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Abstract
Background: Relative to classical methods in computed tomography, iterative reconstruction 
techniques enable significantly improved image qualities and/or lowered patient doses. However, 
the computational speed is a major concern for these iterative techniques. In the present study, 
we present a method for fast system matrix calculation based on the line integral model (LIM) 
to speed up the computations without compromising the image quality. In addition, we develop 
a hybrid  line–area integral model (AIM) that highlights the advantages of both LIM and AIMs. 
Methods: The contributing detectors for a given pixel and a given projection view, and the length 
of corresponding intersection lines with pixels, are calculated using our proposed algorithm. 
For the hybrid method, the respective narrow‑angle fan beam was modeled by multiple equally 
spaced lines. The computed system matrix was evaluated in the context of reconstruction using the 
simultaneous algebraic reconstruction technique (SART) as well as maximum likelihood expectation 
maximization (MLEM). Results: The proposed LIM offers a considerable reduction in calculation 
times compared to the standard Siddon algorithm: 2.9 times faster. Differences in root mean square 
error and peak signal‑to‑noise ratio were not significant between the proposed LIM and the Siddon 
algorithm for both SART and MLEM reconstruction methods (P > 0.05). Meanwhile, the proposed 
hybrid method resulted in significantly improved image qualities relative to LIM and the Siddon 
algorithm (P < 0.05), though computations were 4.9 times more intensive than the proposed LIM. 
Conclusion: We have proposed two fast algorithms to calculate the system matrix. The first is 
based on LIM and was faster than the Siddon algorithm, with matched image quality, whereas the 
second method is a hybrid LIM–AIM that achieves significantly improved images though with its 
computational requirements.
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Introduction
Given the inherent risk of ionizing radiation, 
reduction of imaging doses in computed 
tomography (CT) imaging is highly 
desirable.[1‑4] Today, iterative reconstruction 
techniques are one of the most important 
strategies for reducing radiation dose in 
CT. Indeed, compared to conventional 
methods such as filtered back projection, 
iterative reconstruction techniques have 
significant potential to this end.[4‑8] Despite 
their advantages, the critical disadvantage 
of iterative methods is the computational 
speed of image reconstruction.[9]

Let us formulate the CT image reconstruction 
problem in a linear algebra framework:

AX = P (1)

Where X is the unknown image of N = n2 
pixels, P is the measured projection 
data of M = v*d rays (v = number of 
projection views and d = number of 
detector elements), and A is the system 
matrix (M × N) that relates the image space 
to the projection space. The columns of 
the system matrix correspond to the pixels 
of the reconstructed image, and the rows 
are the measured projections. Hence, each 
element, aij (sometimes called weighting 
coefficient), of the matrix represents the 
contribution of pixel j to ray integral i. 
The system matrix has large dimensions, 
and working with this very large matrix 
challenges the reconstruction task. 
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Moreover, an immense amount of memory may be required 
to save the system matrix.[10,11] To tackle this, computations 
are commonly performed on the fly, involving forward and 
back projections (which are transpose operations of one 
another). These operations are the most time‑consuming 
components in iterative reconstruction algorithms.[9,11‑16]

Two different models have been used to perform the 
projection operations on CT systems: line integral 
model (LIM) and area integral model (AIM). In the former, 
the detector is considered as a point and so the rays are 
effective of zero width, connecting the source to the center 
of the detector cell. One way to do LIM is to compute the 
intersection length between the jth pixel with the ith ray. 
Another approach is to do bilinear or trilinear interpolation 
in the line model which is like calculating the perpendicular 
distance between the center of the pixel and the line.[17] 
For the LIM approach, an effective method was proposed 
by Siddon.[18] In this algorithm, a series of horizontal and 
vertical lines form a grid. Then, the intersection points of 
a line (ray) with grid limits are calculated. Two arrays of 
intersection points are formed: one for intersection with 
the horizontal lines and the other for the vertical lines. The 
mentioned two arrays are then merged into one array and 
sorted, which are used to calculate the intersection length 
and pixel indices.

In the AIM, the rays are considered as a narrow‑angle 
fan beam that connects the source to the detector cell and 
computes the intersection area between the jth pixel and 
the ith ray.[19] The LIM has low computational complexity 
but lower image quality due to undersampling and aliasing 
problems. The AIM is much closer to a real CT system 
and overcomes the sampling problems but has high 
computational complexity.

In the present study, we present a method to speed up 
the computation of projection operations of the system 
matrix without compromising the image quality. Here, 
we considered the two‑dimensional (2D) fan‑beam CT 
geometry and developed our method based on LIM. 
However, our work could be extended to finite‑size beam 
and 3D cone‑beam CT geometry. Furthermore, using 
this method, we developed a hybrid LIM–AIM that 
approximates the area integral by averaging multiple line 
integrals. Finally, to evaluate the performance of the new 
methods in terms of both speed and image qualities, the 
computed system matrix was used to reconstruct images 
of a numerical phantom, using the simultaneous algebraic 
reconstruction technique (SART) and the maximum 
likelihood expectation maximization (MLEM) for both 
noiseless and noisy data. We are going to implement the 
proposed hybrid method in the context of micro‑CT in the 
next study.

Methods
System matrix calculation method

For simplicity of presentation, we assumed a 
nonoverlapping uniform pixel model and fan‑beam 
geometry with zero width line beam that connects the 
X‑ray (point) source to the center of the detector cell. The 
idea is to consider only the contributing detectors at each 
projection view. More elaborately put, for a given pixel 
and a given projection view, the contribution from the 
pixel only comes from the detectors that are bounded by 
the beams passing through the entire pixel [Figure 1]. To 
implement this in the algorithm, we need to calculate two 
angles. The first angle α is the angle between the lines that 
pass through pixel boundaries such that cover the whole 
pixel. The second angle β is the angle between the line 
pass through the pixel center and the line which connects 
the source to the first detector cell [Angles α and β have 
been shown in Figure 1]. To get this angle, we need to 
know the pixel center coordinates. As focal spot rotates 
around the object, the pixel center coordinates change with 
rotation. As such, it needs to calculate the new pixel center 
coordinates in the new coordinate system at each projection 
view. In the original coordinate system that is considered 
here, the detector is perpendicular to the y‑axis. Finally, the 
new pixel center coordinates are:

 cos  sin 
 sin  cos 

rot cent cent

rot cent cent

x x y
y x y

θ θ
θ θ

= −
= +

 (2)

Where xrot and yrot are the new pixel center coordinates 
and xcent and ycent are the pixel center coordinates in the 
original coordinate system and θ is the projection view. 
Now, we can find the lower and upper index bounds 
of the contributing detectors. The lower index bound is 
determined by subtracting half of the angle α from the 
angle β and the upper index bound by adding instead of 
subtracting. Therefore, the lower and upper index bounds 
of the contributing detectors are:

Figure 1: Schematic representation of the proposed algorithm: 
(a) All projection rays for a pixel and a given angle of projection, (b) the 
contributing detectors are bounded by the beams passing through the 
entire pixel

ba
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Where arc_det is the angle of the detector cell’s arc and is 
calculated by dividing the fan angle to the number of detector 
elements. After finding the contributing detectors, which are 
often only a few, the length of the intersection line from these 
detectors with the pixel should be calculated. At last, we can 
calculate the weighting coefficients (system matrix elements) 
by normalizing the intersection lengths.

The above calculation was related to the curve detectors, 
as shown in Figure 1. We can develop our method for the 
flat‑panel detectors. The lower and upper index bounds of 
the contributing detectors for the flat‑panel detectors are:
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Where size_pix is the pixel size, size_det is the detector 
element size, and d is the number of detector elements. SID 
and SDD are the source to isocenter distance and source to 
detector distance, respectively.

As mentioned above, for the Siddon algorithm, the 
intersection points of a ray with horizontal and vertical 
lines (the pixel grid) are calculated separately and form 
two intersection arrays. This is needed to merge these two 
arrays and sort them to calculate the intersection length. 
In addition, multiple operations such as multiplication, 
division, and integer rounding should be performed to 
calculate the pixel indices. On the contrary, in our method, 
the intersection length between a pixel and a ray was 
calculated for a given pixel and a given projection view, 
so no intersection point arrays are formed to require 
merging and sorting. Furthermore, in the presented 
algorithm, merely addition and subtraction operations are 
used to calculate the pixel indices which are simpler than 
operations used in the Siddon algorithm. Therefore, the 
presented algorithm is faster than the Siddon algorithm 
mainly due to its simplicity and decreased computational 
effort. In addition, this is a general method to speed up 
system matrix calculation by considering the contributing 
detectors. As such, unlike Siddon algorithm, it could 
be easily generalized to the fan‑beam geometry with a 
finite‑beam size and could be applied to other methods 
based on AIM. Moreover, the proposed algorithm could be 
extended to the 3D geometry and is highly parallelizable.

As the major part of the system matrix consists of zeroes, 
it is possible to store this matrix as a sparse matrix. In a 

sparse matrix, only the nonzero elements and its indices 
are stored. Thus, significantly less storage is required, and 
the data processing will proceed faster. For this reason, 
we define the system matrix as a sparse matrix in the 
algorithm (equally applicable to our method as well as 
Siddon method).

Hybrid line–area integral model

In the AIM, the intersection area of a narrow‑angle fan 
beam with pixels is calculated, which is an improved 
approximation, and results in better image quality but 
has more computational complexity. In the LIM, the 
intersection length of a beam with pixels is calculated, 
which is simpler but has lower accuracy. Therefore, we 
have developed a hybrid method that used the advantages 
of both LIM and AIM and approximates the area integral 
by averaging multiple line integrals. Line integral 
calculations to approximate the area integral have less 
computational complexity than the accurate calculation of 
area integral. On the other hand, approximating the area 
integral is more closely related to real CT imaging than 
the line integral. As such, that method has the potential 
to combine the advantages of LIM and AIM. More 
elaborately put, a narrow fan beam can be modeled by 
multiple equally spaced lines that connect the source to one 
detector cell [Figure 2]. In this way, the area integral can 
be approximated by averaging the line integrals considered 
for a narrow fan beam. The system matrix element can be 
obtained as follows:

,
1

,

( )
n

i j t
t

i j

l
a

n
==
∑

 (5)

Where n is the number of lines per detector and li, j is the 
weighting coefficient of each line. The number of lines needed 
to model the beam is critical to the accuracy of the system 
matrix and therefore to image quality. Using more lines per 
detector is more closely related to reality. However, increasing 

Figure 2: Schematic representation of modeling the finite‑size beam with 
multiple equally spaced lines in the proposed hybrid line–area integral 
model: (a) zero width beam, and (b) finite‑size beam

ba
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transmission datum iI


 was simulated from the noise‑free 
transmission datum, the corresponding noisy projection 
datum pi was obtained by the logarithm transform of the 

noisy transmission datum, 
0

log ( )i
i

i

I
p

I
=  . For noisy data, 

five different Poisson noise levels were used such that 
from level 1 to level 5 noise increases. The computations 
are performed for a typical clinical CT scanner with 
fan‑beam geometry. The source‑to‑isocenter distance was 
540 mm, and source‑to‑detector distance was 950 mm. 
The projection view number was 720. For each projection 
view, 512 detector cells were distributed with equal 
distance, which defines a field of view of 250 mm. The 
detector element size was 1.8 mm. The pixel size of the 
reconstructed image was varied among 1.9, 0.98, and 
0.49 mm; correspondingly, the reconstructed image was 
128 × 128, 256 × 256, and 512 × 512, respectively. All the 
algorithms were implemented with MATLAB/R2015a and 
tested on a PC platform (Intel i7‑6700 Processor, 8.0 GB 
memory, 3.4 GHz CPU). We measure the performance 
of the new algorithm in terms of time and reconstruction 
quality.

To evaluate the reconstructed image quality quantitatively, 
we used two of the most common metrics used to measure 
accuracy: root mean square error (RMSE) that detects 
large errors in a small number of pixels[24] and peak 
signal‑to‑noise ratio (PSNR).[25] The equations of these two 
metrics are as follows:

2

2
, ,1 1

( )n n
i j i ji jRMSE

I R
n

= =
−
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 (8)
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RMSE

 
 
 

=  (9)

Where Ii, j and Ri, j are the pixel values of the original and 
the reconstructed images, respectively, and MAXI is the 
maximum possible pixel value of the image.

To evaluate the spatial resolution of the reconstructed images, 
the modulation transfer function (MTF) was obtained. 
To compute the MTF, we first obtained the edge‑spread 
function (ESF) along the profile as indicated by the white 
line in Figure 3. Then, the line‑spread function (LSF) was 
calculated by the derivation of ESF. Finally, the MTF was 
obtained by applying the Fourier transform to the LSF and 
normalized the MTF such that MTF (0) = 1.

Results
System matrix calculation method

To assess computational efficiency, we evaluated our 
proposed algorithm and the popular Siddon algorithm for 
the fan‑beam geometry with different pixel sizes. Figure 4 
shows the computational performance of the two methods 
for different pixel sizes. From Figure 4, we can see that for 
128 × 128, 256 × 256, and 512 × 512 images, our method 

the number of lines per detector increases the computation 
time. Furthermore, the number of lines per detector depends 
on the detector element size: for the large detector element, 
more lines need to be considered. Therefore, to choose the 
number of lines per detector, we provide a trade‑off between 
computation time and image quality.

Image reconstruction method

To evaluate the performance of the proposed models, 
SART[20] and MLEM[21] were used to reconstruct the 
images. SART can be expressed as:

1
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Where k is the iteration number and λ is the relaxation 
parameter which is critical to the quality and speed of the 
reconstruction (here, we consider λ to be 0.1).

MLEM as a statistical iterative method which could be 
modeled the noise can be obtained as:

( 1)

ˆ ˆ
ˆ

k
jk i

j ij k
iij i j j

i j

x p
x a

a a x
+ = ∑∑ ∑  (7)

Where k is the iteration number.

Image quality assessment

We used the 2D Shepp–Logan head phantom[22] [Figure 3] 
to create the simulated projection data. The projection 
data were generated from the phantom analytically, 
using CT simulator data.[23] The noisy transmission data 
can be simulated as follows. Given the mathematical 
Shepp–Logan phantom, the line integral ip  was computed 
along the projection path or ray i. By the Lambert–Beer 
law, 0 exp ( )i i iI I p= − , and the knowledge of 0 51.0 10iI ≈ ×
in routine clinical studies, the mean Ii was calculated. Then, 
the Poisson noise was added to the mean Ii. After the noisy 

Figure 3: A Shepp–Logan phantom
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is, respectively, 3.5, 2.9, and 2.8 times as fast as the Siddon 
algorithm.

Table 1 presents quantitative comparisons of reconstructed 
images by two error metrics of RMSE and PSNR, using 
two reconstruction methods of SART and MLEM for 
both noiseless and noisy data. As we can see from the 
table, the proposed LIM produced similar error measures 
(both RMSE and PSNR) to Siddon. In other words, our 
proposed method obtained faster computations of the 
system matrix, with no compromise to image quality for 
two cases of noiseless and noisy data.

Hybrid line–area integral model

For the hybrid algorithm, Figure 5 shows the difference 
between the original image and the reconstructed 
image (using RMSE) versus the number of lines per 
detector. As we expected, modeling the beam with multiple 
equally spaced lines reduced the RMSE, so using hybrid 
method could improve image quality compared to the LIM. 
The figure also shows that the difference does not change 
dramatically using >5 lines per detector for a detector 
element size of 1.8 mm (i.e., almost 3 lines per 1 mm of 
the detector). As such, in our work, we chose 5 lines per 
detector to perform the hybrid method.

The results with our proposed hybrid algorithm are 
also presented in Table 1, indicating further improved 
quantitative performance. As we can see from the table, 
the differences of RMSE and PSNR between the proposed 

hybrid model and two other methods (the Siddon algorithm 
and the proposed LIM) are more evident in SART 
compared to MLEM.

In Figure 6, RMSE of the images reconstructed by 
SART (after 20 iterations for noiseless data and after 6 
iterations for noisy data) is shown as a function of the 
number of iterations for three system matrix calculation 
methods and both noiseless and noisy data. Figure 7 shows 
these results for the images reconstructed by MLEM 
(up to 50 iterations). As we can see in Figure 6b with the 
increase of iteration number, RMSE decreases and then 
increases due to the instability of the iterative reconstruction 
methods. We can also see that the hybrid method resulted 
in better image quality than two other methods during all 
iterations for both reconstruction methods. Moreover, we 
can see that with increase of the iteration number, the 
difference of the RMSE between three methods becomes 
more evident, and this is more obvious for SART compared 
to MLEM. The proposed LIM and the Siddon algorithm 
produced similar RMSE methods during all iterations for 
both reconstruction methods.

The graphical representation of Table 1 (for noisy data) is 
shown in Figures 8 and 9. Figure 8 shows the means (bars) 
and standard deviations (error bars) of RMSE values of 

Figure 4: The computation time of different sizes of the system matrix using 
the line integral model algorithm versus Siddon algorithm

Figure 5: Root mean square error versus number of lines per detector. 
Modeling a narrow fan beam using the proposed hybrid line–area integral 
model, decreasing the root mean square error, and improving the image 
quality

Table 1: Quantitative comparisons of the reconstructed images based on the Siddon algorithm, proposed line integral 
model, and hybrid methods

Noiseless data Noisy data
MLEM SART MLEM SART

RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR
Siddon 0.047 27.45 0.041 28.69 0.051±0.007 27.71±0.24 0.072±0.05 26.35±3.2
Proposed LIM 0.047 27.45 0.041 28.79 0.051±0.007 27.75±0.36 0.073±0.05 26.34±3.2
Proposed hybrid model 0.043 28.43 0.024 33.10 0.046±0.006 28.60±0.18 0.056±0.05 29.31±4.5
P values for last two rows ‑ ‑ ‑ ‑ 0.042 0.043 0.043 0.043
The results are shown for SART (after 20 iterations for noiseless data and after 6 iterations for noisy data) and for MLEM (after 50 iterations) for 
noiseless and noisy data. SART – Simultaneous algebraic reconstruction technique; MLEM – Maximum likelihood expectation maximization; 
RMSE – Root mean square error; PSNR – Peak signal‑to‑noise ratio; LIM – Line integral model
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the images reconstructed by SART (up to 6 iterations) 
and MLEM (up to 50 iterations) at five different Poisson 
noise levels for three system matrix calculation methods. 
Using the pairwise Wilcoxon test, significant differences 
in RMSE were seen in the proposed hybrid model 
compared to the proposed LIM and the Siddon algorithm 
for both reconstruction methods (P < 0.05), whereas 

differences were not significant between the proposed 
LIM and the Siddon algorithm for both reconstruction 
methods (P > 0.05). The same results were obtained for 
PSNR values shown in Figure 9.

To evaluate the spatial resolution of the reconstructed 
images, the MTF curves were utilized. The measured MTF 
curves of images reconstructed by SART (after 20 iterations 
for noiseless data and after 6 iterations for noisy data) are 
shown in Figure 10 for three system matrix calculation 
methods and both noiseless and noisy data. Figure 11 
shows these results for the images reconstructed by 
MLEM (up to 50 iterations). As illustrated in this figure, the 
proposed hybrid model can yield a better spatial resolution 
than the LIM methods for both noiseless and noisy data 
and so could preserve more edge details. Moreover, the 
results demonstrate that the spatial resolution is almost 
the same for the proposed LIM and the Siddon algorithm. 
As we expected, the spatial resolution is better for 
noiseless data than the noisy data for both reconstruction 
algorithms (SART and MLEM), and this is more evident 
for SART that is more sensitive to the noise.

Figures 12 and 13 present visual comparisons of 
reconstructed images for the Shepp–Logan phantom using 
SART (up to 6 iterations) and MLEM (up to 50 iterations), 

Figure 8: Root mean square error of the images reconstructed by 
simultaneous algebraic reconstruction technique (after 6 iterations) and 
maximum likelihood expectation maximization (after 50 iterations), using 
three system matrix calculation methods of Siddon algorithm, the proposed 
line integral model, and hybrid model. The bars show the mean value of 
root mean square error for five different noise levels, while the error bars 
indicate the standard deviation

Figure 6: Root mean square error of the images reconstructed by simultaneous algebraic reconstruction technique versus the number of iteration, using 
Siddon algorithm, the proposed line integral model, and hybrid model: (a) Noiseless data up to 20 iterations and (b) noisy data up to 6 iterations

ba

Figure 7: Root mean square error of the images reconstructed by maximum likelihood expectation maximization versus the number of iterations 
(up to 50 iterations), using the Siddon algorithm, the proposed line integral model, and hybrid model: (a) Noiseless data and (b) noisy data

ba
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respectively. The proposed LIM and the Siddon algorithm 
depict fluctuations in the uniform region. On the contrary, 
the proposed hybrid method is much closer to that of the 
original phantom. The reconstruction results of the three 
methods appear visually comparable, though quantitatively, 
as shown in Table 1, the performance was best for our 
proposed hybrid method.

The profiles along horizontal sharp edge as shown in 
Figures 14 and 15 demonstrated that the reconstructed 
images using the proposed hybrid method have a better 
spatial resolution than that of the proposed LIM and the 
Siddon algorithm.

Discussion
In this work, two fast algorithms for computation of the 
system matrix are proposed: (a) a fast algorithm based 
on the line integral and the intersection length calculation 
which improves the computation time significantly relative 
to the popular Siddon algorithm, while not compromising 
quantitative accuracy and (b) a hybrid LIM–AIM that 
combines the advantages of both LIM and AIM for better 
image quality and less computation time.

The proposed LIM algorithm was based on considering 
only the contributing detectors at each projection view, 
such that for a given pixel and a given projection 
view, the contribution from the pixel only comes from 
the detectors that are bounded by the beams passing 
through the pixel. As such, we obtain the lower and 
upper index bounds of the contributing detectors. In a 
practical example for a typical clinical CT scan, we can 
consider just ten detectors instead of 1000 detectors at 
each projection view, and therefore, the computational 
speed is greatly increased. In this method, the system 
matrix was calculated pixel by pixel: for a given pixel, 
the contributions of the pixel for all projection rays were 
calculated, and so on for other pixels. In this way, the 
system matrix is completed column by column during the 
implementation of the algorithm.

For the Siddon algorithm, the intersection points of a 
ray with the pixel grid are calculated separately and 
form two intersection arrays which need to be merged 
and sorted to calculate the intersection length. As such, 

Figure 9: Peak signal‑to‑noise ratio of the images reconstructed by 
simultaneous algebraic reconstruction technique (after 6 iterations) and 
maximum likelihood expectation maximization (after 50 iterations), using 
three system matrix calculation methods of Siddon algorithm, the proposed 
line integral model, and hybrid model. The bars show the mean value of 
root mean square error for five different noise levels, while the error bars 
indicate the standard deviation

Figure 10: MTF curves from images reconstructed by simultaneous algebraic reconstruction technique, using Siddon algorithm, the proposed line integral 
model, and hybrid model: (a) noiseless data, after 20 iterations and (b) noisy data, after 6 iterations

ba

Figure 11: Modulation transfer function curves from images reconstructed by maximum likelihood expectation maximization (after 50 iterations), using 
Siddon algorithm, the proposed line integral model, and hybrid model: (a) Noiseless data and (b) noisy data

ba
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sorting and merging of arrays and the calculation of pixel 
indices involve multiple operations of multiplication, 
division, and integer rounding function that are relatively 
time‑consuming. For our method, by contrast, the 
intersection length between a pixel and a ray was calculated 
for a given pixel and a given projection view, and therefore, 
no intersection point arrays are formed to require merging 
and sorting. Furthermore, in the presented algorithm, mere 
addition and subtraction operations are used to calculate 

the pixel indices which are simpler than operations used 
in the Siddon algorithm. The computational complexity 
for the Siddon algorithm for each beam is O (n) and the 
overall complexity is roughly O (n·v·d) (where n2 = the 
number of pixels, v = number of projection views, and 
d = number of detector elements). For our algorithm, by 
contrast, the computational complexity for each pixel is 
O (v) and the total complexity is O (n. n. v), showing our 
algorithm to have less computational complexity than the 

Figure 12: Visual comparisons of reconstructed images of the Shepp–Logan phantom using simultaneous algebraic reconstruction technique 
(after 6 iterations) for both noiseless data and five different noise levels (left to right), using: Siddon (first row), the proposed line integral model 
(second row), and the proposed hybrid model (third row)

Figure 13: Visual comparisons of reconstructed images of the Shepp–Logan phantom using maximum likelihood expectation maximization (after 50 iterations) 
for both noiseless data and five different noise levels (left to right), using: Siddon (first row), the proposed line integral model (second row), and the 
proposed hybrid model (third row)
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Siddon algorithm. Moreover, in terms of image quality, 
the quantitative and qualitative analyses showed that 
differences in RMSE were not significant between the 
proposed LIM and the Siddon algorithm. As a result, our 
implementation scheme for computing the system matrix 
made our method more computationally efficient than the 
Siddon algorithm while maintaining accuracy. Moreover, 
the proposed algorithm could be extended to finite‑beam 
size and 3D geometries and is highly parallelizable.

We described and studied the hybrid LIM–AIM to 
construct a more realistic and accurate CT system model by 
simulating a narrow fan beam with a set of equally spaced 
lines to approximate the intersection areas by averaging 
the line integrals. As such, in this method, instead of 
calculating the area integral, multiple line integrals are 

calculated and averaged. Therefore, this algorithm does 
not have the difficulty of computing the area integral 
and requires less computational effort compared to AIM. 
In addition, approximating the intersection area instead 
of calculating the intersection length is more reflective 
of the real CT geometry/physics and could improve the 
image quality and image resolution compared to LIM. As 
increasing the number of lines per detector increased both 
image quality and computation time, a trade‑off between 
computation time and image quality should be provided 
to choose the optimum number of lines per detector. 
Furthermore, the number of lines per detector depends on 
the detector element size. Modeling the finite‑size beam 
with five equally spaced lines per detector decreases 
RMSE compared to one line per detector. However, the 
image quality does not improve significantly using more 

Figure 14: Profiles along the horizontal edge indicated in Figure 12

Figure 15: Profiles along the horizontal edge indicated in Figure 13
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than five lines per detector in the case of 1.8 mm detector 
pixel size. This should be pointed out that the optimum 
number of lines per detector could change based on the 
detector pixel size and the acquisition system geometry. As 
such, significant improvements are obtained by our model, 
though increasing computation by a factor of nearly five 
compared to the LIM.

The system matrix can be precomputed, stored, and 
reused, using a sparse matrix, so that the time of the 
entire reconstruction process is reduced. Alternatively, 
it can be generated on the fly during the reconstruction 
process, thus minimizing the memory usage of the 
system.

Adding multiple Poisson noise levels to the sinogram, the 
proposed hybrid model still maintains its superiority to two 
other methods and even becomes more obvious. Therefore, 
for low‑dose CT applications, it is more practical to 
use the proposed hybrid model instead of LIM‑based 
methods. Moreover, the effect of using the proposed hybrid 
method on image quality was seen more in algebraic 
reconstruction techniques (ART) compared to statistical 
iterative reconstruction (SIR). As such, at low‑level noises, 
the proposed hybrid‑based ART might be preferable to the 
proposed hybrid‑based SIR.

Due to instability of iterative methods, RMSE decreases 
and then increases with increasing iteration numbers, and 
for higher noise levels, this increment happens at lower 
iteration numbers. Higher error bars for SART relative 
to MLEM imply that instability of iterative methods 
is more evident for nonstatistical iterative methods 
compared to statistical methods due to noise modeling 
in statistical iterative reconstruction. However, MLEM 
results in oversmoothing and also the uncertainty of edge 
detection compared to SART. Therefore, this method is not 
appropriate for CT, especially when the high‑resolution 
images are desired.

The potential of the proposed hybrid method to 
improve image quality becomes more evident at high 
iteration numbers. Specifically, with increasing iteration 
numbers, RMSE between the hybrid method and two 
other methods increases. At low iteration numbers, 
the low‑frequency components are reconstructed, and 
at higher iteration numbers, the higher frequency 
components are reconstructed. The high‑frequency 
components are representations of image details 
and therefore impact spatial resolution. As such, 
our proposed hybrid method is more effective for 
reconstruction of high‑frequency content and improves 
the spatial resolution of the image compared to two 
other methods. The MTF curves confirm this result and 
indicated a better spatial resolution for the proposed 
hybrid model. The LIM has lower image quality due to 
undersampling and aliasing problems. On the contrary, 
the proposed hybrid model increases the MTF cutoff 

and therefore could overcome sampling problems and 
aliasing artifacts.

In recent studies,[26,27] ray modeling was shown to give very 
noticeable improvements. Here, our results do not show 
noticeable visible improvements. More complex phantoms 
and studies might show larger differences, which remain to 
be studied.

Conclusion
We have presented two fast algorithms to calculate the 
system matrix in CT image reconstruction: a fast and 
accurate LIM and a hybrid LIM–AIM. Results have 
shown that the proposed LIM method is faster than the 
Siddon algorithm but maintains accuracy. The improved 
computational efficiency was mainly due to the simplicity 
in algorithmic operations. The hybrid method was shown 
to yield better image qualities than our LIM‑based method. 
Furthermore, as this method could save a large amount of 
computation time and memory compared to AIM‑based 
algorithms, it could be a good alternative for high‑accuracy 
imaging.
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