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Abstract
Background: The versatility of digital photographs and vast usage of image processing tools have 
made the image manipulation accessible and ubiquitous. Thus, there is an urgent need to develop 
digital image forensics tools, specifically for joint photographic experts group (JPEG) format 
which is the most prevailing format for storing digital photographs. Existing double JPEG methods 
needs improvement to reduce their sensitivity to the random grid shifts which is highly common 
in manipulation scenario. Also, a fully automatic pipeline, in terms of segmentation followed by 
the classifier is still required. Methods: First, a low‑pass filter (with some modifications) is used 
to distinguish between high‑textured and low‑textured areas. Then, using the inconsistency values 
between the quality‑factors, a grayscale image, called the ghost image, is constituted.  To automate 
the whole method, a novel segmentation method is also proposed, which extracts the ghost borders. 
In the last step of the proposed method, using Kolmogorov–Smirnov statistic, the distance between 
two separated areas (ghost area and the rest of the image) is calculated and compared with a 
predefined threshold to confirm the presence of forgery/authenticity. Results: In this study, a simple 
yet efficient algorithm to detect double‑JPEG compression is proposed. This method reveals the sub-
visual differences in the quality factor in the different parts of the image. Afterward, forgery borders 
are extracted and are used to assess authenticity score.  In our experiments, the average specificity 
of our segmentation method exceeds 92% and the average precision is 75%. Conclusion: The final 
binary results for classification are compared with six state‑of‑the‑art methods. According to several 
performance metrics, our method outperforms the previously proposed ones.
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Introduction
Versatility of digital cameras and cellphones 
has resulted in numerous multimedia 
files transmit on web or store in personal 
computers. Moreover, development of 
image‑processing technology makes image 
manipulation much easier. Thus, media 
world today faces many challenges and 
doubts. Image authentication needs more 
concerns in legal and journalistic context.[1]

Digital image forensics  (DIF) techniques 
address these problems and determine 
whether media files are original or 
forged.[1‑3] In general, DIF approaches can 
be categorized into two groups: active 
forensics and passive forensics.[4] Active 
approaches, such as watermarking[5‑7] and 
digital signature,[8,9] have been used to 

authenticate credibility or ownership of 
digital media. These approaches require that 
some prior information be inserted into the 
image. In fact, the acquisition device must 
be equipped with the embedded security 
signal. Limitations of active approaches 
make them impractical and hard to use.[1] 
On the contrary, in passive or blind DIF 
methods, forensic analyzer detects image 
tampering without any prior knowledge or 
protection.[4] Nirmalkar et  al. categorized 
passive DIF methods, also known as 
nonintrusive DIF methods into different 
groups.[10] Based on this categorization, 
an important group of passive DIF 
techniques is the format‑based family. 
These methods scrutinize the artifacts and 
inconsistencies in different parts of an 
image and determine if the image is spliced 
of different compression levels. For this 
purpose, a wide variety of methods are 
available, including blocking,[2,3,11] quality 
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factor,[12‑14] discrete cosine transform (DCT) coefficients,[2,15] 
or quantization error in image compression formats such as 
joint photographic experts group (JPEG) file format.[12,16]

Image splicing is one of the most pervasive scenarios of 
image forgery, in which a region of the source JPEG image 
is cropped and moved into another target JPEG image to 
generate a composite forged image.[2] Then, the resulting 
composite image is compressed in JPEG file format 
one more time. The whole process causes double‑JPEG 
compression. In the JPEG compression standard, the 
8 × 8 DCT blocks are quantized by an 8 × 8 matrix known 
as quantization table.[17]

There are some recent studies that detect double‑JPEG 
compression.[2,3,12,14,18,19] The most relevant papers to our 
study are briefly discussed in the following.

The authors Lukas and Fridrich[20] explored the statistical 
pattern in the histogram of JPEG coefficients. Double peaks 
and missing values in the histogram of DCT coefficients are 
obvious symptoms of double‑JPEG occurrence. In Lukas 
and Fridrich study,[20] an effective method for estimation of 
the primary quantization table is also proposed.

In Taimori et  al. study,[21] based on generalized Benford’s 
law by considering the distribution of the first digits of 
AC JPEG coefficients, singly compressed images can be 
distinguished from doubly compressed ones.

The study of Yang et  al.[14] represented a four‑class 
categorization for double‑JPEG compression. Actually, 
the primary and the secondary compression grids can be 
shifted from each other[2] or they can employ different or 
the same quantization tables.[14,22] These four categories are 
named as C1–C4 and are described below:
(C1) �Aligned double‑JPEG compression with different 

quantization matrix;
(C2) �Aligned double‑JPEG compression with the same 

quantization matrix;
(C3) �Nonaligned double‑JPEG compression with different 

quantization matrix;
(C4) �Nonaligned double‑JPEG compression with the same 

quantization matrix.

Yang et  al.[14] also proposed a new method for identifying 
double‑JPEG compressions with the same quantization 
matrix, i.e., C2 and C4. Quoted from Huang et  al.,[22] 
C2 and C4 are more challenging. However, to our best 
knowledge, there is still no full‑automatic method for 
C1 and C3. These algorithms still need development and 
reforms for implementation.

One of the existing methods for C1 is the JPEG ghost 
method presented by Farid.[13] This method detects local 
manipulation based on the difference between quality 
factors of two JPEG compressions.[13] In this method, the 
given image is compressed again with JPEG format. Under 
some constraints which will be discussed in Section 2, 
by differentiating this recompressed image and the image 

under inspection, the low‑textured parts of the image 
become dark, and this dark area is called JPEG ghost.

There are some recent works related to C1 and C3 
categories.[23‑25] A previous study[23] re-arranged the 
quantized DCT coefficients with same frequency and 
applied multiple high-pass filters on them to extract the 
features. Finally, they exploited principle component 
analysis (PCA) dimensionality reduction approach 
in conjunction with support vector machine (SVM) 
classifier to train the classifier. A  previous study[24] 
proposed a convolutional neural network‑based method for 
double‑JPEG compression detection in both aligned and 
nonaligned approaches. Dalmia and Okade[25] suggested a 
filtering procedure based on DCT histogram for nonaligned 
double‑JPEG compressed images which reduce the noise 
effect related to misalignment of the DCT grids.

We have extended Farid’s algorithm for C1 and C3 
throughout some postprocessing and iterations in 
Azarian‑Pour et al.[17] In this article, a new family of methods 
for addressing the problem of double‑JPEG compression 
with different quantization matrix  (C1 and C3) is presented. 
A novel segmentation method is also proposed which is the 
most appropriate approach for extracting ghost borders. The 
main contributions of this article are as follows.
•	 Proposing a broad and straightforward family of 

methods to discriminate low‑textured parts of the image 
from the whole image

•	 Eliminating two previous constraints in Farid’s method. 
Thereby, we do not necessarily require the primary 
quality factor to be greater than the secondary quality 
factor or DCT grids to be aligned

•	 Reducing the computational complexity for the ghost 
detection step (in comparison to Farid[13])

•	 Automating the analysis of the difference image, 
using our proposed segmentation algorithm which 
automatically reveals the location of the tampered area.

The rest of this article is organized as follows. Section 
2 contains the main idea of the paper. The proposed 
algorithm is presented in Section 3, which consists of three 
main steps. The simulation results in Section 4 are devoted 
to compare the performances of these approaches.

Main Idea and Problem Statement
In the standard JPEG compression format, each color 
channel of a color image is first partitioned into 8  ×  8 
pixel blocks and then converted to frequency space using 
a two‑dimensional  (2D)‑DCT. Afterward, each DCT 
coefficient c is quantized by a quantization step s

c s c
sq =  

� (1)

Where . denotes the rounding function. Now consider 
a set of coefficients cdq which are double quantized by 
quantization steps s0 and s1, respectively (s0 > s1), so
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It has been shown in Farid[13] that the quantization history of 
cdq (the amounts of s0 and s1) can be determined. Actually,[13] 

has proved that the energy function c s
c
sdq
dq− 2
2

   versus  s2 

has a global minimum (zero) at s2=s1 and a local minimum 

at s2=s0 (where s
c
s
dq

2
2

  denotes the requantized result of cdq 

by quantization step s2). Now, assume an image I 
goes through hypothetical scenario of Figure  1. In this 
situation, the whole image is called double quantized. 
However, there is a subtle difference between foreground 
region and background region. Since the final quality factor 
(the splicer quantization standard) is determined by the 
background which is assumed to be higher, the image will 
be doubly compressed  (at quality factors q0 and q1) in 
forged regions, and it is singly compressed  (at quality 
factor q1) in the original regions.

It has been similarly expressed in a previous literature[13] 
that in case  (q0<q1), the compression history of I can be 
determined from the difference energy image

d x y q I x y cc I x y cc( , , ) = [ , , ] , , ])2
2

1
3 2

( [
, ,

−
∈{ }
∑ q

cc R G B
� (3)

Where I  (x, y, cc) denotes the intensity of the pixel  (x, y) on 
color channel cc of the image I, in which cc ∈ (R, G, B). The 
image Iq2 is the resaved version of image I at quality factor 
q2. The above equation would be very sensitive to the image 
content, meaning that it would be higher in the detailed 
regions and lower in the smoother regions. To compensate 
the image content texture, we first calculate the difference in 
a spatial window and then we normalized the averaged values 
into interval (0,1), which results in ghost image g using
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Where the window size w is typically 16.[13]

Besides using JPEG ghost, the inconsistencies in quality 
factor of a double‑quantized image can be determined 
using other techniques. JPEG ghost detection method 
needs another JPEG quantization to yield Iq2. However, 
simpler techniques, for instance, low‑pass filtering, window 
averaging, etc., are able to create image Iˆ similar to Iq2. 
As it will be discussed in Section 3, the image I  ‑  Iˆ also 
contains information to separate low‑  and high‑textured 
parts of the image.

The JPEG ghost detection method of Farid[13] has the 
advantage that it works for tampering detection of both 
high‑textured images and low‑textured images. However, 
it still suffers from a number of limitations. One of the 
fundamental constraints is that this approach only works 
for C1  (in Section 1). In other words, it does not work 
for nonaligned DCT grid cases. Second, the method of 
Farid[13] needs a manual search for the ghost, instead of an 
automatic search. As a result, in Farid,[13] forensic specialist 
has to make relentless efforts to detect the forged area. 
As we mentioned in Section 1, a previous literature[17] has 
overcome these limitations. Thus, the ideas of Azarian‑Pour 
et al.[17] are exploited here too.

Proposed Method
The proposed method contains three main steps. In the 
first and the foremost one, forgery footprints become 
visible. Tampering details are revealed in this step and 
they are recognizable with the naked eye, which is known 
as ghost area. However, to automate the method, in the 
second step, we extract the precise border of this ghost 
area throughout a novel segmentation method. In the last 
step, the classifier assigns the suspicious image to original 
or tampered group. In other words, in the second and third 
steps, we just analyze the information given by the first 
step.

Figure 1: Hypothetical scenario for double‑quantized image, composed of two different quality images
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First step: Proposed ghost detection method

To discriminate high‑textured regions versus low‑textured 
regions of a given image, first, we separate high‑frequency 
areas and low‑frequency ones. The schematic of the first 
step is illustrated in Figure  2. The low‑pass filter  (LPF) 
F is applied to image I, yielding Iˆ. Therefore, the image 
I and its smoothed version, Iˆ, are approximately the same, 
despite some differences in details. Incidentally, these 
inconsiderable differences include valuable details for 
revealing forgery. In this article, we propose eight different 
smoothing filters and they are compared; the first two 
filters are

F1
1
9

1 1 1
1 1 1
1 1 1

Spatial Mask = ×
















� (6)
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1
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Spatial Mask = ×

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
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


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


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Where F1 and F2 refer to unweighted and weighted 2D 
moving average LPFs, described in the spatial domain. The 
next three filters are described in the frequency domain, by 
their transfer functions,

F3 10

1Transfer Function ,
1 + , 0

= ( ) =H u v
D u v D( [ ] / )

� (8)

F4 4

1Transfer Function ,
1 + , 0

= ( ) =H u v
D u v D( [ ] / )

� (9)

F5

2

Transfer Function , , 2 O2

= ( ) = − ( )H u v e D u v D/ � (10)

These filters, respectively, are fifth‑order Butterworth 
LPF  (8), second‑order Butterworth LPF  (9), and Gaussian 
LPF  (10). The term D  (u, v) denotes the distance from the 
origin of the Fourier transform and D0 = 25 is allocated as 
the cutoff frequency.

The next three filters originate from discrete wavelet 
transform which are schematically described in Figure  3. 
First, a 2D wavelet transform is applied to the image. Then, 
detail bands  (H, V, and D) are discarded. Afterward, the 
reconstruction algorithm  (inverse discrete wavelet transform) 
is applied only to the approximation band. Subsequently, 
the output will be a smoothed version of image I and at 
the same size. These filters are numbered as F6, F7, and F8 
corresponding to wavelets db1, sym2, and sym8, respectively.

We expect that after applying these filters, the low‑textured 
parts of the image are affected much less than the higher 
quality regions. Hence, the amount of I  −  Iˆ in each pixel 
depends on its quality factor. Furthermore, as mentioned 
in a previous study,[13] to compensate the image content 
texture, a spatially averaging and normalizing is also 
utilized  (block diagrams “2D Moving Window Average” 
and “Normalization” in Figure  2. By Substituting Iq2 with 
Iˆ, the equations would be similar to (4) and (5).

Eventually, after normalizing the energy of the difference 
image, low‑textured parts of the image become dark, while 
higher‑quality parts are brighter. In other words, the amount 
of g is a measure of the quality.

Second step: Proposed multistage segmentation method

In this subsection, we explain our approach for extracting 
the ghost borders, which is an iterative three‑stage 
algorithm. Then in the next section, segmentation result 
will be discussed and a classifier decides to assign the 
image to the original or tampered group.

Our approach for extracting ghost borders is composed of 
three stages [Figure 4]:

Stage 1

At first, the ghost image g is partitioned into N 
nonoverlapped k  ×  k pixel blocks. The effect of parameter 
k will be discussed later.

Figure  3: Schematic of low‑pass filter F6 using two‑dimensional‑wavelet decomposition, wavelet type db1. The other two ones, F7 and F8, can be 
implemented using wavelet types sym2 and sym8, respectively

I gLow Pass Filter bI

+− (·)2 2D Moving Window Average Normalizationδ

Figure 2: Schematic of the proposed ghost detection method

[Downloaded free from http://www.jmssjournal.net on Sunday, November 3, 2019, IP: 10.232.74.27]



Azarianpour and Sadri: A generalized method for detecting the double JPEG compression

Journal of Medical Signals & Sensors | Volume 9 | Issue 4 | October-December 2019� 215

Stage 2

The 7D feature vector for each partition is calculated, 
according to Table 1. Image gi denotes the ith k × k partition 
of the image g which is under inspection. The term pi is 
the PDF of gray levels of gi, which is approximated by 
the histogram of the image gi, L is the number of gray 
levels and j ∈  (1,...,L). Feature numbers 1–4 denote the 
1st–4th cumulants, that is, average, variance, skewness, 
and kurtosis.[26] Feature numbers 5–7 belong to gray‑level 
difference statistics family. They, respectively, represent 
contrast, angular second moment, and the entropy.[27]

The term xi denotes the 7D corresponding feature vector 
of the ith partition. The output of this stage will be vector 
set (x1, x2,...,xN), where N is the total number of partitions.

Stage 3

In this step, the “authenticity label” for each block is 
obtained using k‑means clustering algorithm. The output 
label would be 1 for singly‑quantized or original regions 
and 0 for doubly quantized or fake regions. The label of 
the ith block is denoted by li ∈  (0, 1). If images I and g 
are at the size of m × n pixels, then image l will be at the 

size of m
k

n
k






× 




 pixels (. denotes the ceiling function). 

Therefore, it is obvious that the parameter k affects the 
resolution of the image l.

Choosing parameter k

The parameter k should be chosen in a way that detects 
the ghost area, as well as maintaining preciseness 
and resolution. Too great amounts of k result in a 
low‑resolution version of labels  [Figure  5a]. It also causes 
an error in detecting labels. In the case that the forged 
area is comparatively smaller than block dimensions, the 
detection error will occur. On the other hand, as depicted 
in Figure  5b-5e, other problems will arise by choosing 
a small amount of k. The scattering of 0 and 1 labels in 
the entire image makes the forensics analyzer confused 
and causes errors in the classification step  (the next step 
of the algorithm). Recalling the image splicing scenario, 
it is assumed that one part of an image is cut and pasted 
into another image. Hence, the ideal result of segmentation 
should have only one connected component. To this end, 
we develop a new iterative method for choosing the 
parameter k.

In the first place, k is initialized with a large amount 

(almost m n
2

or
2

). In the following iterations, it will be cut 

in half. At each iteration, segmentation is only applied 
to the edge blocks. We use the term edge block for each 
k  × k partition, which has at least one adjacent block with 
a different label, at the previous iteration. Applying the 
procedure to edge blocks instead of all blocks plays a great 
role in reducing computational complexity. Furthermore, the 
labels are not scattered anymore, rather, they are distinctly 
separate. In this way, the advantages of both cases  (large 
and small amounts of k) are preserved. Moreover, since k 
has to be cut in half at each iteration, it should be of the 
form 2p. Figures  5f‑j illustrate the procedure above using 
the set of parameter k ∈ (64, 32, 16, 8, 4). As it is seen 
in Figure  5, it results in a more accurate segmentation in 
comparison to a noniterative procedure.

Third step: Proposed classification method

After performing the segmentation task, a criterion is 
required to conclusively confirm or refute the presence of 
forgery. More distinct segmented regions can be a decisive 
proof of tampering, while the similarity between two 
segmented areas invalidates the segmentation result and 
represents the authenticity of the image. To this end, we 

Feature Extracting
(7- Dimensional vector for each partition) Clustering

Only Apply to Edge Blocks

k> 4 No

Yes

Partitioning
( in k × t Pixel blocks)

k = k
2

g
l

Figure 4: Schematic of the proposed segmentation method

Table 1: Extracting feature vector for each k × k block
Feature No. Average

1.

2.

3.

4.

5.

6.

7.
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will investigate different statistical measures of the distance 
between two probability distributions, namely Bhattacharyya 
distance,[28] Kullback–Leibler divergence,[28] symmetric 
Kullback–Leibler divergence,[28] and Kolmogorov–
Smirnov[13] statistic. In this step, the distance d between 
two clusters of the image is calculated. Then, by comparing 
this criterion with a specific threshold “Th,” the algorithm 
reports the final authenticity evaluation. The larger distance 
shows an inherent difference between two segmented 
areas and confirms the presence of forgery. However, in 
the case that d  <  Th, it means that no forgery is detected 
and the segmentation result is unreliable. One‑dimensional 
Bhattacharyya distance between cluster 0  (the ghost 
segment) and cluster 1  (the rest of the image), with normal 
gray‑level distributions N (0, σ0

2) and N (1, σ1
2) is given by

dB =
+

+
−( )
+

1
2 2 4

0
2

1
2

0 1

2

0
2

1
2ln

( )
σ σ

σ σ
µ µ
σ σ

0 1 � (11)

Here, both regions are assumed to be normally distributed.

Kullback–Leibler divergence and symmetric Kullback–
Leibler divergence are defined as

d P u P u P u
P u
P uKL

u
0 0

0

1

[ ] || [ ] ln
[ ]
[ ]1( ) = ( ) 







∑ � (12)

and

d d P u P u d P u k P uKL sym KL KL, ( ( [= 0 1[ ] [ ]) + ] [ ]),1 0k � (13)

Where P0 (u) and P1 (u) are the probability density functions 
of segments 0 and 1, respectively, which can be estimated 
by their corresponding histogram.

Kolmogorov–Smirnov statistic is defined as

d C u C uKS = −max ( (0 1) ) � (14)

Where C0  (u) and C1  (u) are the cumulative distribution 
functions of segments 0 and 1, respectively. The amount 
of optimal threshold for each distance criterion will be 
calculated in Section 4.2. Using this optimal threshold and 
the best LPF, chosen in Section 4.1, the proposed algorithm 
is briefly illustrated in Figure  6. The first row assumes 
a composite forged photo combined from two original 
images in a black box. After performing the three steps, a 
forgery is detected. In the second row, an original image is 
analyzed, and at the end, its authenticity is approved.

Simulation Results
For our simulations, we have utilized the following 
four standard databases, all of them include original 

Figure 6: The procedure of the proposed algorithm for forgery detection on a sample tampered image (upper row) and a sample original image (bottom row)

Figure  5: The first row: the results of applying different independent amounts of k, in panel (a), the accuracy of segmentation is very low, as the value of k 
decreases (panels [b-e]), a more accurate boundary is obtained but scattering and wholes begin to appear. The second row illustrates the procedure of modified k 
selection. In this approach, as k reduces (transition between panels [f‑j]), a higher resolution of the tampered region can be achieved without any wholes and artifacts
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shots of landscapes, people, man‑made objects, wildlife, 
monuments, both indoors and outdoors:
•	 Uncompressed Color Image Database  (UCID)[29] 

contains 1338 uncompressed raw images of size 
512 × 384 pixels, in Tagged Image File Format (TIFF), 
captured by a Minolta Dimage 5 digital color camera, 
available for download[30]

•	 McGill Calibrated Color Image Database, also known 
as CCID,[31] encompasses 1152 images in nine different 
categories. These images were taken by two Nikon 
Coolpix 5700 digital cameras, called “Pippin” and 
“Merry.” The images in this database are either the 
original size 1920  ×  2560 pixel images, or scaled 
down versions at 786 × 576 pixels, with both TIFF and 
JPEG extension, available for download.[32] We utilize 
full‑size, TIFF format. Moreover, we removed the 56 
repeated items from this database, yielding a total of 
1096 unique images.

•	 Never‑compressed Color Image Database, in this article 
called NCID,[33] consists of 5000 original TIFF raw 
format digital images of size 640 × 480 pixels, lossless 
true color and never compressed, bit depth of 24, 
available for download[34]

•	 CASIA Tampered Image Detection Evaluation Database 
version 2.0 contains 7491 authentic and 5123 tampered 
color images. Their size varies from 240  ×  160 to 
900  ×  600 pixels. Both uncompressed and JPEG 
compressed images with different quality factors exist 
in this database, available for download.[35] We ignore 
the whole tampered set, because we want to monitor the 
process of image splicing and be aware of their primary 
quality factors, for further evaluations.

Ultimately, 11704 TIFF and 3221 JPEG authentic images 
altogether have been exploited, in order to create singly 
and doubly compressed image sets. According to the image 
forgery process, as displayed in Figure  1, JPEG images in 
different qualities are required to be spliced together. For 
this purpose, in the first place, all the TIFF images have 
been compressed in JPEG format, at quality factors of 
QF =  (50, 55., 95), which results in ten different quality 
sets.

For creating manipulated images, the background is chosen 
from the group q1 ∈ QF and the foreground is chosen from 
the group q0 ∈  QF which is cropped with a random mask 
and inserted, as the tampered region, in the background. 
Thus, 100 different spliced sets are constituted, known by 
pertaining (q0, q1) pairs. The crop mask which is employed 
here is used as the Ground Truth (GT) later, for evaluation 
of the segmentation results.

All experiments were carried out in MATLAB R2016a 
using Intel® Core™ i5‑2670QM  (3.10GHz) processor and 
4GB RAM.

Experimental results of ghost detection and 
segmentation steps

In addition to the eight smoothing filters defined in Section 
3.1, the JPEG recompressor used in a previous study[13] is 
utilized here too, for comparing performances. There is no 
limitation on our proposed filters, but for Farid’s method, 
the two following constraints are necessary:
•	 The parameter of double quantization, q2, should be 

almost equal to low‑quality factor to discriminate the 
ghost

•	 The DCT grids of the tampered region of I and the 
JPEG compressor should be aligned.

Although we have no prior knowledge about q2 and 
possible shifting in DCT grids, we use the approaches 
of Azarian‑Pour et  al.[17] in order to overcome these 
limitations. Ultimately, nine different smoothing filters 
are compared and the best one is employed for the next 
section, in which we choose the best distance criterion 
and analyze the result of the classifier. To this end, 500 
forged images are randomly chosen from the manipulated 
dataset. Each manipulated image is processed by the ghost 
detection step, using nine different smoothing filters. 
Afterward, the iterative segmentation method is applied to 
the ghost output.

In each case by comparing the final segmentation result and 
GT, the values of true positives (TPs), true negatives (TNs), 
false positives, and false negatives are obtained. It is 
obvious that reporting these values for each image or in 
the average form is not helpful. Instead, we use accuracy, 
precision, specificity, and sensitivity defined in Theodoridis 
and Koutroumbas study.[28]

These criteria are averaged over the 500 above‑mentioned 
images and displayed in Table  2, along with the average 
run time in terms of seconds.

In the results of Table  2, the best values of accuracy, 
specificity, sensitivity, and precision are displayed in 
boldface. It is seen that the Gaussian LPF shows the 
best performance overall. Thus, for further simulations, 

Table 2: Average segmentation results for nine different 
filters

LPF Average
Accuracy Specificity Sensitivity Precision Run time

F1 0.85 0.93 0.59 0.78 3.67
F2 0.87 0.92 0.59 0.78 3.70
F3 0.85 0.93 0.63 0.74 4.93
F4 0.84 0.92 0.62 0.73 4.81
F5 0.86 0.95 0.66 0.78 4.28
F6 0.85 0.95 0.61 0.77 4.35
F7 0.85 0.93 0.60 0.77 4.24
F8 0.86 0.93 0.60 0.75 4.28
[13] 0.85 0.92 0.61 0.72 5.61
LPF – Low‑pass filter
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F5  (u, v) = e−D2(u, v)/2D02, D0  =  25, is used as the smoothing 
filter. Figure 7 shows two examples of segmentation of the 
forged area, using F5 as the smoothing filter.

Experimental results of the classification step

The final classification step is a simple thresholding on the 
distance measure. Thus, the values of the threshold, Th, for 
each type of distance must be determined. For this purpose, 
we applied the steps 1 and 2 of the proposed method on 
10,000 original and 10,000 tampered images. As a result, the 
segmented area is obtained. Then, using formulae  (11–14), 
the distance between two areas is calculated. We set Th in 
a way which minimizes the classification error rate on this 
set of images. It occurs when P (e|Original) = P (e|Forged). 
The values of optimum Th and the minimum resulted error 
rate are displayed in Table 3.

Due to the significant performance and accuracy of 
Kolmogorov–Smirnov statistic  [Table  3], the classification 
task is performed by using this criterion.

For reporting the final results, a comprehensive simulation 
is performed. First, 10,000 authentic images are randomly 
chosen from the ten different quality groups, each one 
containing 1000 images. On the other hand, 10,000 
tampered images are chosen from the 10  ×  10  =  100 
different quality groups, each one containing 100 images. 
The result of simulation is reported in Table  4. For the 
authentic images, the percentage of true detection  (TN 
rate) versus quality factor is displayed and for the tampered 
ones, the percentage of true detection (TP rate) versus both 
q0 and q1 is depicted.

Moreover, for better illustration, the sensitivity of the 
tampered images is plotted versus  ∆  q = |q0  −  q1  |  in 
Figure 8. At the end, the F1 score defined Theodoridis and 
Koutroumbas[28] as

F precision sensitivity
precision sensitivity1 =

×
+

2
� (15)

is calculated, respectively, for UCID, NCID, CCID, and 
CASIA databases. Actually, F1 is a measure of the accuracy 
of a test. It considers both precision and sensitivity of the 
test to compute the score.

The final results of our proposed method are shown in 
Table  5, compared to the six state‑of‑the‑art methods. 
The results of Li’s method,[36] Milani’s method,[37] Dong’s 
method,[38] and Taimori’s method[39] are previously 
quoted.[39] In summary, the method used in a previous 
study[36] is based on extracting alternate current  (AC) 
mode features from the first digit of DCT coefficients 
which is inspired by Benford’s law.  Milani  et  al. used a 
highly accurate approach based on the same feature set 
in Milani et  al.,[37] using Markov transition probability 
matrix. Dong et  al.[38] used quantized AC modes based 

Table 3: Optimum threshold and minimum error rate 
for each distance measure

Distance measure Threshold Error rate
Bhattacharyya 0.427 0.014
Kullback–Leibler divergence 1.208 0.015
Symmetric Kullback–Leibler divergence 5.039 0.021
Kolmogorov–Smirnov statistic 0.405 0.004

Table 4: Percentage of true detection rate, for different 
quality images

Tampered 
images

q0

50 55 60 65 70 75 80 85 90 95

q 1

50 ‑ 71 80 93 100 100 100 100 100 100
55 71 ‑ 71 88 96 100 100 100 100 100
60 80 71 ‑ 75 94 98 100 100 100 100
65 93 88 75 ‑ 75 93 100 100 100 100
70 100 96 94 75 ‑ 75 96 100 100 100
75 100 100 98 93 75 ‑ 83 100 100 100
80 100 100 100 100 96 83 ‑ 89 100 100
85 100 100 100 100 100 100 89 ‑ 97 100
90 100 100 100 100 100 100 100 97 ‑ 100
95 100 100 100 100 100 100 100 100 100 ‑

Original 
images

99.7 98.9 98.6 98.3 98.1 97.6 96.8 94.5 93.7 83.3
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Figure 8: Sensitivity of composite forged images versus ∆ q = |q0 − q1|
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Figure  7: Final segmentation results on two different forged images. 
(a) Spliced image using quality factor 85 (forged area) and 90 (background 
image). (b) Green area: Singly compressed, red area: doubly compressed. 
(c) Spiced image using 95  (forged area) and 85  (background image). 
(d) Green area: singly compressed, red area: doubly compressed
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on texture features. They exploited PCA algorithm for 
dimensionality reduction and SVM for training the 
classifier. The method of Taimori et  al.[39] also used 
PCA and SVM accordingly for feature selection and 
classification. We also add the results of Azarian‑Pour 
et  al.,[17] which is based on a similar method to Farid[13] 
and is modified to be compatible with both aligned and 
nonaligned DCT grids. Finally, the performance of Yang 
et  al.[23] has been compared which is based on the DCT 
coefficients with the same frequency which yield the 
direction effect. Again PCA and SVM are exploited for 
feature selection and classification. As it can be seen in 
Table  5, in most cases, our method outperforms other 
methods, more particularly, in terms of sensitivity.

Conclusion
In composite tampered images, often discrepancies in different 
parts of the image could lead forensic specialists to detect 
forgery. Low‑quality factor in the JPEG compression scheme 
distinctly affects high‑frequency texture in the image. Tracing 
these inconsistencies, we are able to estimate which regions 
do not originally belong to the image under inspection. In this 
article, we proposed a fully automatic method for detecting 
JPEG recompression based on separating low‑frequency 
parts from high‑frequency ones. It has been demonstrated 
that after applying a LPF, the low‑textured parts of the 
image are affected less than high‑quality regions. Hence, the 
difference (ghost image) in each pixel reveals inconsistencies 
in quality factor. Motivated by this observation, the new 

algorithm provides a procedure for constructing a method 
for forensic analyses of digital images which does not fail in 
the not aligned DCT grids cases. We also proposed a new 
segmentation method. Although we have used it for ghost 
detection purpose, this technique can be applied to other 
fields for performing segmentation tasks.
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