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Abstract
Background: To predict the behavior of biological systems, mathematical models of biological 
systems have been shown to be useful. In particular, mathematical models of tumor‑immune system 
interactions have demonstrated promising results in prediction of different behaviors of tumor against 
the immune system. Methods: This study aimed at the introduction of a new model of tumor‑immune 
system interaction, which includes tumor and immune cells as well as myeloid‑derived suppressor 
cells (MDSCs). MDSCs are immune suppressor cells that help the tumor cells to escape the immune 
system. The structure of this model is agent‑based which makes possible to investigate each 
component as a separate agent. Moreover, in this model, the effect of low dose 5‑fluorouracil (5‑FU) 
on MDSCs depletion was considered. Results: Based on the findings of this study, MDSCs had 
suppressive effect on increment of immune cell number which consequently result in tumor cells 
escape the immune cells. It has also been demonstrated that low‑dose 5‑FU could help immune 
system eliminate the tumor cells through MDSCs depletion. Conclusion: Using this new agent‑based 
model, multiple injection of low‑dose 5‑FU could eliminate MDSCs and therefore might have the 
potential to be considered in treatment of cancers.
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Introduction
Functions of the immune system against 
the tumor cells are divided into three parts. 
First, the immune system suppresses the 
viral infection to protect the host from 
virus‑induced tumors. Second, it causes the 
post‑inflammatory environment to prevent 
the carcinogenicity. And third, it identifies 
the tumor cells and eliminates them.[1] The 
latest function was introduced in 1950s 
as immune‑surveillance hypothesis which 
explains how immune system can eliminate 
the early stage tumor.[2,3] This hypothesis 
was the basis for the development of 
models to predict the tumor‑immune 
system interactions using mathematical 
equations. Using this mathematical models, 
researchers can overcome the lack of 
knowledge about cancer and its interaction 
with immune system.[4,5]

The CD8+  T‑cells are one type of immune 
cells which play principal role in anti‑tumor 
response of immune system. Previous 
studies demonstrated that, in nude mice 
with CD8+  shortage, the immune system 

was not able to effectively inhibit the 
tumor cells.[6] The CD8+ cells have several 
pathways to detect and to eliminate the 
tumor cells.[7]

When immune system confronts a 
stranger, it suppresses itself to prevent 
perishing the host cells. It is possible 
that this suppression is mediated by cells 
such as regulatory T‑cells  (Treg) and 
myeloid‑derived suppressor cells  (MDSCs), 
or proteins such as transforming growth 
factor‑beta  (TGF‑β).[8] Tumor cells use 
these approaches for immune evasion 
which may consequently result in tumor 
development. Therefore, elimination of 
immune suppressor factors such as MDSCs 
could be an effective approach to reinforce 
the immune system.

The low‑dose 5‑fluorouracil  (5‑FU) is 
able to selectively eliminate the MDSCs 
in tumor microenvironment.[9] In addition, 
many studies have investigated effects 
of other factors such as all‑trans‑retinoic 
acid (ATRA),[10] gemcitabine,[11] ATRA 
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and anti‑CD25 antibody,[12] nitroaspirin derivative[13] and 
cisplatin[14] on MDSCs depletion.[15] All these factors 
resulted in better tumor prognosis.

Many studies have mathematically modeled the 
tumor‑immune system interaction, and their results have 
provided insight about the activity of the immune system 
against the tumor cells. Many of these models investigated 
the spatial manner of tumor microenvironment based on 
partial differential equation or cellular automata.[16‑20] Some 
studies only investigated the population of cells using 
temporal models. These models are based on ordinary 
differential equation  (ODE) or agent‑based modeling  
(ABM).[5,21] Primary temporal models investigated the 
interactions between tumor cells and effector cells such as 
natural killer cells  (NK cells) and cytotoxic T‑lymphocytes 
(CTLs).[22,23] Later studies, however, added cytokines 
such as TGF‑β and interleukin‑2 to this interaction[24] and 
investigated the immunotherapy.[25‑28] These studies were 
mainly based on ODE and only few of them considered 
ABM.[5,29]

To control cancer, there are various therapeutic 
approaches such as chemotherapy,[19,30] radiotherapy,[31] 
bacteria‑therapy,[32] combination therapy[33] and 
immune‑therapy.[34] Although immune‑therapy seems to be 
an effective approach for eliminating the tumor, however, 
presence of postinflammatory agents such as MDSCs may 
decrease positive therapeutic effects.[35] Hence, depletion of 
MDSCs would lead to more beneficial treatment.

ABM can consider properties of each cell and its 
memory.[36,37] An agent‑based model of tumor‑immune 
system interactions which contains agents and environment, 
each component having active behavior is considered as 
agent, and on the other hand, the components which have 
passive behavior are the environment.

To the authors’ knowledge, no model has been developed 
to investigate the effect of immune suppressors such 
as MDSCs. Therefore, this study aimed to model and 
to simulate the effect of MDSCs on tumor‑immune 
system interactions. In addition, since recent studies have 
demonstrated that the low dose of 5‑FU can annihilate 
the effect of MDSCs on immune system suppression,[35] 
therefore, the effect of one and multiple dose of 5‑FU were 
also evaluated in this model.

Materials and Methods
Immunologic definitions

In this model, three components will be considered 
including tumor cells, effector cells  (CTLs) and MDSCs. 
Actions of these components, based on which the model 
was developed, were defined as below;

Action of tumor cells:
1.	 Proliferation: Tumor cells may proliferate based on 

their population

2.	 Proliferating the CTLs: The antigen presentation of 
tumor cells can cause the CTLs proliferation

3.	 Recruitment of MDSCs: the post‑inflammatory 
condition in tumor microenvironment can cause the 
MDSCs recruitment.[15,38,39]

CTLs have two following actions:
1.	 Killing the tumor cells: The CTLs can cause the tumor 

cell cytotoxicity
2.	 Apoptosis: CTLs will be dying as programmed death.

MDSCs also show two actions:
1.	 Inhibiting the CTLs Proliferation: MDSCs as immune 

suppressor cells can inhibit the proliferation of CTLs
2.	 Apoptosis: MDSCs will be dying as programmed death.

Agent based model

As mentioned above, the agent‑based model contains three 
components each of which has its own action. Each action 
was modeled as a mathematical equation. First, tumor cells 
proliferate as Eq. 1.

Tp(n) = aT(n) (1 – bT[n])� (1)

In Eq. 1, Tp(n) shows the number of proliferating tumor 
cells at nth time point, T(n) is number of tumor cells, a is 
proliferation rate and b is number of tumor cells limitation.

The second action of tumor cells is CTLs proliferating, 
which was modeled as Eq. 2.

Ep(n) = mT(n)� (2)

Where, Ep(n) is number of proliferating CTLs at nth and m 
is CTLs proliferation rate.

The third action of tumor cells is MDSCs recruitment, 
which can be modeled as Eq. 3.

M n xT n
yT nr ( ) ( )

( )
=

+1 	�  (3)

Mr(n) is number of recruiting MDSCs at nth time point, x 
is the rate of MDSCs recruitment and y is limitation factor.

There are also two actions for CTLs. First, they kill the 
tumor cells with a predefined cytotoxicity modeled as 
Eq. 4.

Tk(n) = jT(n) E(n)� (4)

In this equation, Tk(n), j and E(n) demonstrate the number 
of killed tumor cells, cytotoxicity of CTLs and number of 
CTLs, respectively. CTLs also show that may be dying by 
apoptosis as Eq. 5.

Ed(n) = dE(n)� (5)

In this equation, Ed(n) indicates the dead CTLs at nth time 
point and d represents the CTL’s apoptosis rate.

The final component of this model is MDSCs, which have 
two actions of inhibition of the CTL’s proliferation and 
apoptosis and was modeled as Eqs. 6 and 7.
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E n
g M ni ( )

( )
=

+
1 � (6)

Md(n) = µM(n)� (7)

Ei(n) is CTL’s proliferation inhibition factor, M(n) is 
the number of MDSCs at nth time point, Md(n) indicates 
number of died MDSCs at nth time point and µ is MDSC’s 
apoptosis rate.

Eqs. 8‑10 represent the overall equations of this model 
which is also depicted in Figure 1.

T (n + 1) = T(n) + Tp(n) – Tk(n)� (8)

E (n + 1) = E(n) + Ep(n) Ei(n) – Ed(n)� (9)

M (n + 1) = M(n) + Mr(n) – Md(n)� (10)

Another purpose of this study was to investigate the 
effect of MDSCs depletion by 5‑FU on response of 
immune system to tumor cells. To this end, effect of 5‑FU 
on MDSCs depletion was modeled. Effect of 5‑FU on 
leukocytes was investigated in[40] and also demonstrated in 
Figure 2. In this study, this effect of 5‑FU on leukocyte was 
generalized to MDSCs and estimated by Rayleigh function 
as Eq. 11.

I5‑FU = ε σte t− 2 2/ � (11)

I5‑FU indicates the impact of 5‑FU on MDSC depletion, 
ε demonstrates the dosage power of 5FU and σ shows 
attenuation of 5‑FU’s impact through time.

Results
Simulation of tumor‑immune system model will be 
described in this section. First, model was simulated 
without any intervention and then effects of 5‑FU were 
considered. For model simulation, the values of coefficients 
were identified as Table  1. As other studies Allahverdy 
et al.,[29] used a constant rate as proliferation or recruitment, 
but in our study, this rate has been impressed by the 
number of MDSC’s. Therefore, this model can be valid by 
this factors (cause all factors are same and recruitment rate 
just affected by the number of MDSC’s).

Initially, stability analysis of the model was conducted. 
As the effect of MDSCs population was considered in 
this study, for this aim, all coefficients were considered as 
constant, illustrated in Table  1, and “x” was the variable 
coefficient which has effective role on the stability analysis.

To start, fix points of Eqs. 8‑10 were calculated as below:

Tp(n) – Tk(n) = 0� (12)

Ep(n) Ei(n) – Ed(n) = 0� (13)

Mr(n) – Md(n) = 0� (14)

By insertion of Eqs. 1‑7 in Eqs. 12‑14, the fix points were 
achieved.

Then, to evaluate the stability of the model, the Jacobian 
matrix of Eqs. 8‑10 were computed as below:

J
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Figure 2: The leukocyte depletion impact of 5‑fluorouracilFigure 1: Graphical view of defined agent‑based model

Table 1: The values of coefficients of tumor‑immune 
system model

Coefficient Value
a 1.05
b 0.0022
m 0.03
d 0.12
g 0.74
x 0.33
y 0.04
j 0.015
µ 0.03
ε 8.2
σ 3
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The attribute of eigenvalues of this matrix defines stability 
of the model. There are three types of stability including 
node, repellor, and saddle. If all eigenvalues have negative 
real part, the fix point will be node. If all eigenvalues have 
positive real part, the fixpoint is repellor and whether one 
or two eigenvalues have positive real part, the fixpoint 
will be saddle. Nonzero imaginary part will also define 
the spiral manner for each type of fixpoint. To evaluate the 
type of fix point, the value of “x” was set at 0.01–2 and 
then real and imaginary parts of eigenvalues evaluated. 
Figures  3 and 4 depict the real and imaginary parts of 
eigenvalues, respectively.

As Figure 3 demonstrates, all the eigenvalues have negative 
real part. Therefore, the fixpoint is node and in low “x” 
values the imaginary part of eigenvalues are nonzero and 
the spiral manner can be illustrated by fixpoint.

To illustrate the result of model’s simulation, the 
two‑dimensional view of tumor microenvironment and 
the number of cells in the tumor microenvironment 
over  51  days has been demonstrated in Figure  3. In this 
simulated model, the dark blue pixels are healthy tissue, 
live tumor cells, died tumor cells, CTLs  (effector cells), 
and MDSCs have been marked in dark blue, bright blue, 
red and orange pixels, respectively. As depicted in Figure 5, 
through time MDSCs infiltrate the tumor microenvironmet 
and suppress the effector cells which consequently make 
the microenvironment suitable for tumor growth.

As illustrated in Figure  6, the number of effector cells 
tends to follow the number of tumor cells. However, this is 
prevented by the recruitment of MDSCs and as a result the 
tumor cells will escape the immune system.

According to Figure 6, at the beginning, effector cells tend 
to grow. However, more number of MDSCs would inhibit 
the increment of effector cells, and consequently, the tumor 
cells will grow.

For the next step and on day 5th, the one dose of 5‑FU was 
administered which was simulated by Eq. 11. The MDSCs 
depletion effect of 5‑FU is illustrated in Figure 7.

As illustrated, 5‑FU had a considerable effect on MDSCs 
on day 7th and this effect lasted until day 15th. To investigate 
the effect of 5‑FU injection on tumor microenvironment, 
this effect contributed by the model of tumor‑immune 
system interaction. As Figure  8 demonstrates, on day 21th, 
the tumor size reduced. However, after that and through 
time, tumor size increased again. Which means one dose of 
5‑FU is not sufficient enough for sustainable effects.

Looking at Figure  9, number of MDSCs decreased on 
day 7th  which in turn resulted in increase in number of 
effector cells and decrease in number of live tumor cells. 
However, this was a cross‑sectional effect, and the number 
of MDSCs increased through time and tumor cells escaped 
the immune system.

As the third step, this model has been contributed by 
two dose injection of 5‑FU. The first injection was on 
day 5th  and the second one was on day 10th. Figure  10 
demonstrates the effect of these injections on the tumor 
microenvironemt. According to figure, between day 
21th  and 31th, tumor decreased in size. However, on day 
41th, the tumor grew again which again means two dose of 
5‑FU is not a effective yet.

Based on Figure 11, which depicts the number of each cells 
in the tumor microenvironemt, the immune system initially 
overcomes tumor cells, however, the size of tumor cells 
increased again on day 41th.

In the next phase, the third dose of 5‑FU was administered. 
To avoid chemotherapy effect of 5‑FU on tumor cells, 
this injection was simulated on day 20th. Change of 
tumor microenvironment through time has been depicted 
in Figure  12 which indicates third dose of 5‑FU had 

Figure 4: Imaginary part of eigenvalues versus change “x”Figure 3: Real part of eigenvalues versus change “x”
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long‑lasting suppressing effects on size of tumor cells that 
would make this intervention effective.

Figure  13 shows the change of each cell over the time. 
As it can be seen, the number of tumor cells reached and 
remained zero and immune system overcomes the tumor 
cells.

Discussion
Mathematical model of tumor‑immune system interaction, 
which is time and cost‑effective, is a useful method to 
gain insight about the interaction between components 
of the immune system and tumor cells. In addition, to 
investigate the effectiveness of interventions, application 

of these models might be beneficial. In this study, a new 
agent‑based model was introduced that was based on 
interaction between tumor cells and effector cells. The 
effect of MDSCs, which suppress the proliferation of 
effector cells and cause the increment in number of tumor 
cells, was also considered in this model. To evaluate the 
effectiveness of intervention, the impact of low‑dose 5‑FU 
of MDSCs depletion was also simulated.

Simulation of this model was conducted in four steps. At 
the first step, simulation was done without any intervention. 
The results of this simulation showed recruitment of MDSCs 
prevents the increment of effector cells and creates a situation 
which allows the tumor cells to escape. At the second 
step, one dose of 5‑FU was considered as an intervention. 

Figure 5: Tumor microenvironment over the time without any intervention

Figure  6: Number of cells in tumor microenvironment without any 
intervention

Figure 7: Myeloid‑derived suppressor cells depletion with one dose injection 
of 5‑fluorouracil

Figure  8: Tumor microenvironment modification by time pass with one 
dose injection of 5‑fluorouracil
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According to finding, 5‑FU initially result in MDSCs 
depletion and decrement of the number of MDSCs in return 
led to increment of effector cells and consequently the 
decrement of the number of tumor cells. However, this effect 
was temporary and through time, the number of MDSC 
increased again. It was interpreted that the additional dose of 
5‑FU was required for more long‑lasting effects. Hence, for 
the next step, the second dose of 5‑FU was considered. As 
expected, this results in decrease in size of tumor cells which 
was transient again. At the final step, third dose of 5‑FU was 
simulated this time all the tumor cells were eliminated and 
the immune system overcame the tumor cells. This finding 
was consistent with the results of the other similar study.[35] 
The first limitation of this study is low dose of 5‑FU. Since 
5‑FU is a drug used in chemotherapy It is possible to act 
as a anti‑tumor substance rather than MDSC’s depletion. 
Number of 5‑FU injection is the other limitation. If the 

dose of 5‑FU precisely determined as low, but the number 
of injection increased or the injection interval decreased, 
the effect of injections may synergy and subsequently act 
as chemotherapy drug. Finally, this model only investigated 
a presumptive tumor. For further examination, this model 
must be retrofitted for every tumor cell lines like sarcoma, 
glioblastoma, melanoma and gastric cancer.

The immune system can fight the tumor cells in many 
pathways, therefore, adding more components of the 

Figure 10: Tumor microenvironment modification by time pass with two 
dose injection of 5-fluorouracil

Figure 11: The effect of two dose injection of 5-fluorouracil on number of 
cells in tumor microenvironment

Figure 12: Tumor microenvironment modification by time pass with three 
dose injection of 5-fluorouracil

Figure 9: The effect of one dose injection of 5-fluorouracil on number of 
cells in tumor microenvironment
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Figure 13: The effect of three dose injection of 5-fluorouracil on number of 
cells in tumor microenvironment

immune system to this model may be useful to gain more 
insight about the realistic behavior of tumor cells against 
the immune system. Moreover, tumor cells may have more 
strategies to escape the immune system and increasing their 
maintenance such as angiogenesis which can be contributed 
in this model.
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