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Abstract
Up to now, various signal processing techniques have been used to predict protein‑coding genes that 
are unsuitable for predicting ribonucleic acids (RNAs). Modeling a gene network can be employed 
in various fields, such as the discovery of new drugs, reducing the side effects of treatment methods, 
further identifying genetic diseases and treatments for genetic disorders by influencing the activity 
of effectual genes, preventing the growth of unwanted tissues via growth weakening and cell 
reproduction, and also for many other applications in the fields of medicine and agriculture. The 
main purpose of this study was to design a suitable algorithm based on context‑sensitive hidden 
Markov models (csHMMs) for the alignment of secondary structures of RNAs, which can identify 
noncoding RNAs. In this model, several RNA families are compared, and their existing similarities 
are measured. An expectation–maximization algorithm is used to estimate the model’s parameters. 
This algorithm is the standard algorithm to maximize HMM parameters. The alignment results for 
RNAs belonging to the hepatitis delta virus family showed an accuracy of 83.33%, a specificity of 
89%, and a sensitivity of 97%, and RNAs belonging to the purine family showed an accuracy of 
65%, a specificity of 76%, and a sensitivity of 76%. The results show that csHMMs, in addition to 
aligning the primary sequences of RNAs, would align the secondary structures of RNAs with high 
accuracy.
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Introduction
Different cellular mechanisms that 
ensure living organisms are the result of 
effective cooperation biomolecules such as 
deoxyribonucleic acid (DNA), ribonucleic 
acid (RNA), and proteins. For a long 
time, it was thought that these molecules 
are the proteins that further structural 
change and chemical reactions and are 
responsible for cells’ regulatory functions. 
Accordingly, the DNA to the protein coding 
information storage and RNA molecules 
as an intermediary between DNA and 
protein were seen. However, some recent 
observations in the field of molecular 
biology show that the traditional approach 
to explaining many biological actions in 
complex multicellular organisms, such as 
plants, insects, and animals, is imperfect 
and limited.

New studies on the genomes of RNA in 
the presence of numerous noncoding DNAs 
revealed that they are not translated into 
proteins but act directly as RNA plays an 
important role in various biological actions.[1] 
In addition to the examples already known, 
such as transfer RNA and ribosomal RNA, 
the number of known operational noncoding 
RNA (ncRNAs) is abundant, and their 
performance is extremely diverse. Because 
RNAs based on a sequence are capable of 
direct confrontations with other RNA and 
DNA molecules, they can be useful for 
regulatory mechanisms including identifying 
specific nucleotide sequences.[2]

NcRNA are small noncoding sequences 
involved in the gene expression regulation 
of many biological processes and diseases.[3] 
Recent developments show that ncRNAs 
play an important role in gene silencing, 
RNA processing and modification, control 
transcription and translation, and sustain 
many other regulatory functions.
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The structure of RNA molecule affects its function; thus, 
many ncRNAs have preserved a secondary structure that 
uses the position of the ncRNA genes. The structure has 
been preserved in such a way that some functional RNAs 
with the same applications’ functionality have similar 
secondary structures, so the structure in the RNA is well 
preserved and remains stable. Therefore, search methods 
should enable modeling these structures.

One of the operations that is performed on RNA is a 
structural comparison. In recent years, thousands of 
sequencing projects around the world have been creating 
enormous volumes of RNA data, which has led to the 
discovery and description of a rapidly increasing number of 
ncRNAs in eukaryotic genomes.[4] Comparing the structure 
of two or more RNAs has many applications in structure 
prediction and in finding a motif. To model the RNAs while 
preserving their secondary structures, statistical models will 
be needed to describe the correlation between base pairs. 
So far, numerous statistical models to provide targeted 
RNA secondary structures only use a limited number of 
RNA secondary structure classes.

Alignment is another operation that compares DNA, 
RNA, and amino acid sequences. Generally, the alignment 
of two sequences finds the most similarity between the 
two sequences so that one of the sequences is probably 
achieved from the deletion, insertion, or substitution of the 
nucleotide in another sequence.[5] Many search methods 
such as Basic Local Alignment Search Tool (BLAST), 
Fast Alignment (FASTA), and Database of Protein 
Domains, Families and Functional Sites (PROSITE) are 
used for identifying protein‑coding genes based on RNA 
homology search.[6] Previously, a number of statistical 
models have been proposed to achieve this goal. For 
example, covariance models (CMs),[7]  Pair Stochastic 
Tree Adjoining Grammars (PSTAG),[8] Stochastic 
Context‑free Grammars (SCFGs),[9] and Iterated Loop 
Matching (ILM)[10] have algorithms with high computational 
complexity and, therefore, increase the time needed 
to perform an alignment. Prediction of RNA structure 
is invaluable in creating new drugs and understanding 
genetic diseases. Several deterministic algorithms and 
soft computing‑based techniques have been developed 
for more than a decade to determine the structure from a 
known RNA sequence.[11] Thus, we have tried to provide 
models that speed up this process. One of the basic models 
for creating a test sequence search for an RNA family is 
hidden Markov model (HMM). In this way, the possibility 
of different position of symbols can be effectively 
described. The proposed model in this article, based on the 
context‑sensitive HMM (csHMM) that uses this algorithm, 
can be provided a framework for the alignment of RNA 
secondary structures including pseudoknots.[12]

Like protein‑coding genes, ncRNA sequences can be 
gathered into groups of related sequences. We observed 

sequences that have a spot with the same family and 
perform comparable functions (or functions that are 
associated in certain ways) in the cellular mechanism. In 
general, singular sequences in the family share one or more 
basic measurable components with different sequences that 
have a place with the same family. Such sequences are 
said to be homologous to each other, and henceforth called 
homologous. Given another sequence, we can exploit 
these family‑particular attributes to figure out if it has a 
place with a particular sequence family. Its membership 
in a specific family can regularly be utilized to deduce the 
function of the sequence. The sequence‑based methods 
(BLAST, FASTA, PROSITE, profileHMM) are very useful 
for identifying homologous DNAs and proteins, but they 
often behave poorly when applied to RNA homology 
search. The main reason that many functional ncRNAs 
preserve their secondary structures as well as their primary 
sequences. Sometimes, these base paired structures are 
still preserved among related RNAs, even when their 
similarity in the primary sequence level can be hardly 
recognized. Therefore, when evaluating the similarity 
between two RNA molecules, it is important to take both 
their primary sequences and their secondary structures into 
consideration. In many organisms, ncRNA genes do not 
show solid succession organization inclinations, which is 
the motivation behind why the customary methodologies 
that are principally taking into account base composition 
insights come up short. In this article, we propose another 
strategy that can be utilized for displaying and foreseeing 
RNA secondary structures. The proposed strategy depends 
on csHMMs. The article is organized as follows: in 
materials and methods section, we give a brief survey of 
RNA secondary structures and factual model for speaking 
to and investigating RNAs and survey the idea of csHMMs 
and clarify how csHMMs can be utilized as a part of 
RNA similitude seek. We then exhibit the execution of the 
proposed technique in results and discussion section and 
end with conclusion section.

Methods
We designed a suitable model for the alignment of 
secondary structures of RNAs and the proposed model 
depends on csHMMs. We tested our model using a few 
pseudoknots from the RNA family database (Rfam).[13] 
The Rfam is a substantial accumulation of different RNA 
families, in which the member sequences in each family 
are adjusted to suit one another. In our trials, we used these 
sequences to achieve seed alignment in each RNA family 
as they were hand curated and have sensibly dependable 
structural annotation. For each sequence family, we picked 
and used one member as a reference RNA and its structural 
annotation to predict the secondary structure of other 
sequences in the same family.

Then, we tallied the quantity of accurately anticipated base 
pairs (true positives [TPs]), that of mistakenly anticipated 
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base pairs (false positives [FPs]), and that of base pairs 
in the classified structure that were not anticipated by the 
model (false negatives [FNs]). These numbers were used 
to compute the sensitivity (SN) and specificity (SP) of the 
system as follows:

SN = TP/(TP + FN) SP = TP/(TP + FP) (1)

RNA secondary structures

The second structure represents the linked pairs that arise 
after the folding of the RNA strand. Each nucleotide max 
can bond with other nucleotides. This article assumes that 
only the intended focal bonds can be formed, a pair of 
Watson–Crick (CG and AU and its inverse of the GC and 
UA), and the pair reversed its weak GU and UG because 
these pairs are more likely to occur and are abundant in the 
RNA molecule. Each combination of focal junctions denotes 
a secondary structure In the case of the following three 
conditions for both the junctions [i, j] and [k, l] in which i 
<j and k <1, the following three conditions are met:[14]

• Each nucleotide can only bind to another nucleotide: 
i = k if j = l

• Each nucleotide cannot bind to its side three nucleotides: 
j‑i >4

• Pseudoknots are not allowed, i.e., if we have i < k < j, 
then probably it should be i < k <l < j.

According to the rules that were developed for linking 
nucleotides, we can build all the links that could potentially 
be listed; in fact, The main issue in predicting the 
secondary structure of RNA is detected that which link is 
present in the secondary structure and which link does not 
present. An important feature is that the secondary structure 
of the molecule is stable in this case, that is, the links in 
the second structure appear that can match the shape of the 
molecule to equilibrium and stability. Generally, secondary 
structures of RNA are usually formed by one of the two 
hairpin loops or pseudoknot.[3]

New studies on different genomes disclose the presence of 
many non‑coding RNAs that, although not translated into 
proteins, act directly as RNAs and play an important role in 
different biological behaviors.[6] Recent developments have 
shown that ncRNAs play an important role in silencing genes, 
processing and correcting RNAs, controlling transcription and 
translation, and many other regulatory actions.

RNA sequences often undergo compensatory mutations in 
order to preserve their secondary structures. For a given 
base pair in an RNA molecule, if the base in one side is 
changed to another base, the base in the other side is also 
changed such that the base pair is still maintained. As a 
result, we can observe strong correlation between the two 
base positions in homologous RNAs.[15]

RNAs with secondary structure include one or more 
symmetrical area (or reverse complement area) in its 
first structure, and the pair of bases complementary 

to the RNA folding is dumped. RNA sequences with 
secondary structures can be viewed as a kind of biological 
palindromes. Because of this symmetry, there is a strong 
correlation between the distant symbols. HMM, which can 
be considered as statistically regular grammars, cannot be 
used to describe the language of palindromes.

So far, the language of palindrome modeling of the 
higher‑order grammars such as context‑free grammars has 
been used. This grammars can describe the correlations 
between nesting symbols. SCFGs, as an example of this 
grammar, is widely used in the analysis of RNA sequences, 
is incapable of describing the correlation between crossing 
base pairs, and cannot sort of pseudoknot. In this article, 
to overcome this problem, instead of using grammars, 
csHMMs are used. These grammars can classify a large 
number of known pseudoknots.[6]

Context‑sensitive hidden Markov Models

Context‑sensitive hidden Markov Model development of 
conventional hidden Markov Model

The csHMM is an extension of the traditional HMM.

In this model, there are different transition and emission 
probability states that are context dependent. Symbols 
that are emitted at certain states are stored in the memory, 
and the stored data serves as the context that affects the 
emission probabilities and the transition probabilities 
at certain future states. This context‑sensitive property 
increases the descriptive power of the model significantly, 
compared to the traditional HMM.[6]

It is assumed that csHMMs, including M states, are 
separate. The set of hidden state V is defined as follows:

V = S ∪ P ∪ C ∪ {start, end} (2)

According to Eq. 2, three different classes of states 
include single‑emission states (Sn), pairwise‑emission 
states (Pn), and context‑sensitive states (Cn). S is the set 
of single‑emission states, P is the set of pairwise‑emission 
states, and C is the set of context‑sensitive states, which 
are described as follows:

S = {S1, S2., SM2} (3)

P = {P1, P2., PM1}, C = {C1, C2., CM1} (4)

Pn and Cn states are always represented in pairs. For 
example, if we have two states, i.e., P1 and P2, then HMM 
will require two states of C1 and C2. Figure 1 shows an 
example of the dependence of Pn and Cn by a stack 
memory (Zn). The process of observation for X = x1, x2,..., 
xL is determined so that xi symbol in time i is observed. 
Each symbol xi is accounted for a bit of alphabet xiεA, C, 
G, U (T).

Initially defined the probability that the model will make a 
transition from a state si = v to the next state si+1 = w. For v 
∈ S ∪ P, this probability defined as follow:
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P (si+1 = w | si = v) = t (v, w) (5)

The transition probability state of a context‑sensitive state 
is dependent on Zn. The transition probability of “si = v ϵ 
C” to “si+1 = w” for the sample can be as follows:

P (si+1 = w | si = v, zn) = t (v, w) (6)

The emission probability is the probability of the 
observation symbol xi = x from the hidden state si = v. F or 
v ϵ S ∪ P; the probability to be defined is as follows:

P (xi = x | si = v) = e (x | v) (7)

Because VϵC emission probability is dependent on si = v 
and a symbol xp in Zn memory, it is defined as follows:

P (xi = x | si = v, Zn) = e (x | v, xp) (8)

Using csHMM, we can easily build a simple model that 
generates only palindrome. For example, the structure 
shown in Figure 2 can be used. As shown in the figure, 
we have three hidden states, namely S1, P1 and C1, so that 
pairing state (C1, P1) can be linked with a stack. Initially, 
the modeling starts at pairwise‑emission state. This state 
will do several transfers to generate a number of symbols 
that go into the stack. When model enters the C1, related 
transition and emission probabilities are set, so that the 
symbols are always on the top of the stack in this state, are 
emitted, and the transfer continues until the stack is empty. 
In this way, C1 emittes the same symbols that are emitted 
from P1 inversely.[4]

If we consider that the number of symbols emitted from 
the stack is N, the generated sequences will always be 
a palindrome of the form x1... xNxN... x1 (even‑length 
sequence) or x1... xNxN+1xN... x1 (odd‑length sequence).

Finding the most probable path

They are assumed to have the observation sequence of 
X = x1 x2... xL. As noted previously, if denote the underlying 
state of xi as si. Assuming that there are M distinct states in 
the model, we have ML different paths.

Given the observation sequence x, how can we find the 
path that is most probable among the ML distinct paths?

Thus, in this article, alignment algorithm was designed 
using a csHMM to calculate the log‑like probability of 
optimal path. In v ϵ P ∪ C, v̅ is defined to supplement v 
as follows:

v = Pn → ͞v = Cn, v = Cn → v = Pn (9)

In v ϵ P ∪ S, the probability of obtaining x from v is 
already defined for e (x | v) and that of v ϵ C is already 
defined for e (x | v, xp), where xp represents the emission 
from pair‑wise state (v̅). The transition probability from 
state v to w is defined by t (v, w). Finally, γ (i, j, v, w) 
defines the log‑like probability of the optimal path among 
all the si. sj subpaths, where si = v and sj = w.

Estimating the model parameters

To apply the csHMM to real‑world problems, adjusting 
the model parameters is critical to optimize the method. 
Thus, finding a way to optimize parameter  is essential 
in order to maximize the probability P (x ∪ θ) obtained 
from x. The process of finding these parameters is often 
called training; however, finding an analytical solution 
for model parameters is impractical. Thus, in this article, 
expectation–maximization (EM) algorithm was used to 
obtain the local maximum P (x ∪ θ).

Results
To test the alignment algorithm, the hepatitis delta virus 
(HDV) ribozyme was first checked. One of the family’s 
members was chosen randomly to train the data. The 
csHMM used an algorithm to identify the RNA as shown 
in Figure 3. The model in the figure has 14 single‑emission 
states s1, s2., s14 and 6 sets of pairwise‑emission and 
context‑sensitive states. Each pair, that is, (p1, c1), (p2, c2), 
and (p6, c6), is connected with a different stack.

Using an alignment algorithm, the optimal path for this 
RNA is defined as follows:

Figure 1: The states Pn and Cn associated with a stack Zn

Figure 2: A case of context‑sensitive hidden Markov model that generates 
only palindromes
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S*=s1p1s2p2s3c2p2s4p3s5p4p4s6p5s7c5s8c4s9p6s10c6s11c4s12 
c3s13c2c1s14 (10)

Table 1 shows the emission probabilities which were 
estimated using the EM algorithm after ten iterations.

By comparing Tables 1 and 2, it can be seen that the 
estimated values were close to the original values.

In purine riboswitches, the RNA acts as an HDV ribozyme. 
Again, the csHMM used an algorithm to identify the RNA, 
as shown in Figure 4.

The model shown in the figure has 11 single‑emission 
states, that is, s1, s2., s11, and 5 pairs of pairwise‑emission 
and context‑sensitive states. Each pair, that is, (p1, c1), 
(p2, c2)…, and (p5, c5), is associated with a separate stack. 
The emission probabilities are shown in Table 3.

As with HDV ribozyme, an alignment algorithm was used 
to define the optimal path for this RNA as follows:

S*=s1p1s2p2s3p3s4p4s5c4s6c3s7p5s8c5s9c2s10c1s11 (11)

Table 4 shows the emission probabilities which were 
estimated using the EM algorithm after ten iterations.

By comparing Tables 3 and 4, it can again be observed that 
the estimated values were close to the original values.

Discussion
To acquire solid evaluations of the above results, we performed 
a cross‑validation test by repeating the same procedure for 
fifty members in each given RNA family. Then, we registered 
the general prediction ratios in view of the log‑like probability 
values of the optimal path obtained. The accuracy of the 

Figure 3: Hepatitis delta virus ribozyme model using context‑sensitive hidden Markov model

Figure 4: Purine riboswitch model using context‑sensitive hidden Markov models
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pair‑wise interactions between bases are permitted to cross 
one another. Pseudoknots are found in numerous RNAs, and 
distinguishing them is essential in some applications, for 
example, in three‑dimensional structure predictions.
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