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Abstract
Background: A fair amount of important objects in natural images have circular and elliptical 
shapes. For example, the nucleus of most of the biological cells is circular, and a number of parasites 
such as Oxyuris have elliptical shapes in microscopic images. Hence, atomic representations 
by two‑dimensional  (2D) basis functions based on circle and ellipse can be useful for processing 
these images. The first researches have been done in this domain by introducing circlet transform. 
Methods: The main goal of this article is expanding the circlet to a new one with elliptical basis 
functions. Results: In this article, we first introduce a new transform called ellipselet and then 
compare it with other X‑let transforms including 2D‑discrete wavelet transform, dual‑tree complex 
wavelet, curvelet, contourlet, steerable pyramid, and circlet transform in the application of image 
denoising. Conclusion: Experimental results  show that for noises under 30, the ellipselet is better 
than other geometrical X-lets in terms of Peak Signal to Noise Ratio, especially for Lena which 
contains more circular structures. However, for Barbara which has fine structures in its texture, it has 
worse results than dual‑tree complex wavelet and steerable pyramid.
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Introduction
In recent years, one of the most considerable 
approaches in image modeling is using 
transforms with different basis functions. 
For example, the atoms of discrete Fourier 
transform  (DFT) are sine and cosine 
functions which can analyze the frequency 
component of stationary signals; however, 
they are not appropriate for analyzing 
nonstationary signals such as local visual 
properties in natural images  (e.g., edge 
detection). Hence, although DFT has 
a high‑frequency resolution, it suffers 
from lack of time/spatial resolution. In 
order to solve this weakness, the wavelet 
transform  (WT) has been introduced for 
joint time–frequency analysis of signals.[1] 
This multiresolution transform is a powerful 
tool in signal/image analysis and has many 
applications in denoising, enhancement, and 
feature extraction. Indeed, DFT and WT are 
defined for one‑dimensional  (1D) signals, 
and they cannot efficiently represent 
geometries in natural images. In fact, 
these transforms can efficiently model the 
point‑singularities, and even though they 
have many applications in signal processing 
tasks, they are not efficient enough 
for representing two‑dimensional  (2D) 

singularities such as edges and curves 
in natural images. Note that extending 
1D‑discrete wavelet transform  (DWT) 
to 2D‑DWT does not solve this problem 
because 2D‑separable DWT which is the 
tensor product of 1D‑DWT reconstructs 
the 2D singularities by aggregation of 
point singularities around the edges which 
cannot model the smoothness along the 
direction of edges. In order to obviate 
the weaknesses of wavelets in larger 
dimensions, nonseparable 2D multiscale 
transforms called geometrical X‑lets have 
been proposed. Ridgelet transform is one of 
these X‑lets which was first introduced by 
Candes and Donho in 1999.[2] The ridgelet 
transform represents line singularity in 
2D by using Radon transform and maps 
these singularities to point singularities. In 
addition to scale and translation parameters 
which are considered by DWT, the ridgelet 
transform also considers angle parameter. In 
addition, to represent the curve singularities 
in an image, the ridgelet transform has been 
extended to a new X‑let called curvelet 
transform.[3] The curvelet transform is 
one of the multiscale transforms which 
provides analysis in some windows with 
different sizes to segment curves as a set 
of straights in subimages. The main idea 
behind this transform is decomposing an 
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image to multiresolution sub‑bands and then analyzing 
each partitioned sub‑band by ridgelet transform.[4] One 
of the main drawbacks of this transform is its need to 
discretization (e.g., rotating the curvelet basis functions can 
be easily performed in polar domain, but it is a challenging 
task in the Cartesian domain). To solve this problem, 
contourlet transform has been developed[5] which is directly 
defined in the discrete domain. The contourlet transform, 
at first, employs a multiscale transform to the images for 
detecting the edges, and then a local directional filter bank 
is applied for detecting contour segments.[6] In addition to 
lines and curves, circular and elliptical shapes are frequently 
seen in some medical images. For example, the nucleus of 
most of the biological cells is circular, and a number of 
parasites such as Leishmania and Oxyuris have elliptical 
shapes. Hence, introducing 2D basis functions based on 
circle and ellipse in atomic representations can be useful 
for processing these images. The first researches have been 
done in this domain by introducing circlet transform.[7] 
This transform decomposes an image using a set of circles 
with different radii and a determined width via a DFT filter 
bank. The main goal of this article is extending the theory 
of circlet transform to produce a new X‑let transform with 
elliptical basis functions, i.e., ellipselet transform. In this 
article, first, the X‑let transforms are explained briefly 
in X‑let Transforms section. The Ellipselet Transform 
section is dedicated for introducing ellipselet transform by 
changing the circular basis functions to elliptical ones, and 
the results of ellipse detection using ellipselet transform on 
a simple image is explained in this section. For comparing 
the new transform with other X‑lets, image denoising 
application with presented X‑lets is compared in X‑Lets for 
Image Denoising section. Finally, this article is discussed 
in Discussion and Conclusion section.

X‑let Transforms
Usually, transforms decompose an image to a series of 
elementary waveforms called basis functions or dictionary 
atoms. Different directional time–frequency dictionaries 
provide various geometrical X‑let transforms in two or 

higher dimensions. In this article, we provide a snapshot 
of a number of geometrical X‑let transforms including 
2D‑DWT, dual‑tree complex WT  (DT‑CWT), curvelet 
transform, contourlet transform and steerable pyramid, and 
circlet transform and introduce a new one namely ellipselet 
transform which is an extension of the circlet transform by 
modifying the circular basis function to the elliptical atoms.

Discrete wavelet transform

DWT is a powerful tool for joint time–frequency analysis 
of signals which decomposes a signal based on a series 
of basis functions called wavelets. The wavelets are 
produced by dilation and translation of a mother wavelet. 
This transform can show point singularities properly, 
but it is not an optimal tool for the representation 
of 2D singularities. For image processing, a simple 
way for using DWT is using tensor product for the 
extension of 1D‑DWT to 2D‑DWT. 2D‑DWT provides a 
multiresolution representation by creating four sub‑bands 
in each scale  [Figure  1]. As shown in Figure  2, the basis 
functions of 2D‑DWT can recognize vertical, horizontal, 
and diagonal spectral features. Although this transform 
has been used vastly in different applications of signal 
processing, it has some limitations such as lack of shift 
invariance and poor directional selectivity.[1]

Dual‑tree complex wavelet transform

DT‑CWT is one of the extensions of WT, which is first 
introduced by Kingsbury in 1998.[9] This transform uses 
two real DWTs in parallel as shown in Figure  3 to create 
real and imaginary parts of the transform. By producing 
six sub‑bands in six directions, it has partly improved the 
deficiencies of 2D‑DWT. In addition, the redundancy factor 
of this transform is 2d for d‑dimensions.[10] Figure  4 shows 
the sub‑bands of DT‑CWT in the direction of  ±15, ±45, 
and ±75.

Discrete curvelet transform

The ridgelet transform, introduced by Cand’es and 
Donho,[2] is an efficient tool for representing line 

Figure 1: (a) Filter structure of two‑dimensional‑discrete wavelet transform. (b) Two‑dimensional‑discrete wavelet transform decomposition in three levels[3]

ba
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singularities. Moreover, for demonstrating curves in 
images, this transform has been developed to curvelet 
transform. The curvelet is a multiscale transform which 
uses scaling, translating, and rotating parameters to create 
its basis functions. The main idea behind the curvelet 
transform is decomposing an image into sets of wavelet 
sub‑bands and then analyzing each sub‑band with the 
local ridgelet transform.[2] The block diagram of the first 
version of curvelet transform and its sub‑bands are shown 
in Figures 5 and 6, respectively.

Discrete contourlet transform

The contourlet transform was first introduced by Do 
and Vetterli[5] to overcome the limitations of curvelet 
transform in discretization. This transform can detect 
2D‑geometrics in images in two steps: first, it decomposes 
an image into a set of sub‑bands by Laplacian Pyramid 
and then applies a series of directional filter banks to 

the image. The basis functions are oriented in different 
scales and orientations.[6] The block diagram of the 
Contourlet transform and its sub‑bands are illustrated in 
Figures 7 and 8, respectively.

Steerable pyramids

The steerable pyramid is a linear multiscale and 
multiresolution transform based on angular and radial 
decompositions.[13] According to Figure  9, first, the image 
is divided into low‑  and high‑pass sub‑bands. Second, the 
low‑pass sub‑band is separated into a series of oriented 
band‑pass sub‑bands and a low‑pass sub‑band. Then, 
the low‑pass sub‑band is downsampled by a factor of 2, 
and this process will be repeated. If the transform has k 
orientation bands, it would be overcomplete by a factor of 
4k/3, showing redundancy.[14]

Circlet transform

The circlet transform is a robust tool to detect circular 
objects in images in which the binary image segmentation 
is not needed. The transform decomposes an image to a set 
of circles with different radii and a determined width using 
a DFT filter bank. This decomposition is defined in Fourier 
domain using the following definitions which are very 
close to the one introduced by Chauris et  al.[7] The circlet 
parameters are described by a central position (x0, y0), 
radius  (r0), and central frequency content  (f0). All circlet 
components Cµ (x, y) can be obtained by a reference circlet 
Cref  (x, y) which can be shifted or changed in radius and 
central frequency content of the circlet. The circlet function 
is defined by the following equation:

C x y f r rµ π,( ) = −( ) Ω 2
0 0 � (1)

Where, r x x y y= −( ) + −( )0

2

0

2

 and Ω is an oscillating 
function such as wavelet function to distinguish 
discontinuities. Practically, Cµ is defined in 2D Fourier 
domain.[7] In circlet decomposition, an image f(x, y) is 
broken down into a sum of basic functions Cµ as shown in 
Eq. 2:

f x y A C x y, ,( ) = ( )∑
µ

µ µ � (2)Figure 3: Analysis of filter bank for the dual‑tree complex discrete wavelet 
transform[10]

Figure 2: Sub‑bands of two‑dimensional‑discrete wavelet transform[8]

Figure 4: The sub‑bands of real oriented two‑dimensional dual‑tree complex discrete wavelet transform in (a) space domain (b) Fourier spectrum[10]

b

a
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The circlet transform is a tight frame system, and the amplitudes 
Aµ are created by a scalar product as shown in Eq. 3:

( ) ( ),   , ,A f C f x y C x y dxdyµ µ µ= < >=∫∫ � (3)

From a practical point of view, the circlet coefficients can 
be defined in the Fourier domain using Parseval’s theorem 
as shown below:

( ) ( )
^ ^

1 1 2 1 2

^ ^

2, ,  ,A f C f C d dµ µ ω ω µ ω ω ω ω= < > = ∫∫
n

� (4)

Where f̂  is the 2D Fourier transform of f and f* is the 
conjugate of f.   Hence, the circlet transform is defined in 
2D Fourier domain with the definition of; Ĉ (w1,w2), the 
Fourier transform of Cµ plays an important role in the 
performance of circlet transform.

In order to construct circular‑shaped filters, 1D filters Fk 
and 2D filters Gk are used such that for all ω and (w1,w2), 
the following perfect reconstruction conditions are satisfied:

k
kF∑ ( ) =ω

2

1

k
kG∑ ( ) =ω ω

1 2

2

1, � (5)

In these conditions, the filter Fk is defined as shown in 
Eq. 6, where N is the number of filters and

ω
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k
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π
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In order to construct circular shape in spatial domain, the 
2D filter Gk is defined by a phase delay of 1D filter as Fk 
shown in Eq. 7.

( ) ( )0
1 2 , .j r

k kG e Fωω ω ω= � (7)

In Eq. 7, ω (w1,w2) = |ω| and is defined as follows:

ω ω ω= +
1

2

2

2 � (8)

By the definition of Gk, the Fourier transform of a circlet is 
described in Eq. 9.

( ).ˆ .i xc
kG e Gω

µ ω< >= � (9)

Where xc =  (x0, y0) is the central position, and r0 is the 
radius of the circlet. Figure  10 shows the magnitude and 
phase of basis functions in circlet transform.[16]

Ellipselet Transform
The main goal of this study is expanding the circlet 
transform to a new one with elliptical basis functions. 
Therefore, we have to design a new atomic representation 
system with elliptical basis functions. As mentioned in 
Eq. 7, in Fk|ω| and for ω =  (w1,w2), |ω| is defined by the 
Eq. 8 that it constructs the circular shape of basis functions 
in circlet. Now, we introduce a new norm definition as 
follows:

ω ω ω αωω
elp

k k= + +
1 1

2

2 2

2

1 2
� (10)Figure 5: The block diagram of curvelet transform[11]

Figure 6: Sub‑bands of curvelets[8]
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In this equation, by considering different values of k1 and 
k2 and α parameters, elliptical basis functions in different 
sizes and directions are built. We assume that we have a 
new transform with four basis functions in four different 
directions as shown in Figure 11.

For detecting ellipses in images, we need to know the 
position, angle, and size of the major and minor axes of 
ellipse. We assume a simple ellipse as shown in Figure 12.

The produced sub‑bands of Figure 12 using the introduced 
basis functions in Figure  11 are represented in Figure  13. 
As shown, the first row which is related to basis functions 
at 0° is similar to the original image. By converting the 
sub‑bands to binary images and using morphological 
operations, the new subimages as shown in Figure  14 are 
achieved.

Figure 7: The block diagram of contourlet transform[12]

Figure 8: Sub‑bands of contourlet[8]

Figure 9: The block diagram of steerable pyramid decomposition[15]
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It is obvious from Figure  14 that only sub‑bands in 
the first row are similar to the original image which 
is related to the basis functions with zero direction. 
In order to find the desired size and location of the 
ellipse, radon transform can be employed.[17] If we 
use radon transform for each sub‑band in the angle of 
perpendicular direction of its basis, we achieve signals 
as shown in Figure  15. We consider a percentage of 
maximum of peaks in signals for thresholding of signals 
as shown in Figure  15. By choosing the sub‑band in 
which all the four sub‑images are above the threshold, 
the first sub‑band is extracted that is related to the 
basis of zero direction and shows that the main ellipse 
is in vertical direction at 90°. Now, for detecting the 
position of the main ellipse, all row/column signals of 
the selected sub‑band are plotted and the middle of two 

Figure 12: A simple ellipse with major axis: 50 pixels, minor axis: 20 pixels, 
angle: 90, center position: (250, 250), size of image: (512, 512)

Figure 10: (a) The magnitude of basis functions of circlet transform. (b) The phase of basis functions of circlet transform
ba

Figure 11: Basis functions of the ellipselet transform in four directions and four frequency contents. (a‑d) the basis function at angles 0°, 90°, −45°, and 
45°, respectively

dc

ba
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Figure 13: The sub‑bands of ellipselet transform on the ellipse of Figure 12

Figure 14: Produced subimages of Figure 13 after binerization and applying 
morphological operators

maximum points is selected as the x/y position of the 
center of the desired ellipse [Figure 16].

After determining the center position and angle of the 
ellipse, we calculate the dimensions of the ellipse by using 
two radon transforms in the direction of the ellipse and its 
perpendicular line. Considering the obtained parameters 
of ellipse, we can draw the extracted ellipse by ellipselet 
transform. Figure  17 shows the contour of the produced 
ellipse in blue color. This figure shows that the position 
and angle of the ellipse have been detected correctly.

X‑Lets for Image Denoising
In general, digital images suffer from noise due to 
acquisition/transmission process and shortcoming of 
capturing modalities and receivers. In addition to linear 
methods such as Wiener filtering, nonlinear techniques 
including applying thresholding/shrinkage functions 
in transform domains have been reported in recent 
years.[3,5,9,18,19] In general, in image transform‑based 
denoising approaches, two important issues should be 
considered. The first one is choosing proper transform 
and the other is selecting proper thresholding function. 
In this article by using a proper thresholding function, 
the performance of geometrical X‑lets such as 2D‑DWT, 
DT‑CWT, curvelet, contourlet, steerable pyramid, circlet 
transform, and the proposed transform of ellipselet was 
compared in reducing additive white Gaussian noise from 
natural images.

Experimental Results
Different frameworks can be considered for image 
denoising. Usually, reported studies in Bayesian 
frameworks outperform others. For example, Rabbani in 
2009[19] used local Laplace pdf and  maximum a posteriori 
(MAP)  estimator in steerable pyramid domain and 
showed better performance in comparison with the other 
state‑of‑the‑art denoising methods such as Bayes least 
squared Gaussian scale mixture technique.[20] The statistical 
features of images can be simplified in sparse domains 
because of some properties of transforms such as sparsity. 
Hence, the main features of transformed image can be 
represented by a few large coefficients, and the remained 

[Downloaded free from http://www.jmssjournal.net on Saturday, September 28, 2019, IP: 10.232.74.22]



Khodabandeh, et al.: The ellipselet transform

152� Journal of Medical Signals & Sensors | Volume 9 | Issue 3 | July-September 2019

Figure 16: Selection of center of the desired ellipse

coefficients are approximately around zero. Hence, there 
is a large peak at zero in the histogram of sub‑bands and 
its tails goes to zero slower. It means that their distribution 
is close to the Laplace pdf and far from the Gaussian pdf. 
In this study, we first show the histogram of the X‑let 
coefficients in a specific sub‑band and then the Laplacian 
and Gaussian pdfs are fitted to the histogram  [Figure  18], 
and the goodness of fit of each pdf is reported. Because 
Laplacian pdf is well fitted to the histograms, using MAP 
estimator and Laplacian prior, the soft thresholding with 

a threshold of 2
2σ

σ
n

k

�  is obtained,[19] where n is the 

standard deviation of noise and k is the standard deviation 
of noise‑free image in the kth sub‑band.   Experiments 
performed on standard gray scale images of Lena, Barbara, 
and Boat at a resolution of 512  ×  512 pixels corrupted by 
additive Gaussian noise with different levels to compare 
the performance of geometrical X‑lets transforms in image 
denoising.

According to Figure  19, by testing different combinations 
of ellipselet sub‑bands  (for n  =  4 in Eq. 6), the best 
signal‑to‑noise ratio is obtained on the first, third, and 
fourth sub‑bands of ellipselet ([1,3,4]). Hence, for denoising 
by circlet and ellipselet transforms, the second sub‑band, 
which includes the main global information of the image, 
remains unchanged, and soft thresholding is applied on the 
first, third, and fourth sub‑bands. However, similar to the 
usual procedure of transform‑based denoising methods for 

Figure 15: (a) Radon transform of the first row of Figure 14 in the direction of 90°. (b) Radon transform of the second row of Figure 14 in the direction of 
0°. (c) Radon transform of the third row of Figure 14 in the direction of +45°. (d). Radon transform of the fourth row of Figure 14 in the direction of −45°

dc

ba

Figure 17: (a) Detected ellipse with the new transform. (b) The zoomed‑in 
detected ellipse of part

ba
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2D‑DWT. Chi‑square_ Laplace: 0.0062
Chi‑square_ Gaussian: 0.0074

DT‑CWT. Chi‑square_ Laplace: 0.007
Chi‑square_ Gaussian: 0.008

Circlet. Chi‑square_ Laplace: 0.0049
Chi‑square_ Gaussian: 0.020

Curvelet. Chi‑square_ Laplace: 0.006
Chi‑square_ Gaussian: 0.008

Contourlet. Chi‑square_ Laplace: 0.003
Chi‑square_ Gaussian: 0.01

Steerable Pyramid. 
Chi‑square_ Laplace: 0.006

Chi‑square_ Gaussian: 0.009

Ellipselet. Chi‑square_ Laplace: 0.0002
Chi‑square_ Gaussian: 0.03

Figure 18: The histogram of the X‑Let coefficients in a specific sub‑band of 
Lena image and the best Gaussian (green plot) and Laplace pdf (red plot) 
fitted to this histogram with Chi‑square test

other X‑lets, in this article, the low‑pass sub‑band is kept 
unchanged and the thresholding function is applied on 
other sub‑bands.

The efficiency of the presented methods is first visually 
evaluated as shown in Figures  20 and 21. Then, the 
experimental results are numerically compared in terms 
of peak signal‑to‑noise ratio  (PSNR)  [Figure  22] and 
Structural Similarity Index  (SSIM)  [Table  1] using the 
following definitions:

PSNR
MAX
MSE

i=








10 10

2

log � (11)

Where MSE is the mean squared error and MAXt is the 
maximum possible pixel value of the image.

The SSIM shows structural similarities between two images 
and defines as follows.[21]

SSIM
s

s

s

s

s s

s
s

=
+









 +( )

+ +












+

2 2 55 2 7 65

2 55
2

2

2

^

^

. .

.

^

^

σ

σ σ 22
7 65+( ).

� (12)

Discussion
In this article, we introduced a new X‑let transform namely 
ellipselet transform by using elliptical basis functions. We 
showed that this transform can correctly detect a simple 
ellipse at 90°. For ellipses in three other directions of 0°, 
−45°, and +45°, we also did the same work described above 
and achieved the desired answers. Hence, the new transform 
with elliptical basis functions introduced in this article can 
detect the direction and position of simple ellipses in images. 
However, this new transform has some limitations. For 
example, it has limited number of basis functions, and we 
just tested it on simple images with one ellipse. Considering 
new criterions and expanding this transform by using more 
basis functions  (e.g., 8 basis functions in angles 0°, ±22.5°, 
±45°, ±67.5°, and 90°) is suggested in future studies.

Figure 19: Comparison among thresholding on different sub‑bands of ellipselet. (a) Peak signal‑to‑noise ratio of denoized Lena in different sub‑band 
thresholding. (b) Peak signal‑to‑noise ratio of denoized Barbara in different sub‑band thresholding. (c) Peak signal‑to‑noise ratio of denoized boat in 
different sub‑band thresholding

cba
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Noisy image with
sigma=15

Denoized with
2D‑DWT

Denoized with DT‑CWT
Denoized with

circlet transform

Denoized with
steerable pyramid

Denoized with contourlet Denoized with curvelet Denoized with ellipselet

Figure 20: Results of image denoising of Lena with different X‑lets for sigma = 15

Noisy image with
sigma=25

Denoized with
2D‑DWT

Denoized with DT‑CWT
Denoized with

circlet transform

Denoized with
steerable pyramid

Denoized with contourlet Denoized with curvelet Denoized with ellipselet

Figure 21: Results of image denoising of boat with different X‑lets for sigma = 25

In this article, we also compared the introduced ellipselet 
transform with other X‑let transforms in reducing noise 
from natural images. As shown in Figure  22, DT‑CWT 
usually outperforms others in terms of PSNR. The 

main reason is that the DT‑CWT has a good directional 
selectivity and perfect reconstruction property which 
makes it a proper tool for denoising applications. 
According to Table  1, DT‑CWT has the maximum 
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Figure 22: The results of peak signal‑to‑noise ratio for Lena and Barbara images denoized by different X‑lets

Table 1: The results of structural similarity index for different denoising methods
512×512 image σ Noisy image 2D‑DWT DT‑CWT Circlet Curvelet Cotourlet Steerable pyramid Ellipselet
Lena 10 0.64 0.83 0.87 0.79 0.82 0.85 0.88 0.84

15 0.50 0.79 0.82 0.71 0.78 0.78 0.82 0.79
25 0.35 0.73 0.76 0.57 0.71 0.69 0.77 0.67
35 0.28 0.68 0.73 0.47 0.67 0.64 0.75 0.56
45 0.22 0.57 0.65 0.39 0.57 0.59 0.71 0.46
55 0.19 0.54 0.63 0.31 0.53 0.55 0.68 0.39
70 0.16 0.42 0.65 0.21 0.46 0.49 0.61 0.25

Boat 10 0.71 0.83 0.84 0.77 0.75 0.78 0.78 0.78
15 0.58 0.78 0.78 0.71 0.70 0.68 0.74 0.74
25 0.42 0.70 0.70 0.60 0.63 0.54 0.68 0.65
35 0.33 0.63 0.64 0.50 0.56 0.47 0.62 0.57
45 0.27 0.60 0.61 0.42 0.52 0.39 0.57 0.49
55 0.24 0.58 0.59 0.35 0.51 0.34 0.52 0.43
70 0.19 0.53 0.54 0.28 0.49 0.28 0.46 0.35

Barbara 10 0.72 0.83 0.84 0.67 0.72 0.76 0.69 0.74
15 0.60 0.76 0.78 0.60 0.57 0.67 0.62 0.70
25 0.45 0.68 0.69 0.50 0.55 0.54 0.59 0.61
35 0.36 0.59 0.62 0.41 0.53 0.45 0.53 0.53
45 0.30 0.56 0.57 0.36 0.50 0.39 0.49 0.45
55 0.25 0.54 0.54 0.30 0.49 0.34 0.44 0.40
70 0.22 0.50 0.52 0.24 0.47 0.27 0.39 0.33

2D‑DWT – Two‑dimensional discrete wavelet transform; DT‑CWT – Dual‑tree complex wavelet transform

SSIM for Boat and Barbara, and steerable pyramid 
has the maximum SSIM for Lena in different levels 
of noise. The reason of good performance of steerable 
pyramid is that the steerable pyramid operates based 
on a polar‑separable decomposition in the frequency 
domain that allows independent representation of scale 
and orientation, and the representation is translation and 
rotation invariant which makes it proper to analyze image 
structures and edge preservation. Moreover, as shown in 
Figure 22, for noises under 30, the ellipselet is better than 
others, especially for Lena which contains more circular 
structures. However, for Barbara which has fine structures 

in its texture, it has worse results than DT‑CWT and 
steerable pyramid.

Different results in different images by different levels 
of noise show that X‑lets’ performance is related to 
the image content and level of noise. As illustrated 
in Figure  23, the basis functions of different X‑lets 
produce different frequency features, and each of 
them partitions the 2D frequency plane in a different 
way.   Based on the location of components of image 
in 2D frequency plane  and how they match with basis 
functions, any of these transforms could be more 
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beneficial. About the newly introduced transform, 
ellipselet, we can see that it has better results than 
circlet transform and both of them have good results in 
lower levels of noise, especially for images containing 
circular patterns.
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