroid dose and hormone levels. Results: The mean thyroid dose 
was 26  ±  9.45 cGy with the range of 7.85–48.35 cGy. There were not any significant differences 
at thyroid hormone levels between preradiotherapy and postradiotherapy  (P  >  0.05). There was 
a significant relationship between increased thyroid absorbed dose and changes in TSH and T4 
levels (P < 0.05), but it was not significant in T3 level (P = 0.1). Conclusion: Regarding the results, 
the thyroid absorbed dose can have an effect on its function. Therefore, the thyroid gland should be 
considered as an organ at risk in breast cancer radiotherapy.
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Introduction
Breast cancer is one of the most common 
types of cancer among women worldwide.[1,2] 
There are some methods for the treatment of 
breast cancer, including surgery, radiotherapy, 
chemotherapy, and hormone therapy.[1,3,4] 
Given the long‑term advantages, radiotherapy 
has been assessed as the primary treatment 
modality in most clinics for breast 
cancer.[1,2,5] In this modality, ionizing radiation 
can destroy the cancerous cells or change the 
genes to terminate cellular growth.[6]

Although technological advances have led 
to major improvements in the radiation 
therapy of breast cancer, adverse effects 
such as increased exposure to ionizing 
radiation have been reported during 
the process of treatment of benign and 
malignant tumors.[4,7]

Radiation dose measurements of out‑of‑field 
organs, including lung, heart, ipsilateral 

breast and thyroid as organ at risk  (OARs), 
during breast radiotherapy are crucial.[7,8] 
Thyroid is one of the OARs during breast 
cancer radiotherapy; therefore, the 
probability of malignancies in this organ 
increases the following radiotherapy.[9‑11]

Several studies have shown that there are 
some dosimetric devices for measuring 
radiotherapy doses.[11‑13] Gafchromic™ films 
have lots of advantages, and they are widely 
used in radiotherapy, for example, to verify 
treatment planning systems and evaluate 
two‑dimensional absorbed dose maps.[13‑15]

In a study, Kourinou et  al.[11] investigated 
the scattered out‑of‑field dose in some 
OARs such as thyroid, lungs, and breast 
during head‑and‑neck radiotherapy with 
thermoluminescent dosimeter  (TLD). In 
another study by Lee et al.,[7] the secondary 
cancer risk of breast cancer radiotherapy in 
some OARs including thyroid, brain, and 
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eyes were evaluated by TLD dosimeter and also compared 
in different radiotherapy techniques.

Subclinical thyroid disease is defined by high or low serum 
concentrations of thyroid‑stimulating hormone  (TSH), 
triiodothyronine  (T3), and thyroxin  (T4), and they have a 
quite wide range due to analytical and biological variation 
in human; therefore, the assessment of hormone changes 
during radiation and subsequent to it, is very important.[16]

Due to the lack of studies on the thyroid absorbed dose 
by EBT2 films as a high sensitivity dosimeter, the current 
study aimed to measure the thyroid absorbed dose using 
EBT2 films during radiotherapy and to evaluate subsequent 
thyroid function in 46 breast cancer patients.

Materials and Methods
Gafchromic™ EBT2 film, irradiation, and calibration 
process

In the present study, Gafchromic™ EBT2  (International 
Specialty Products, Wayne, NJ, USA) film with dimensions 
of 8 × 10 inch was used. EBT2 films have several advantages 
compared to the previous ones, including better spatial 
resolution, energy and dose rate independence, density close 
to soft tissue or water, and less sensitivity to room light.[17‑19] 
Furthermore, they do not need the conventional chemical 
processing and can be shaped to any phantoms.[18]

This type of film includes an active layer  (30 μm), a 
thin topcoat  (5 μm), and polyester substrate  (175 μm). 
Furthermore, the coated layers are overlaminated with 50 
μm polyester and a pressure‑sensitive adhesive.[20]

The films were exposed using 6 MV X‑rays from Varian linac 
2100EX (Varian Medical Systems, Palo Alto, CA, USA). For 
the calibration process of the films, they were positioned at the 
depth of maximum absorbed dose in the slab phantom (PTW, 
Freiburg, Germany). Ten 30 cm  ×  30  ×  1 cm acrylic sheets 
were set underneath the films.[21] Irradiation was done using 
10 cm  ×  10 cm field at a source to surface distance of 100 
cm. In addition, to validate the data obtained by a film, a 
farmer type 30,013 ionization chamber with sensitive volume 
of 0.6 cc (PTW, Freiburg, Germany) was used at the same 
condition of the film irradiation. All measurements were 
performed following the American Association of Physicists 
in Medicine Task Group‑55 reports.[22]

Scanning and analysis of the films

To obtain the calibration curve, the film pieces were 
irritated with different dose levels as follows: 25, 50, 100, 
150, 200, 250, and 300 cGy to plot the calibration curve.

The films were cut into pieces of dimensions 2 cm × 3 cm 
and marked to indicate the film orientation. Furthermore, to 
evaluate the statistical error, three pieces of the film were 
randomly used for each radiation dose. Three unexposed 
film pieces were used to obtain the background fog.

The irradiated films were scanned with the Microtek 
9800XL scanner (Microtek Inc. Santa Fe Spring, CA, USA) 
48 h after irradiation, to stabilize the color, in the landscape 
mode.[23] All of the films were scanned with a 127‑dpi spatial 
resolution in transmission scan mode in three colors, 48 bit 
RGB, and images were stored in Tagged Image File Format.

The scanned images were entered into ImageJ software 
(National Institutes of Health, Bethesda, Maryland), and 
the pixel values of the images were measured. About 2016 
pixels (6 mm × 21 mm), located in the center of the films, 
were selected, and the mean value was calculated. Finally, 
the calibration (dose‑response) curve of films was obtained 
based on the proposed method by Devic.[23]

Patient selection and treatment planning

Forty‑six consecutive women with breast cancer  (T1b‑T3 
stages and node‑positive) undergoing breast‑conserving 
surgery were incorporated in this study from February 
to December 2018. The average age of patients was 
32  years  (25–35  years), and the majority of the cohort 
(37  patients; 80.4%) had left‑sided breast cancer. The 
patients were referred to Reza Radiation Oncology 
Center  (Mashhad, Iran). The images for planning were 
obtained by a computed tomography (CT) scanner (Siemens 
Somatom Plus16; Siemens Healthineers, Munich, Germany) 
in the standard supine position during free breathing.

Radiation sensitive organs including lungs, spinal cord, 
larynx, heart, and thyroid gland, the gross tumor volume 
(GTV) and clinical tumor volume  (CTV) were contoured 
by a radiation oncologist on the CT images. The planning 
target volume  (PTV) was contoured regarding the borders 
proposed by the guidelines of the Radiation Therapy 
Oncology Group  (RTOG) on the CT slices.[24] RT Dose 
PLAN treatment planning system  (Math Resolutions, 
Columbia, USA) was used for three‑dimensional conformal 
radiotherapy planning of patients.

In our study, all of the patients underwent partial breast 
surgery; therefore, there was no GTV, and the whole breast 
considered as CTV. The PTV consisted of the CTV plus a 
5‑mm margin to consider breathing motion and treatment 
setup uncertainties, and the borders of the PTV were 
chosen regarding the borders proposed by the guidelines of 
the RTOG.[24]

The 50 Gy prescribed dose was delivered to the patients in 
25 fractions. The patients were irradiated by 6 and 18 MV 
X‑rays using Varian Clinac 2100EX linear accelerator.

Two opposed tangential fields  (medial and lateral) 
were planned to encompass the breast. Furthermore, 
two supraclavicular fields  (anterior and posterior) were 
used to deliver the prescribed dose to the level I‑II and 
supraclavicular lymph nodes [Figure 1]. Different weighing 
of the anterior and posterior fields was used to attain higher 
homogeneity and conformity. Wedges  (15°) were used to 
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improve the dose homogeneity. Dose‑volume histograms 
were assessed to control the PTV coverage and OARs 
dosimetric parameters of each plan.

Thyroid surface absorbed dose measurement

The thyroid region for each patient was marked based on 
the CT images by an oncologist. The EBT2 film pieces 
were placed at three or four different positions  (based on 
the thyroid size) on the neck for measuring thyroid surface 
absorbed dose. The scanned image of exposed film pieces 
was entered into ImageJ software to obtain the absorbed 
dose regarding the obtained calibration curve.

Evaluation of thyroid function

Thyroid function before and after radiotherapy 
(3 months later) was evaluated by measuring TSH, T3, and 
T4 levels in 46  patients. Due to differences in laboratory 
ranges of the hormones, the relative values were calculated 
for statistical analyses and comparisons.

Statistical analysis

The correlation between the variables was evaluated using 
Pearson’s test, Spearman’s test, and t‑test with version  11.5 of 
SPSS software (SPSS Inc., Chicago, Illinois, US). Furthermore, 
Chi‑square test was performed to determine the significant of the 
correlations. P < 0.05 was considered as statistically significant.

Results
The mean thyroid volume was 10.2 cm3  (9.5–10.5). After 
obtaining the films’ calibration curve from optical density data 
of red channel of scanned images, thyroid gland absorbed dose 
was calculated. Figure 2 shows the thyroid mean absorbed dose 
of each patient in one treatment session. The mean thyroid 
absorbed dose was 26 ± 9.45 cGy with the range of 7.85–48.35 
cGy. Furthermore, it is notable that the thyroid gland surface 
absorbed dose in 67% of patients was 20–40 cGy.

The mean levels of thyroid hormones before 
radiotherapy were as follows: TSH  =  2.35  ±  1 µIU/mL 
(0.3–6.32), T3  =  1.35  ±  0.44 ng/mL (0.45–2.38), and 

T4 = 9.6 ± 1.7 μg/dL (3.9–12.3), and the same values after 
radiotherapy were as follows: TSH = 2.27 ± 0.91 µIU/mL (0.3–
4.6), T3 = 1.36 ± 0.41 ng/mL (0.31–2.11), and T4 = 9.7 ± 2.1 
μg/dL (1.57–12.5). According to obtained P value data from 
Chi‑square test  (0.686 for TSH, 0.152 for T3, and 0.146 
for T4), there is not any correlation between the thyroid 
hormone levels before and after radiotherapy.

After radiotherapy, the mean level of TSH decreased, and 
the highest variation was 5.83 µIU/m, but the mean levels 
of T3 and T4 increased, and the maximum variations were 
0.79 ng/mL and 7.86 μg/dL, respectively. Table 1 indicates 
the variations of the hormone levels in all patients.

There was a significant correlation between the absorbed 
dose and TSH  (P  =  0.03) and T4  (P  =  0.02) levels. 
However, there was no significant correlation between the 
absorbed dose and the change of T3 level (P = 0.1).

Discussion
Since in radiotherapy techniques, peripheral radiation 
can damage the out‑of‑field organs, the minimization of 
radiation‑induced damages is a major concern in treatment 
planning.[8]

One of the OARs during breast radiotherapy is thyroid 
gland.[7,11] Thyroid cancer can occur after radiation incidence or 
during diagnostic and therapeutic procedures;[8,25] therefore, the 
study of the dose received by this organ is an important issue.

In this study, we measured the thyroid absorbed dose, during 
radiotherapy, by EBT2 film in patients with breast cancer. 
Furthermore, thyroid hormone levels  (TSH, T3, and T4) 
were compared before and after the radiotherapy.

Our results showed that the mean thyroid absorbed dose 
was 26  ±  9.45 cGy. Lee et al.[7] and Momeni et al.[26] 
measured the thyroid secondary cancer risk after breast 
cancer radiotherapy.  In their researches, the mean thyroid 
absorbed dose was 5 cGy–1.3 cGy, respectively, obtained 

Figure  2: Mean absorbed dose of thyroid of 46 studied patients in 
one‑session treatment

Figure  1: Two opposed tangential and supraclavicular fields used in 
three‑dimensional conformal radiotherapy of breast
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by TLD dosimeter. The different results may have resulted 
from variations in dosimeter, treatment planning system, 
and thyroid volume.

The obtained absorbed dose values of thyroid in our study 
were in the range from 7.85 to 48.35 cGy. This variation 
can result from different tumor volume, the distance of 
the tissues from the radiation field, the positions of the 
dosimeters, and different thyroid volumes.

After radiotherapy, the mean TSH decreased, while the mean 
T4 and T3 experienced an increase; however, this variation 
was not significant in comparison with measured levels 
before radiotherapy. In line with the finding of this study, 
Alterio et  al.[16] reported a slight statistically significant for 
TSH variation  (P  =  0.049) but no variation for T3 and T4 
values before and after radiotherapy among 14 patients.

Radiotherapy is a powerful inducer of inflammatory 
changes in endothelial cells.[27] It can lead to some 
metabolic effects and systemic inflammation which can 
cause the development of an inflammatory phenotype of 
the plaque,[28] which is the result of the local effects of 
the irradiation inducing arterial pathophysiology.[29] Soon 
after the process of radiotherapy, inflammatory diseases 
involving the thyroiditis may be caused. Thyroid hormones 
T3 and T4 increase and TSH decrease. Moreover, in this 
situation, T4 level increases more than the T3.[29]

There was a significant correlation between the absorbed dose and 
the TSH and T4 levels. Yoden et al.[30] showed that there is a risk 
for hypothyroidism (high level of TSH and/or low level of T3 and/
or T4) when thyroid received dose is  ≥30 Gy, and also this risk 
is possible for thyroid dose ranges between 10 and 30 Gy. Other 
studies have reported that the relative risk of hypothyroidism is 
40% for patients receiving 30–45 Gy and 12%–27% for those 
receiving less[31,32] in patients treated for Hodgkin’s disease. In our 
study, the mean total thyroid absorbed dose (at 25 sessions) was 
6.5 ± 2.36 Gy; therefore, there is a potential risk of hypothyroidism.

Tunio et  al.[33] evaluated the dose distribution at the thyroid 
gland during breast cancer patients treated by supraclavicular 
radiotherapy technique. They expressed that the risk of 
hypothyroidism depends on the thyroid gland volume and 
follow‑up duration and can be minimized using thyroid shield.

One of the limitations in our study was the short period 
thyroid hormones investigation after radiotherapy.

It is not entirely clear, the relationship between the absorbed 
dose values and thyroid hormones. Furthermore, considering 
the effect of different treatment techniques on thyroid dose 
values, the results of this study are not expandable to other 
treatment planning. Therefore, it is suggested that additional 
researches should be carried out with various treatment 
techniques to determine the correlation of absorbed dose, 
secondary cancer risks, and hormone level variations at 
thyroid gland during varying periods.

Table 1: The variation of the thyroid hormone levels thyroid‑stimulating hormone, triiodothyronine, and thyroxin 
before and after 3‑month radiotherapy

Patient TSH (µIU/mL) T3 (ng/mL) T4 (μg/dL) Patient TSH (µIU/mL) T3 (ng/mL) T4 (μg/dL)
1 −0.19 0.102 0.91 24 1.37 0.01 −1.75
2 0.94 −0.62 −5.6 25 0.02 0.07 −1.24
3 0.07 −0.51 −3.56 26 1.44 −0.04 0.35
4 0.8 0.09 −1.62 27 0.3 −0.65 0.13
5 0.07 0.13 −2.09 28 −0.06 0.33 −0.8
6 −2.15 −0.73 −2.27 29 0.62 0.2 1.42
7 0.37 0.46 1.45 30 −0.06 0.19 0.71
8 5.83 0.38 −0.83 31 −0.23 −0.29 −0.87
9 0.03 0.29 −0.73 32 0.8 0.08 −1.69
10 2.15 0.24 0.7 33 0.28 −0.09 1.85
11 0.19 −0.79 0.68 34 −0.27 −0.18 1.17
12 −0.25 0.14 −0.8 35 −0.26 0.32 −1.53
13 0.69 0.49 2.4 36 0.23 −0.14 1.47
14 0 0.09 1 37 0.02 0.4 0.9
15 −0.6 −0.1 −0.8 38 −0.43 −0.39 1.3
16 0.6 0.66 −0.9 39 −0.19 −0.13 −1.32
17 0.06 0.02 0.66 40 0.04 0.14 −2.5
18 −0.43 −0.25 −0.6 41 −0.45 −0.13 −0.5
19 −0.09 −0.14 −1.52 42 −0.52 0.3 4.66
20 −0.24 −0.25 −1.15 43 −0.15 −0.17 0.78
21 −0.15 0.06 −0.55 44 −0.53 −0.11 3.04
22 −1.03 −0.56 −2.47 45 −1.45 −0.16 1.33
23 −1.49 0.07 0.18 46 −0.44 0.54 7.86
TSH=Thyroid‑stimulating hormone
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Conclusion
In the current study, the thyroid absorbed dose and variation 
of thyroid hormones attributable to breast irradiation 
were evaluated for 46 breast cancer patients. Our finding 
showed that there was a significant relationship between 
the increased thyroid absorbed dose, which measured using 
EBT2 films, and changes in TSH and T4 levels. Therefore, 
the thyroid gland should be considered as OARs in all 
breast cancer radiotherapies.
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