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Abstract
An alarm system has become essential to prevent someone from drowsiness while driving, 
considering the high incidence due to fatigue or drowsiness. This study offered an alternative 
to overcome all the limitations provided by the conventional system to detect sleepiness based 
on the driver’s brain electrical activity using wearable electroencephalogram (EEG), which is 
lighter and easy to use. The EEG signals were collected using EMOTIV Epoc + and then were 
decomposed into narrowband frequency, such as delta, theta, alpha, and beta using DWT. The 
relative power, as the result of feature extraction, then were processed further by calculating its 
variance using the common spatial pattern (CSP) method to optimize the accuracy of extreme 
learning machine (ELM). Comparison of relative power between awake and drowsy state showed 
that during the drowsy state, theta‑wave, alpha‑wave, and beta‑wave were tend to be higher than 
in the awake state. However, despite with the help of ELM, the accuracy was not too high (below 
87%). The feature extraction which continued by calculating its variance using CSP algorithm 
before classified by ELM obtained a high accuracy, even with small amount of data training. This 
showed that CSP combining with ELM could be useful to shorten the time in training/calibration 
session, yet still, obtained high accuracy in classifying the awake state and drowsy state. The 
overall average accuracy of testing ranged from 91.67% to 93.75%. This study could increase the 
ability of EEG in detecting drowsiness that is important to prevent the risk caused by driving in a 
drowsy state.
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Introduction
Drowsiness is a condition between awake 
or alert and sleep. Drowsiness is one of the 
highest causes in accidents. Based on the 
incidence of traffic accidents and deaths 
collected by the National Police Corps, 
in 2014, the number of traffic accident 
victims reached 95,906 victims, and 17.2% 
of the total was death. The data of traffic 
incidence showed that 83% of the accidents 
were caused due to human error, which 
consists of disorganized, indifferent/sleepy 
and exceeding the speed limit.[1]

An alarm system has become essential to 
prevent someone from drowsiness while 
driving, considering the high incidence 
of traffic accidents due to human error, 
such as fatigue or sleepiness, including 
adding sensors that placed in the car, such 
as a camera to monitor eye movements or 
sensors placed on a tire that can give an 
alarm when the driver is sleepy. However, 

the system is limited because it only applies 
to specific circumstances. The alternative 
offered to overcome all the limitations 
provided by the conventional system was 
to detect sleepiness based on the driver’s 
brain electrical activity. The electrical 
activity of the brain would changes when 
a person starts to sleep, and this could 
become a promising tool for detecting 
the drowsiness while driving. In 2014, 
Awais researched to detect sleepiness 
based on alpha and theta wave spectrum 
using Fast Fourier transform.[2] Nikita 
Gurudath and Bryan Riley used discrete 
wavelet transform (DWT) to get the 
alpha, beta, theta, and gamma subwaves 
and then calculated the average value, 
median, variant, and standard deviation to 
distinguish alertness and drowsiness.[3]

This study tried to analyze 
electroencephalogram (EEG) signals 
automatically based on EEG signal in 
nondrowsy (awake state) and in the drowsy 
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state with digital signal processing using a wearable EEG 
device. Wearable EEG was light and easy to use; hence, it 
would be suitable for detecting drowsiness while driving. 
Besides, the wearable EEG such as EPOC or MindWave 
Neurosky has been used widely for drowsiness detection,[4,5] 
eye state identification,[6,7] classifying imaginary hand 
movement,[8] and other brain‑computer interface (BCI) 
applications. Compared to the medical‑used device, the 
wearable EEG had nonsignificant differences and generated 
a good performance for the specific task.[7]

The EEG signals were decomposed into narrowband 
frequency, such as delta, theta, alpha, and beta. Then, this 
sub‑band frequency was calculated to get its power spectral 
density (PSD) and its relative power. The PSD of the delta, 
theta, alpha, and beta would change if a person’s state 
change from awake to drowsy.[3,9,10] The relative power of 
each sub‑band frequency, as the result of feature extraction 
and then were processed further by calculating its variance 
using the common spatial pattern (CSP) method to enlarge 
the distance between drowsy and awake and could be used 
as a feature for the extreme learning machine (ELM). The 
addition of CSP was proven to increase the accuracy of the 
classifier since CSP maximize the variance of signals in 
one class while minimizing the variance of signals in the 
other class.[6,11,12] This study could improve the ability of 
EEG in detecting drowsiness that is important to prevent 
the risk caused by driving in a drowsy state.

Materials and Methods
Experiment protocol

BCI is a subject‑dependent system where each person 
had different characteristic and resulted in better accuracy 
values if each individual was trained and tested on 
their recordings.[13,14] The 28 EEG signals consist of the 
drowsy and awake states were collected from two healthy 
individuals (male and female, age ranged from 20 to 
25 years old who did not experience insomnia) using 
EMOTIV Epoc+ with 14 channel electrodes and two 
references (CMS/DRL noise cancellation configuration 
in P3/P4 locations). The sampling rate of EMOTIV 
Epoc+ device is 128 sampling per sequence with resolution 
14 bits 1 least significant bit = 0.5 µV (16‑bit ADC, 2‑bit 
instrumental noise floor discarded) and connected by 
Bluetooth. The EEG data were recorded in the research 
laboratory of Biomedical Engineering study Program, 
Universitas Airlangga. The individual was asked to sit 
down and play a game, which was assumed as a condition 
of driving a car for 10 min in alert conditions and 10 min 
during sleepy condition. The alert condition was a condition 
when the individuals start the activity in the morning and 
3 h after the individuals got up from sleep. Drowsiness 
was a condition while the individual had not slept for 
more than 18 h and felt drowsy. The electrode must be 
hydrated using saline solution every time before using the 
headset and make sure all the quality contact is green for 

proper contact of sensors on the scalp. The electrode was 
placed based on the EMOTIV tool shown in Figure 1.[15,16] 
This position represents the electrical activity of the brain 
in the frontal cortex (AF3, AF4, F3, F4, F7, and F8), 
frontocentral cortex (FC5‑FC6), temporal cortex (T7‑T8), 
parietal cortex (P7‑P8), and occipital cortex (O1‑O2). Data 
of EEG were saved in European Data Format (.EDF) and 
converted into. CSV to be processed further.

Signal preprocessing

It is necessary to do the preprocessing stage before 
processing the data to decompose the EEG signal into a 
subwave based on the frequency range, namely, alpha, 
beta, theta, and delta using wavelet transform (DWT). 
Decomposition of the EEG signal into a subwave at 
frequency sampling 128 Hz requires four levels using 
Daubechies 4 as the mother wavelet, with a detailed 
description of each level as follows:
• Level 1 is AD2 (0–32 Hz) and CD2 (32–64 Hz) which 

were considered as noise
• Level 2 is AD3 (0–16 Hz) and CD3 (16–32 Hz) which 

were included in the beta frequency range
• Level 3 is AD4 (0–8 Hz) and CD4 (8–16 Hz) which 

were included in the alpha frequency range
• Level 4 is AD5 (0–4 Hz) which was included in 

the delta, and CD4 frequency ranges (4–8 Hz) were 
included in the theta frequency range.

Feature extraction and classification

Relative power ratio

Sub‑band frequency selection for the features was 
conducted using DWT then obtained its PSD by calculating 
the squared magnitude of the decomposed signal (each 
sub‑band frequency).

The afterward process was to gain the value of the relative 
power ratio (RPR) of each sub‑band power that was the 
ratio between the power sub‑band power to the total of all 
sub‑band power (alpha + beta + delta + theta).

Figure 1: Electrode placement EPOC
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Relative power ratio = power (sub-band frequency)
total 4sub-band ppower

 (1)

Common spatial pattern

The result of RPR value was processed further using the 
common spatial pattern (CSP) method to achieve better 
accuracy in classifying the drowsy and awake states. 
CSP improves the accuracy by increased the distinction 
of each class and was an excellent method for BCI 
signal classification.[8,17] This algorithm maximized the 
variance of one class and then minimized the variance of 
the other class.[6,11] This study used the frequency‑based 
CSP algorithm by first filtering the signal into sub‑bands 
frequency (delta, theta, alpha, and beta) and then were 
calculated its variance based on CSP algorithm. The CSP 
was obtained using the script from James Ethridge and 
William Weaver.[18]

Extreme learning machine

The decrease and increase in the magnitude or power 
of sub‑band frequency have been linked to drowsiness. 
However, it was challenging to classify the awake 
state and the drowsy state using a threshold or linear 
classifier from the changes of frequency.[1] Therefore, 
the nonlinear classifier such as ELM was required to 
distinguish drowsy state and awake state. ELM is a 
single hidden layer of feedforward type neural network 
with L hidden neuron, activation function i (x) as the 
following equation:[19]

β i i i i jG a b x t
i

L ( , , )
=∑ =

1  j = 1,…, N Equivalent 
with Hβ = T (2)

Where ai is an input weight that connected j‑input nodes (xi) 
with i‑hidden node. bi is an impact factor from the i‑hidden 
node, while βi is an output weight which connected the 
i‑hidden node with output node. ti is a threshold or the 
input target from the j‑input node.

ELM was implemented to minimize the error training using 
Moore Penrose Pseudo Inverse by multiplied the inverse 
matrix H (H†) and target (T). Training was required to 
obtain weight values that were suitable for testing using the 
following algorithm:
• Step 1: Initialize the input weight (ai) and impact 

factor (bi) randomly based on the suitable activation 
function G (x). In this study, the sigmoid function was 
used as the activation function.

 The sigmoid activation function: 

 H (a1, b1, x1) = 
1

1+ −e G a b x( ), ,1 1 1
 (3)

• Step 2: Calculate all the output at the hidden neuron 
using the activation function and put it into matrix H

 G a b x a x b
i

L 1 1 1 i i i( ), , = +
=∑ 1

 (4)
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G a b x G a b x

G a b x G a b x
 (5)

• Step 3: Calculate the output weight (β) from the hidden 
layer.

	 β = H†T (6)

While for testing was generated using the following algorithm:
• Step 1: Setting the parameters obtained from the 

training.
• Step 2: Calculate all the output at the hidden 

neuron using the activation function and put it into 
matrix H (Eqs. 4 and 5)

• Step 3: Calculate the output node by multiplying 
the matrix H with output weight (β) from the training 
process.

 O H a b xj i

L= i i jβ ( ), ,=∑ 1  (7)

The result of the output node Oj was then compared to the 
input target (T) to obtain the accuracy.

The classification, including training and testing, was 
conducted using K‑fold Cross‑validation (K = 3); hence, 
each individual was trained and tested three times with 
three different combinations of data classification. Thus, the 
accuracy was calculated from the average of each accuracy.

accuracy = accuracy1
1K kK

K

=∑  (8)

Training and testing in different individuals were conducted 
separately and respectively. BCI is a subject‑dependent, 
which is specific and only suitable for just one particular 
individual,[20] so for different individual would need 
calibration/training session before the usage.  Minimal 
data training would be preferable in BCI since the more 
data needed during training would make the individual feel 
uncomfortable and tired. Therefore, this study also tried to 
lessen the total data of training to observe the performance 
of the system with a small amount of data training. First, 
six data of training consist of three drowsy and three 
awake state data were used in each individual to test eight 
data. Then, the total data of training was lessen into four, 
which consist of two drowsy and two awake states were 
processed to test ten data. Finally, two data training were 
used to test the rest of the data. All of these training and 
testing were repeated three times (3‑fold cross‑validation) 
with three different combinations of data.

Results and Discussion
EEG data were obtained from the EEG EMOTIV EPOC 
with 14 channels, namely, AF3, AF4, F3, F4, F7 and F8 
(frontal left and right), FC5‑FC6 (frontocentral left and 
right), T7‑T8 (temporal left), P7‑P8 (parietal left and right), 
and O1‑O2 (occipital left and right). Recordings were done 
by asking the individuals to play a simulation game driving 
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on a mobile phone for approximately 10 min during drowsy 
and awake states as shown in Figure 2.

As mention before that frequency related to the drowsiness; 
therefore, the increment or decrement of sub‑band frequency 
needs to be processed further to obtain accurate information. 
EEG recording data obtained from the EMOTIV EPOC 
EEG device were stored in the. CSV format and then 
filtered into four sub‑bands based on the frequency range, 
which was delta, theta, alpha, and beta wave using DWT. 
The signal required four‑level decomposition and mother 
wavelet type Daubechies 4 (DB4) to obtain the coefficients 
that correspond to the frequency range of alpha, beta, delta, 
and theta. The following step was calculating the PSD and 
RPR of each sub‑band frequency.

Comparison of PSD between awake and drowsy state in 
each sub‑band frequency is shown in Figure 3. Figure 3 

showed that during the drowsy state, theta, alpha, and beta 
were higher than in the awake state. It was challenging to 
design a linear threshold from the changes of frequencies[1] 
since the correlation between drowsy and awake states 
was regarded as moderate (Pearson’s correlation, r = 0.5, 
P < 0.05). Therefore, it required the nonlinear classifier 
such as ELM. However, despite with the help of ELM, 
the accuracy was not too high (below 87%) [Figures 4‑6]. 
Therefore, the feature needed to be processed further to 
obtain higher accuracy.

The augmented of common spatial pattern algorithm to 
optimize the extreme learning machine

CSP algorithm was implemented in the matrix of relative 
power alpha, beta, theta, and delta in the drowsy and awake 
states. As shown in Figure 7, before the CSP algorithm was 
applied, the relative power features were difficult to classify 
but after continued the calculation using the CSP algorithm, 
the features started to group into two classes. Thus, the CSP 
method was necessary to improve the accuracy of ELM. 
The performances of CSP in optimizing the classification 
from relative power features are shown in Figures 4‑6.

Figure 4 showed that CSP along with ELM classifier could 
increase the accuracy using six data of training to test 
eight data. The relative power features, which continued 
to calculate the variance using CSP algorithm had a better 
average accuracy of ELM (93.75% ± 0.00%) than the one 
which only using relative power spectral as the features for 
ELM (85.41% ± 9.55%).

Figure 5 was conducted using four data of training; 
consisted of two data of awake state and two data of 
drowsy state. The average accuracy of ELM testing from Figure 2: Acquisition data

Figure 3: Comparison of power spectral density in awake and drowsy states
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eight data that continued by calculating the variance using 
the CSP algorithm after going through the cross‑validation 
process was 91.67% ± 2.89%, while the average accuracy 
of testing without CSP calculation algorithm was only 
64.98% ± 18.38%.

The similar behavior was shown in ELM training using 
two data, which consist of one drowsy state and one awake 
state. The average accuracy of ELM testing from 12 data 
feature which continued by calculating its variance using 
the CSP algorithm was 91.67% ± 0.00%, while the average 
accuracy of 12 data testing without CSP algorithm was 
72.23% ± 9.63%.

Overall, it could be concluded that the ELM accuracy 
combined with CSP tend to give higher accuracy, even 

with a small amount of data. Thus, the augmented of CSP 
could optimize the ELM in obtaining the high accuracy.

Conclusions
In this study, we have tried to analyze and classify the 
drowsy state and awake state using relative PSD of 
sub‑band delta, theta, alpha, and beta. CSP and ELM were 
implemented to obtain better accuracy in differentiating 
the relative power of the drowsy and awake states. The 
overall average accuracy of testing ranged from 91.67% 
to 93.75%, even with a small amount of data training. 
Minimal data training could be useful to shorten the time 
in training/calibration session, yet still, obtain a good 
accuracy in classifying the awake state and drowsy state by 

Figure 5: Testing accuracy using four data of the training

Figure 4: Testing accuracy using six data of the training
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implementing CSP and ELM. This study could increase the 
ability of EEG in detecting drowsiness that is important to 
prevent the risk caused by driving in a drowsy state.
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