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Abstract
Background: Tracheal sound analysis is a simple way to study the abnormalities of upper airway like 
airway obstruction. Hence, it may be an effective method for detection of alveolar hypoventilation 
and respiratory depression. This study was designed to investigate the importance of tracheal sound 
analysis to detect respiratory depression during cataract surgery under sedation. Methods: After 
Institutional Ethical Committee approval and informed patients’ consent, we studied thirty adults 
American Society of Anesthesiologists I and II patients scheduled for cataract surgery under sedation 
anesthesia. Recording of tracheal sounds started 1 min before administration of sedative drugs using a 
microphone. Recorded sounds were examined by the anesthesiologist to detect periods of respiratory 
depression longer than 10 s. Then, tracheal sound signals converted to spectrogram images, and 
image processing was done to detect respiratory depression. Finally, depression periods detected from 
tracheal sound analysis were compared to the depression periods detected by the anesthesiologist. 
Results: We extracted five features from spectrogram images of tracheal sounds for the detection 
of respiratory depression. Then, decision tree and support vector machine (SVM) with Radial Basis 
Function (RBF) kernel were used to classify the data using these features, where the designed 
decision tree outperforms the SVM with a sensitivity of 89% and specificity of 97%. Conclusions: 
The results of this study show that morphological processing of spectrogram images of tracheal sound 
signals from a microphone placed over suprasternal notch may reliably provide an early warning of 
respiratory depression and the onset of airway obstruction in patients under sedation.
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Introduction
Increasingly, many surgical and nonsurgical 
operations such as dental and endoscopic 
procedures, cosmetics, and cataract surgery 
are performed under sedation analgesia 
using a combination of sedative and 
narcotic drugs. The anesthesiologist must 
carefully titrate hypnotics and opiates to 
the patient needs, with close monitoring 
of their effects on respiratory functions. 
Under‑sedation and over‑sedation carry 
potential risks of surgical complications 
and respiratory depression, respectively. 
During ophthalmic microscopic surgeries, 
patient’s movement may lead to serious 
operative complications.[1] Hence, many 
anesthesiologists prefer to use stronger 
sedative techniques,[2] which increases 
adverse cardiorespiratory complications.[2] 
Since the airway is not sufficiently protected 
during sedation analgesia, these patients 
have an increased risk of severe 

respiratory depression and obstruction,[3] 
which necessitates close and continuous 
monitoring of airway patency and 
adequacy throughout the period of sedation. 
Commonly used monitoring techniques 
such as pulse oximetry usually have a 
considerable delay in detecting respiratory 
complications.[4,5] Sidestream capnography 
is of limited value for the detection of 
respiratory depression, due to usage 
difficulty, sampling error, lumen obstruction 
by airway secretion, and frequent 
detachment from the patient’s airway 
opening.[6,7] Therefore, direct monitoring 
of airway patency using auscultation 
techniques is of paramount importance 
during sedation analgesia.[8] Continuous 
tracheal sounds’ monitoring using traditional 
or electronic stethoscope can reliably and 
rapidly detect airway complications[9] before 
these events lead to serious complications. 
The overall efficacy of tracheal stethoscope 
as an airway monitor depends on continuous 
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listening to the respiratory sounds by the anesthesia team. 
Continuous operator listening may not be practical, and 
intermittent auscultations may incidentally overlook major 
airway problems. Therefore, using real‑time automatic and 
continuous techniques for tracheal sound monitoring and 
analysis is of particular importance for airway monitoring 
under sedation analgesia.

Tracheal sounds originate from different sources 
contributing to the final sound recorded by a receiver 
over the suprasternal notch.[10,11] Some previous studies 
have used entropy of the audio signal as a measure of the 
complexity of tracheal sounds and reported that its changes 
could be a warning for impending obstructive pattern in 
airway.[12] Time domain analysis of tracheal sound does 
not provide a clear insight into the frequency content of 
components but may be useful for detecting respiratory 
events. On the other hand, frequency domain provides 
the frequency content of signal without information about 
which frequencies are dominant in which moment, which 
is necessary to recognize different events. Therefore, using 
joint time‑frequency analysis approach, we would be 
able to simultaneously employ both time and frequency 
information. The superiority of time‑frequency analysis 
against the time domain and frequency domain techniques 
has been shown in previous studies on respiratory sound 
analysis in the current years.[13‑15] It allows to analyze which 
frequencies of a signal under study are present at a certain 
time. For example, short‑time frequency transform (STFT) 
can be employed because of its power in resembling 
the original appearance of signals.[16] If x (n) and w (n) 
represent the signal and region of interest (ROI) window, 
respectively, using spectrogram image of spectral density, 

i.e., | , |STFT w m( ) =2  
n

x n w n m e
=−∞

+∞

∑ ( ) −( ) -jwt

2

 seems to 

be a logical method of applying tracheal sound analysis for 
real‑time detection of airway problems.

Different researchers have widely utilized this technique 
in audio and speech analysis. Converting audio signals 
to time‑frequency spectrogram images and subsequent 
processing using ultra‑rapid image processing algorithms 
is a way of full signal sound analysis to extract essential 
sound components, known as features explained in 
methods, associated with respiratory depression. Image 
analysis of the spectrogram of the audio signal is 
performed to extract the best features. Using image 
processing methods on such time‑frequency images makes 
it possible to differentiate normal respiration from unusual 
ones. This approach has been utilized in the past for 
extracting heart sounds.[16] In this study, tracheal sounds 
were electronically recorded and subsequently listened 
by expert anesthesiologists. The aim of this research was 
to determine the feasibility of tracheal sound analysis 
to detect respiratory depression in adult patients under 
sedation for cataract surgery.

Materials and Methods
After Institutional Ethical Committee approval and informed 
patients’ consent, we studied thirty adults, 22 American 
Society of Anesthesiologists (ASA) I and 8 ASA II patients, 
aged 50–80 years, scheduled for cataract surgery under 
mild‑to‑moderate degrees of sedation. Patients with a 
history of respiratory diseases were excluded from the study. 
Furthermore, patients with thyroid diseases, anatomical 
abnormalities in the airway, severely obese patients (body 
mass index ≥35), and those with a history of severe 
obstructive sleep apnea were excluded from this study. After 
positioning on the operating table, all the patients received 
supplemental oxygen through a mask. Monitoring consisted 
of electrocardiography, noninvasive blood pressure, 
capnography, and pulse oximetry. Recording of tracheal 
sound started 1 min before administration of sedative 
drugs using C417 omnidirectional condenser lavalier 
microphone (AKG Acoustics, Vienna, Austria), secured over 
suprasternal notch with double‑sided adhesives. The tracheal 
sound recording continued throughout the procedure at a 
sampling rate of 44,100 Hz. Recorded sounds transferred 
into a personal computer for final analysis.

Although we used capnography monitoring in this study, 
on many occasions, it produced false alarms of respiratory 
depression which were ruled out by tracheal auscultation. 
These false events were mainly due to extreme dilution of 
expiration by a high flow of oxygen and also obstruction 
of capnography catheter by direct contact with skin or 
secretions. Therefore, in this study, we compare auscultation 
results with sound analysis. Intravenous sedation consisted 
of 2–5 mg of midazolam and 1–3 ml of fentanyl 
intravenously, administered within 5 min and titrated to the 
patients need to achieve an initial sedation within 5 min, as 
evidenced by a sedated but easily arousable patient. Further 
doses of 1 mg of midazolam or 0.5 ml of fentanyl were 
administered if the patient exhibited motions or expressed 
pain.

After collecting data, recorded sounds were examined by the 
anesthesiologist to detect periods of respiratory depression, as 
defined by the occurrence of apnea, breath‑holding, or airway 
obstruction longer than 10 s. Apnea and breath‑holding 
defined as complete absence of tracheal sounds. Airway 
obstruction was defined as an obstructive pattern (stridor‑like 
breath sound) when listening to recorded sound.

Signal processing

We used Matlab 8.1.0 for signal and image processing. 
Signals were segmented into 100‑ms windows 
(4410 samples) with 50% overlap for converting into 
consecutive spectrogram images. The window size and 
overlap were selected based on the results of studies on 
tracheal sound.[12,17] Spectrogram images were obtained 
using STFT and applying hamming window to each 
segment.[4] Since the minimum period valuable for the 
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detection of respiratory depression is 10 s, the spectrogram 
images are obtained in each 10 s. Then, images were labeled 
as positive or negative. The absence of respiratory sound 
(including inspiration and expiration) through auscultation 
by the anesthesiologist in each 10 s was proposed as a 
clinical manifestation of respiratory depression and their 
corresponding spectrogram images were labeled as positive 
ones. In contrast, the spectrogram images corresponding 
to normal respiration (detected by anesthesiologist in 
each 10 s) were labeled as negative [Figure 1].

In the first step of the analysis, spectrograms from seven 
randomly chosen patients were used to investigate the 
proposed features in previous studies. The related features 
to spectrogram images were local texture properties such 
as smoothness, roughness, and orientation, and statistical 
texture properties such as skewness, standard deviation, 
kurtosis, variance, entropy, mean, and also gray level 
co‑occurrence matrices properties such as contrast, 
correlation, energy, and homogeneity.[18,19]

Image processing

First, original spectrogram images were converted to a black 
and white mode (binary image) to eliminate low‑frequency 

signal and keep the higher frequency ones in the range of 
respiratory signals [Figure 2a]. We applied the opening 
and closing morphological operations in this analysis for 
preprocessing.[18] Opening tends to remove some of the 
foreground pixels that help to have separate white areas. In 
contrast, closing tends to fill the holes of foreground and 
make the united regions larger. We used opening operation 
on the original binary images to achieve better results by 
omitting the irrelevant white dots. The produced black and 
white images would be appropriate for extraction of some 
useful features for recognizing respiratory depression periods.

Results
From 128 patients scheduled for cataract surgery, 
98 participants were excluded from the study: 56 patients 
underwent general anesthesia, 32 patients had a history of 
respiratory disorders, obstructive sleep apnea, or higher 
levels of ASA, and 10 patients were severely obese. 
Therefore, the study was performed on the remaining thirty 
patients including 22 ASA I and 8 ASA II patients.

Due to the operating room noises and movement of the 
patient, samples from ten participants were not appropriate 
for analysis. Therefore, signal processing was performed on 
2000 samples from the remaining twenty participants.

Figure 3 shows the events of respiratory depressions in the 
test group.

Features obtained from the first step were strongly 
associated (individually or in combination) with respiratory 
depression and were tested on image samples from the 
remaining 13 patients to determine their sensitivity for 
detecting respiratory depression. We set a diagram with 
these features that consecutively recognized the depression 
periods from normal ones [Figure 4]. These features are 
standard deviation,[20] energy, kurtosis,[21] the white area 
related to normal respiration, and white space height which 
are defined as follows:

Figure 2: (a) A sample binary image produced from a spectrogram of a 
normal respiration (t = 0.75). (b) Extracted binary image after applying 
morphological operators and removing noninformative areas (outside 
frequency range of 150–800 Hz which is related to respiratory sound)

b

a

Figure 1: The gray-scale spectrogram images (high values are displayed 
in black). (a) 10 s normal respiration (labeled−). (b) 10 s apnea (labeled +)

b

a
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• White area: As shown in Figures 1 and 2, there are some 
periodic regions related to inspiration and expiration 
in a 10 s normal respiration.[6,22] After converting to 
a binary image, these periodical regions converted 
to white areas. Adversely, in a 10 s period related to 
apnea, there was no white region or maybe a small 
region for other reasons such as noises. Furthermore, in 
respiratory depression, there were white regions smaller 
than normal respiration but without rhythm. The next 
step was to find a threshold for the size of these white 
regions distinguishing between normal respiration and 
depression. Due to the differences between respirations 
of different people, no single threshold could be useful 
for all images. Hence, there was a need for other 
features for completing the detection protocol

• White area height: In the spectrogram image, as shown 
in Figures 1 and 2, the vertical axis is related to signal 
frequency. Hence, the height of white area could be a 
useful feature. The frequency of 150–800 Hz is related 
to respiratory sound.[22,23] Hence, the white area height 
between 150 and 800 Hz in spectrogram image would 
be related to normal respiration and should not be 
considered as depression [Figure 2b].

Image classification

Two different approaches were used to classify data based 
on the extracted features from tracheal sounds, decision 
tree[24] and support vector machine (SVM).[17] SVM is 
one of the well‑known methods for image classification. 
SVM builds the optimal separating hyperplanes based on 
a kernel function (K).[25] This classifier also has been used 
in respiratory signal processing.[17,26] A decision tree is a 
relatively straightforward classifier that lacks the expressive 
power of semantic networks and its learning methodologies 
are less complex than those in systems that can express the 
results of their learning in a more powerful language.[24] In 

this study, we tried to find the best discriminative features 
using train and test for decision tree. In the next step, we 
fed the extracted features from decision tree to SVM as a 
more advanced classifier.
• Decision tree based on selected measures: We randomly 

chose seven patients for checking the features to find a 
suitable level for each of them. These levels should be 
sufficient for most of the images in different patients. 
None of them alone could be adequate, and all features 
together were necessary to make a useful decision. 
Hence, a decision tree was plotted that could be able 
to separate abnormal 10s respiration from normal ones, 
step by step [Figure 4]. Then, the rest 13 patients were 
checked with this flowchart [Table 1]

• SVM classifier: The number of samples with label 
0 (normal respiration) was much more than samples with 
label 1 (respiratory depression). Therefore, we decided 
to replicate the samples with label 1 to compensate the 
effect of unbalanced classes.[27] The test data set consists 
of 1212 samples; 69 of which were from apnea class 
and the rest from the normal class. We repeated the 
samples of the apnea class 17 times (~[1212‑69]/69) so 
that the number of sample from two classes becomes 
close together. SVM classifier with RBF kernel 
trained on the depression data set. We used k‑fold 

Table 1: Accuracy, specificity, and sensitivity for 
detecting respiratory depression
Accuracy (%) Sensitivity (%) Specificity (%)

SVM 83.69 83.80 82.08
Decision tree 91 89 97
SVM – Support vector machine

Figure 3: Respiratory status data for 13 patients. For each subject, 
lower arrows show auscultatory finding synchronized with results of the 
respiratory sound analysis in upper tracing. Symbols: Upward arrow ↑: An 
event of respiratory depression for a duration of least 10 s detected by 
respiratory sound analysis. Downward arrow ↓: An event of respiratory 
depression for least 10 s detected by auscultation

Figure 4: The proposed diagram based on five final features to distinguish 
depressed periods from normal ones
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cross validation algorithm with k = 20 to estimate the 
generalization performance. Accuracy, specificity, and 
sensitivity were calculated over 20 folds [Table 1].

Discussion
Analysis of tracheal sound spectrogram in the present study 
showed that features extracted from spectrogram image 
processing such as kurtosis, standard deviation, energy, 
and white area (in black and white images) are strongly 
associated with the occurrence of respiratory depression 
in patients undergoing intravenous sedation. It became 
apparent that using all of these features results in better 
performance for the detection of respiratory depression with 
a sensitivity of 89% and a specificity of 97% employing a 
decision tree and sensitivity of 84% and specificity of 82% 
employing SVM classifier.

In 2010, the analysis of spectrogram images to recognize 
and extract basic heart sounds and murmurs was 
introduced.[16] However, to the best of our knowledge, 
it is the first time that spectrogram image processing is 
employed for analysis of respiratory depression.

The entropy of tracheal sound was used to detect the 
obstructive apnea, and central apnea in sedated healthy 
volunteers and a sensitivity of 95% and specificity of 92% 
was reported.[23] Mazzanti et al. detected apnea in patients 
in a sleep laboratory with a sensitivity of 87% and a 
specificity of 85% using an electrocardiography‑derived 
respiration monitoring method.[28] Ramsay et al. evaluated a 
new acoustic monitor from Masimo Inc. (Irvine, California, 
USA) and a capnometer from Oridion Inc. (Needham, MA, 
USA) by collecting data from patients in the postanesthesia 
care unit. The acoustic monitor was able to detect the 
apnea with 81% sensitivity and 99% specificity and the 
capnometer detected the apnea with a low sensitivity of 
62% sensitivity and specificity of 98% which leads to 
misdetection of apnea.[32] Table 2 compares the current 
study with previous similar works. The method used in this 
study is a new approach for processing tracheal sound for 
depression recognition. However, in a comparison to other 
time‑frequency methods on tracheal sound, Sello et al. 
provided a wavelet‑based method to describe the frequency 
power distribution of the audio signal to detect the healthy 
state by the wavelet mean power spectra, but they did not 
measure the ability of their algorithm to detect depression.[33]

Nakano et al. and Yadollahi and Moussavi demonstrated 
that tracheal sounds’ analysis has a relatively high 
performance for the diagnosis of sleep apnea–hypopnea 
syndrome during normal sleep. However, they did not focus 
on the early detection of the onset of apnea, especially 
sedation‑induced apnea.[12,34]

Taplidou and Hadjileontiadis did a time‑frequency analysis 
of breath sounds for wheeze detection, but they did not 
work on respiratory depression.[30]

As a result, it seems that image processing could be useful 
besides other signal processing methods to have the best 
result to detect respiratory depression; however, more 
studies are needed for better results, especially in the 
presence of high‑level of noise and distortions such as 
proposed signals in this study which were gathered from 
patients in a noisy environment, not from a controlled 
experiment.
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