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INTRODUCTION

Cooperative mobile manipulators have received extensive 
attention in recent years due to their wide range of applications 
including transporting long and heavy materials.[1-16] While 
cooperative mobile manipulators can offer advantages over 
a single mobile manipulator in terms of their capability to 
carry out difficult tasks, motion planning of these systems is 
complicated by the need to maintain a closed-chain structure, 
the so-called closure constraint. A cooperative mobile 
manipulator system, in addition to closed-chain constraints, 
is subject to kinodynamic and nonholonomic constraints 
in the form of differential equations,[17] along with collision 
constraints, which make motion planning even more difficult. 
However, these constraints are necessary to find a reliable 
and efficient solution, often called a trajectory.

Many previous studies have investigated the trajectory 
generation for cooperative mobile manipulators, under 
various conditions.[1-16] Two approaches for a solution to this 
problem can be distinguished,[18,19] namely: The decoupled 
and direct approaches. The decoupled approach, involves 
first searching for a path in the configuration space and 
then finding a time-optimal time scaling for the path, 
subject to the actuator limits.[18] This has the desirable 
benefit of decomposing the complexity of motion planning 
problems in two steps, as mentioned earlier. However, the 
path from the first stage might not be transformable into 
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an executable trajectory and the cost associated with the 
final trajectory could be expensive. The main reason for 
these problems is that the approach ignores the differential 
constraints of the action model in the first stage.[19] To 
overcome these deficiencies, a direct approach has been 
developed, in which, differential constraints are considered 
in the planning process. Most of the literatures available 
on the direct approach, compute exact trajectories using 
the optimal control theory and nonlinear optimization 
methods for some specific low-dimensional problems.[1-11] 
The main drawback of these methods is that the number 
of variables and the complexity of the formulation rapidly 
increase for problems with high degrees of freedom. To this 
end, in recent years, probabilistic complete methods have 
been extensively studied within the direct framework.[13-16]

In contrast to other available methods that construct a global 
representation of the configuration space, these methods 
discretize their representation of free configuration space 
to handle high-dimensional configuration spaces. Due to the 
effectiveness of these methods in cooperative manipulation 
systems,[12,20,21] some recent efforts have been directed to 
generalize them for cooperative mobile manipulators.[13-

16] For instance, in[13] a single query method based on the 
Rapidly-exploring Random Tree algorithm (RRT) has been 
presented. The method constructs a randomized tree 
between the start and goal configurations and searches 
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for an optimal path during the construction phase. A 
disadvantage of this method is that the generated tree is only 
valid for certain start and goal configurations; hence, for a 
new query, another tree will have to be constructed, which 
restricts the method to a limited range of applications.[22]  
Therefore,[14] proposes a multiple query two-stage method, 
in which first a graph, namely, the ‘Roadmap’ is constructed, 
based on the Probabilistic Roadmap Method (PRM) by 
neglecting the presence of obstacles and assuming a fixed 
location for the bases of mobile manipulators. Then, it 
populates the environment with copies of the kinematic 
roadmap in random locations and connects the collision-
free configurations of the same closure type to build the 
final roadmap. The method, because of its higher speed in 
the query phase and ability to change its goal configuration 
in an online manner, is more executable in real-time practical 
situations. However, in this method, the probability of 
satisfying loop closure equations in a randomly sampled 
configuration is near zero and this fact lowers the 
performance of the algorithm. To solve this problem in[15,16] 
a simple and general geometric-guided sampling algorithm 
called Random Loop Generator (RLG) has been proposed, 
which notably increases the probability of obtaining real 
solutions when solving the loop closure equations. The 
main deficiency of the method presented for randomized 
motion planning of cooperative mobile manipulators is that 
they ignore differential constraints in the motion planning 
process.[23] However, these constraints will be considered to 
calculate a reliable and efficient solution.

Therefore, in this study we propose a novel two stage scheme 
that considers the trajectory planning problem of two mobile 
manipulators for cooperative transportation of a rigid body. 
The environment is supposed to be a 3-D space that includes 
static obstacles. The method finds an optimal trajectory in 
which such constraints as nonholonomic and closed-chain 
constraints, along with the joint and acceleration limits can 
be easily be dealt with in the presence of static obstacles. 
The method utilizes the advantages of direct and decoupled 
approaches along with the power of probabilistic methods 
in handling high dimensional configuration spaces to have a 
reliable and fast trajectory planning algorithm.

The article is organized as follows: Section 2 introduces the 
model of the cooperative system. In section 3, we design 
the details of our new method for trajectory planning of 
the cooperative mobile manipulators under differential 
constraints in the presence of static obstacles. Finally, 
we present simulation results in section 4, to show the 
effectiveness of the algorithm, and some concluding 
remarks in section 5.

MODEL OF COOPERATIVE SYSTEM

Figure 1 shows our selected model, including a 
cooperative system of two-wheeled mobile manipulators 

transporting a common payload. Each mobile manipulator 
module consists of a wheeled mobile robot with a 5-DOF 
mounted revolute-joint manipulator. Two rotational joints 
have been considered at the bottoms and the tips of both 
the manipulators, with the aim of making the system 
applicable to more practical situations. In the sequel, it 
is assumed that the motion of vehicles is restricted to 
the horizontal plane and both the end effectors catch the 
object tightly.

The problem can now be stated as follows: Given a group 
of two nonholonomic mobile manipulators grasping a rigid 
body, we should find a trajectory to steer the system in 
a cooperative manner between two configurations, in an 
environment with static obstacles such that the acceleration 
of each variable in the configuration space remains within 
certain bounds.

It should be noted that the combination of different types 
of constraints (including holonomic, nonholonomic, and 
dynamic constraints) in such a system makes the motion 
planning problem complicated and it requires careful 
evaluation to realize the payload manipulation task 
efficiently. Therefore, in the remaining section we use 
the above-mentioned model to generate the constraint 
equations of the system.

Closed-chain Constraints

When a collection of links is arranged so that it forms a loop, 
the configuration space becomes much more complicated 
because the joint angles must be chosen in a way that the 
loops remain closed. This leads to constraints in which 
some links must maintain specified positions relative to 
each other. To derive these constraints, we consider the 
cooperative system in more detail, as shown in Figure 2. 
Nomenclatures in this figure are defined as follows:
l ii =( )1 6, , : Length of ith link in the closed kinematic chain
θi i =( )1 6, , : The ith joint angle rotating in the vertical 
plane in the closed kinematic chain
θpi i =( )1 4, , : The ith joint angle rotating in the horizontal 
plane in the closed kinematic chain
lobj: Length of object between two end effectors

Figure 1: Cooperative transportation by a dual mobile manipulator system
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l lp pi i1 2
,  i =( )1 4, , : Length of links attached to the ith joint 

rotating in the horizontal plane

From this figure and the assumptions mentioned before, 
one can conclude that the mobile manipulator system is 
subject to holonomic constraints, expressed as:
 

f dp p p p b bθ θ θ θ θ θ θ θ θ θ θ θ α1 2 3 4 5 6 12 121 2 3 4 1 2
0, , , , , , , , , , , , ,( )= �(1)

where θb1
 and θb2

 represent the orientation of the base 
structures (detailed derivation of this equation can be found 
in Appendix A).

However, in order to lower the computational cost of our 
method, we have designed the desired trajectory in a 
manner that both the mobile bases have a fixed position 
and orientation relative to each other. To this end, we define 
the following conditions:
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where gb is a constant positive value. We also make the 
mounted manipulators to cooperate in a single plane. By 
using (2), this leads to the following desired trajectories:

θ θ θ θp p p p1 2 3 4
0= = = = � (3)

Therefore, by substituting (2) and (3) in (1) and after further 
manipulation one gets:

θ θ θ θ θ θ1 2 3 4 5 6+ + = + +

l s l s l s l c l s l s l sobj3 123 2 12 1 1 456 4 456 5 56 6 6+ + − = + + � (4)

l c l c l c l s l c l c l c gobj b3 123 2 12 1 1 456 4 456 5 56 6 6+ + + = + + +

in which, we define the following parameters:

c c cijk i j k ij i j i i= + +( ) = +( ) = ( )cos , cos , cosθ θ θ θ θ θ

s s sijk i j k ij i j i i= + +( ) = +( ) = ( )sin , sin , sinθ θ θ θ θ θ

l l l l l lp p p p3 421 22 31 32
= + = +, � (5)

Differential Constraints

Differential constraints exist in a model of every 
nonholonomic motion planning problem and restrict 
admissible velocities and accelerations. Here, we consider 
an upper limit on the acceleration of all joint space variables. 
In addition, the mobile platform used in this article is a kind 
of car-like mobile robot as shown in Figure 3; therefore, we 
suppose that the wheels are rolling without skidding and 
slipping.

To derive the equations due to these constraints, we need 
to compute the velocity of each wheel in its attached 
coordinate system [Figure 3].

In this regard, we can state that:[17,24]

v x y lj

i i i

j
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w
b

v Eω θ= + + ×( ) 

x y zw i � (6)

where xbi and ybi denote the position and θbi  represents the 
orientation of the ith base structure (i = 1 2, ) and l jω  is the 
position vector from the origin of vi{ } to the contact point 
of the wheel with the ground [Figure 2]. Hence, the velocity 
of each wheel can be written as:
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and θω j
is the steering angle of the jth wheel ( j = 1 4, , ) and 

also:

l ly
j
y

jω = −( )1 � (8)

The non-skidding condition implies that the second term 
of the velocity vector in (7) vanishes. Therefore, for each 
mobile manipulator module these constraints can be taken 

Figure 2: Cooperative system with its attached coordinate system

Figure 3: Base structure subsystem of the cooperative system

Bolandi and Ehyaei: A novel method for trajectory planning of cooperative mobile manipulators



Journal of Medical Signals & Sensors

Vol 1  | Issue 1  |  Jan-Apr 2011 27

into account as:

− +( )+ +( )+ ( )= 

x y lb b b b b yi i j i i j i

j

j
sin cos sinθ θ θ θ θ θω ω

ω
ω 0�(9)

Consequently, the steering angle of the wheels is uniquely 
determined through the following equations:

tan( )

cos sin

cos sin
,

θ

θ θ

θ θ θ
ω

ω

j

j

y x

x y l
j

y

b b b b

b b b b b y
=

−

+ −
=

 

 





1 2

bb b b b b b

b b b b b y

x g

x y l
j

j

cos sin

cos sin
,

θ θ θ

θ θ θ ω
− +

+ +
=













 

 

3 4

� (10)

and 
?
θω j

becomes:

θ

θ

θ θ

θ θ θ

ω

ω

j

j

d
dt

y x

x y l
b b b b

b b b b b

=

+ ( )
−

+ −
1

1 2tan

cos sin

cos sin

 

 



yy

b b b b b b

b

j

j

j

d
dt

y x g

x

ω

ωθ

θ θ θ













=

+ ( )
− +

1 2

1

1 2

,

tan

cos sin

c

 

 oos sin

,

θ θ θ ω
b b b b yy l

j

j+ +













=






















3 4

� (11)

Furthermore, by defining r jω  as the radius of the jth wheel, 
the non-slipping constraints can be written as:[17,24]

v r zi i
j j j jω ω ω ωω= × � (12)

Now, we can obtain the angular velocities corresponding to 
the driving torques as follows:
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DESIGN OF THE TRAJECTORY UNDER 
CLOSED-CHAIN AND DIFFERENTIAL 
CONSTRAINTS

The general methodology of the PRMs is to construct a graph 
(roadmap) during a preprocessing stage that represents the 
connectivity of the robot’s free configuration space and then 
query the roadmap using an optimal graph-search algorithm 
(e.g., A*), in order to find the shortest possible path between 
start and goal configurations. However, most of the motion 
planning techniques for closed-chain mechanisms could not 
directly account for the differential constraints, which could 
render the planned trajectory infeasible. Here, we have to 
find a trajectory between intermediate points, generated 

during the path planning process, considering differential 
constraints.

Roadmap Construction

Some efforts have been recently made to apply the PRM 
method to closed chain systems.[12-16,20,21] The main drawback 
of these approaches is that too many samples may have to 
be tested before finding a feasible configuration and too 
much computing time is spent in solving closure equations 
leading to imaginary values. To solve this problem, we 
utilize the PRM approach, with a geometrically guided 
sampling method called the Random Loop Generator 
(RLG),[15] which notably increases the probability of obtaining 
real solutions when solving the loop closure equations 
[Algorithm 1 in Table 1].

In addition, in the large workspace of a mobile manipulator 
system, PRM methods require several hours of computation 
time to generate a well-connected roadmap.

Thus, we fix the position and orientation of both the 
manipulator bases first, and construct a roadmap (fixed-
base roadmap), which contains n different self-collision-free 
closure configurations. Then we populate the environment 
in m random locations with copies of the kinematic roadmap 
and connect the configurations of the same closure type.

The basic principle of the RLG method, as stated in 
algorithm 1, is grounded on separating the configuration 
variables into two sets: Active (qa) and passive (qp).

There are some limitations in defining active and passive 
variables,[15] for example:
1.	 The joint space variables in qa and qp correspond to the 

consecutive joints in the mechanism.
2.	 The number of passive variables is equal to the object’s 

degrees of freedom.

If multiple choices exist for these variables that satisfy the 
above-mentioned limitations, all of them can be used in the 
method. In the remaining part of this article, we refer to 
active and passive variables as follows:

Bolandi and Ehyaei: A novel method for trajectory planning of cooperative mobile manipulators

Table 1: RLG method for guided random sampling in the 
roadmap construction phase (Algorithm 1)
1. Specify active and passive subchains as qa and qp

2. for each active variable
3. compute on interval that closed - chain constraint equaltions have a 

solution in it.
4. Choose the active variable randomly form the computed interval
5. end for
6. solve the closed - chain constraint equations for passive variables after 

substituting active variables.
7. if there is a solution
8. use qa and qp to construct the closed - chain random configuration 

(repeat until attaining a real solution)
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qa
T= [ ]θ θ θ1 2 6, ,

qp
T= [ ]θ θ θ3 4 5, , �

(14)

The planner directly acts on the active variables while the 
passive ones are obtained by solving loop-closure equations. 
An important part of algorithm 1 is to compute an interval 
for each of the active variables, increasing the probability of 
having real solutions for loop closure equations. Therefore, 
we should find a subset of values for each active variable 
that makes its workspace reachable by the remaining chain 
of the system. To this end, we require to illustrate the 
workspace of the closed chain system, which is usually a 
very complicated task. Thus, we have to use an approximate 
approach. In this regard, we simplify the model of our 
system as shown in Figure 4.

Therefore, we can express the reachable workspace for 
each active variable as the intersection area illustrated in 
Figure 5. The external and internal radii, rext and rint, in the 
figure correspond to the maximum and minimum extensions 
of the chain respectively and are approximated as follows:
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� (15)

where Li and Lmax are the lengths of the ith and the longest 
link in the chain respectively. The proof of this equation 
can be found in Appendix B. Then, after choosing each 
active variable in its computed interval, we solve the 
closed-chain constraint equations for passive variables. 
Now, the configuration vector of the fixed-base system, is 
written as:

θ =  q qa
T

p
T T

, � (16)

Moreover, in order to consider the base structure mobility, 
utilizing algorithm 2 [Table 2], we populate the entire 
workspace with randomly selected parts of the initial 
roadmap. Let us choose the base configuration, g bω , as a 
random vector including the position and orientation of the 
first robot, relative to the world frame:

g x yb b b bω θ= ( , , )� (17)

Then, we sample a node, θ, randomly from the initial 
roadmap and check the combined vector of g bω θ,( ) for 
collision. If the node is collision-free, we add it to the new 
roadmap. This routine continues for all neighbors of θ and 
is repeated for m different positions, to cover the entire 
workspace.

We collected all roadmap nodes with the same closed 
configuration in a set and used the PRM connection method 

Figure 4: A simplified model of the fixed base system to be used in RLG 
algorithm

Figure 5: Subset of values for an active joint to be reachable by the 
remaining chain of the system
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to connect the nodes in the set, as illustrated in Figure 6. 
Finally, we searched the graph for the shortest possible path 
between the start and goal configurations, with an optimal 
graph search algorithm.

Avoiding Collision with Fixed Obstacles

Sampling-based planners must perform many collision 
checks in order to build a roadmap and spend most of 
their running time performing such checks. Therefore, 

Table 2: Populating the environment with copies of the 
fixed-base roadmap (Algorithm 2)
1. Generate random base configuration gb

2. choose random vertex  repeatedly from the fixed – base roadmap until 
attaining a collision – free configuration (gb, )

3. if there exist a collision – free configuration
4. retain (gb, ) as a roadmap vertex
5. For each neighter of , say , in the fixed – base roadmap
6. if (gb, ) is collision – free
7. retain (gb, ) as a roadmap vertex
8. retrieve the path (t) connecting  and  from the fixed – based roadmap
9. if (gb, (t)) is collision – free for all intermediate configurations along the 

path,
10. add an edge between (gb, ) and (gb, )  (repeat as desired)
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their collision detection method must be very fast, without 
missing any collision or incorrectly detecting collisions, 
even when the workspace has complex geometry.

We used two types of collision checks in our motion planner: 
Static checks, which were used to test whether a sampled 
configuration in the roadmap was in the free space, and 
dynamic checks to test its local paths, which were continuous 
sets of configurations. In the static methods a common 
method was to break complex objects (robot link, obstacle, 
etc.) down, using a bounding volume hierarchy (BVH), which 
was a hierarchy of BVs (e.g., spheres) that approximated the 
geometry of the object at successive levels of detail.[25]

BVH model of the cooperative system
The choice of the type of bounding volume for a given 
application is a trade-off between the ‘tightness of fit’ and the 
speed of operations between two such volumes. Therefore, 
to build a BVH for the cooperative mobile manipulator 
system we use bounding spheres, which are very quick to 
test for collision with each other in conjunction with a more 
precise, but also more expensive type of bounding volume 
according to Figure 7.

Static collision checking
The basic idea behind this method is, to check two objects 
for collisions, their BVHs are searched from top down, 
making it possible to quickly discard large subsets of the 
objects contained in disjointed BVs. In other words, if the 
BVs at the top level are in collision then their children are 
also checked for collision. Otherwise, the algorithm will not 
search any of the children.

Dynamic collision checking
The classical approach to perform dynamic checks is to 
sample each path at some fixed resolution and statically 
check each sampled configuration for collision. This 
approach is approximate and can miss collisions. Therefore, 
we use a newly presented dynamic checker[26] that exactly 
determines whether a path lies in free space, by choosing 
an adaptive sampling resolution along the local path. This 
checker automatically decides whether a path segment 
between two collision-free configurations needs to be 
bisected further.

Let A qi ( ) denote an object Ai from a collection of rigid 
objects (including each of the mobile manipulators, payload, 
obstacles, etc.) at configuration q. We define n qij ( ) to be any 
non-trivial lower bound on the Euclidian distance between 
A qi ( ) and A qj ( ). Let λi a bq q,( ) be an upper bound on the 
lengths of the curves traced by all points in Ai between 
configurations q a and qb along a path segment. A sufficient 
condition for two objects Ai and Aj not to collide along a 
path in the configuration space is:[26]

λ λi a b j a b ij a ij bq q q q n q n q, ,( ) + ( ) < ( ) + ( )� (18)

If this inequality is verified for all pairs of objects Ai and Aj, 
then the path segment is collision-free, otherwise, it must 
be bisected. Furthermore, to compute a lower bound on 
the distance between two objects we work according to the 

Figure 6: (a) Initial roadmap without base structure mobility;  
(b) Distributing the initial roadmap to consider the base structure mobility

Figure 7: A BVH model for the mobile manipulator system
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classical BVH collision checker. However, instead of testing 
if two BVs intersect, we compute the distance between 
them and find the smallest distance found.

Design of the Trajectory

A challenging problem during the planning process is 
that the differential constraints shall be satisfied without 
missing closed-chain constraints. Here, we present an 
extension of the RLG algorithm to solve this trajectory 
planning problem. First, we describe the trajectory of 
each active variable between the sequential pairs of 
way points using the third order polynomial equations, 
which are expressed in a normalized interval of time as  
follows:

q s a a s a s a s

i x y

k

ik ik ik ik ik

b b b

( ) = + + +

∈{ }
=

0 1 2
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3
3
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1 2
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,,..., ,n sseg 0 1≤ ≤

� (19)

where, nseg is the number of path segments, and:

s
t
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=
∆

� (20)

where, t fik is the time required to traverse the kth segment 
of the path. Now, we use the position and velocity values at 
the endpoints of the path segment to calculate the 
coefficients of qik as follows:
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In this regard, we use a simple numerical approach to find 
the velocity vector in the intermediate points of the path: If 
the slope sign of the straight lines between each point and 
the previous and next ones change, the velocity is equal to 
zero, otherwise it is computed as the average of the two 
slopes. Next, utilizing loop closure equations we extract a 
closed form to find passive variables from (4):
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where:
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Now, we calculate the minimum time to go from one 
intermediate point to the next with regard to the maximum 
allowed accelerations. Toward this end, the following 
theorem establishes a lower limit for the trajectories, in the 
form of cubic polynomials such as those in (19).

Theorem 1. Consider the cubic polynomial given by the 
following equation:

q s a a s a s a s sik ik ik ik ik( ) = + + + ≤ ≤0 1 2
2

3
3 0 1, � (24)

with s
t
t fik

=
∆

 and 
d q

dt
ik

ik

2

2
≤ α . Then the lower bound on t fik 

that guaranties the acceleration limits of qik is:

t
a a a

fik
ik ik ik

ik
≥

+( )2 32 2 3max ,

α
� (25)

Proof. As the second derivative of a cubic polynomial is a 
line, its maximum value occurs in one of the corresponding 
endpoints:
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In other words:
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By using 
d q

dt t

d q
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ik

fik

ik
2

2 2

2

2

1
=  we have:

d q
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a a aik
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2
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Furthermore, in view of the constraint 
d q

dt
ik

ik

2

2
≤ α , the 

following condition shall be satisfied:

2
3

2 2 2 3
t

a a a
fik

ik ik ik ikmax( , )+ ≤ α � (29)

and (25) is concluded.
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However, due to the nonlinearity and complexity of the 
equations for the wheel velocities and the passive variables, 
solving the acceleration condition for the exact lower bound 
on t fik can be prohibitively expensive and furthermore pose 
numerical problems. Therefore, utilizing equations (11), 
(13), and (22) we compute a linear approximation of the 
acceleration and write the following condition:

t

dq

ds

dq

ds

j

fjk ins

jk

s

jk

s

jk

2 1 0

3 4 5 1 21 2 3

≥
−

∈

= =β
α

θ θ θ θ ψ θω ω

,

, , , , ,
, , ,,

, , , ,...,,4 3 4 1 2ψ{ } =k nseg

� (30)

where α jk is the maximum allowed acceleration and βins > 1 is 
an insurance factor that compensates for the approximation 
error and maintains the actuator acceleration in the safe bound. 
Obviously, using path-smoothing algorithms and increasing the 
number of path segments lowers the corresponding deviation 
from the exact value of the acceleration. Consequently, the 
total lower bound on the time to move between adjacent 
points in each section of the trajectory would be the maximum 
of the lower bounds computed in (25) and (30):

t t tfk
i j

fik fjk= ( )max ,
,

� (31)

However, to find these lower bounds, because of the lack of 
time response information, we utilized an approximation of 
dq
ds
ik  in each intermediate point of the path, in place of the 

actual velocities, and assumed that:

dq
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Hence, from (20) we can write:
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which shows that with this assumption there are 
discontinuous velocities when we move between adjacent 
segments of the path. Therefore, we apply the bounds 
computed in (31) to find an approximated velocity in each 
intermediate point through the previously mentioned 
numerical approach. Then, we can write:

a qik ik0 0= ( ) , a t
dq
dtik fk
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=

a q t q t
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Finally, substituting (34) into (25) and using (30) and (31) we 
can compute new values for t fk.

SIMULATION RESULTS

Let us consider two same mobile manipulators, as shown 
in Figure 2. To verify the effectiveness of our method 
we will conduct simulations based on the following 
assumptions:
•	 Each mobile manipulator is subjected to the differential 

constraints mentioned in (9) and (13) and its goal is to 
cooperate with the other to satisfy the closed-chain 
constraints in (1)

•	 The transporting object is a rigid body that cannot be 
deformed

•	 The start and goal configurations are set to:

	

q

q
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T
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π π

π π π
22

0,
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

T
� (34)

•	 The environment is populated with six static obstacles 
in the form of spheres with specified position and 
radius, as shown in Figure 8b and c

•	 Some important parameters used in the planner are 
chosen as per Table 3:

Figure 8 shows a 3-D visualization for the trajectory of the 
object with and without obstacles. As shown here, there is a 
smooth trajectory between the start and goal configurations 
in both cases.

Furthermore, accelerations of the computed trajectories for 
joint space variables are shown in Figure 9, and it can be 
seen that they are bounded within the maximum allowed 
accelerations (1 rad/s2).

From (19-21) the trajectory of each active variable between 
the sequential pairs of way points is described by the 
third order polynomial equations. Therefore, in Figure 9 
the accelerations of the active joints are in the form of 
ramp signals; however, this is not the case for the passive 
variables. The quality of the designed trajectory is shown in 
Figure 10. This figure illustrates the deviation of the joint 
space variables from their final values.

Table 3: Simulation parameters
Parameter Value

n 300
m 200
gb, lobj 1.2 (m)
l1, l6 0.8 (m)
l2, l5 0.5 (m)
l3, l4 0.3 (m)
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Figure 9: Joint accelerations of the manipulators

It can be seen that the errors converge to zero as time goes 
on. Figure 11 illustrates the time required to reach the goal 
configuration.

Bolandi and Ehyaei: A novel method for trajectory planning of cooperative mobile manipulators

Figure 8: Object’s trajectory between the predefined start and goal 
configurations: (a) without obstacle, (b) with obstacles, (c) with obstacles 
(top view)

CONCLUSIONS

A novel trajectory planning method has been designed 
for dual mobile manipulators grasping a common object. 
Because of its structure, our method can handle high 
dimensional configuration spaces efficiently.

It also utilizes the advantage of decoupled methods to 
decompose the complexity of the trajectory planning 
problem in two steps, which increases the simplicity of 
the planning process. The main advantage of this method 
is that such constraints as nonholonomic and closed-chain 
constraints, along with the joint and acceleration limits, 
can be easily dealt with in the presence of static obstacles. 
In comparison with the other approaches discussed in 
literature, the advantages of the proposed method have 
been shown in Table 4.

Furthermore, the results of computer simulations 
confirmed the effectiveness of the method. A good 
idea to improve the algorithm proposed in this study is 
to develop a method to keep the system from colliding 
with the moving obstacles. Also, investigating the 
trajectory planning of more than two cooperating mobile 
manipulators to perform the carrying task seems to be an 
interesting route to follow.

APPENDIX

Detail Derivation of Equation (1)

Utilizing the coordinate systems in Figure 2 along with the 
concept of transformation matrices, we can write:
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in which B
AT  is a matrix that transforms the coordinate 
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Figure 10: Errors of the joint space variables: (a) without obstacle, (b) with obstacles

Figure 11: The distance between current and goal positions of the first end effector: (a) without any obstacle, (b) with static obstacles

Table 4: Comparison of recent approaches on motion planning for cooperative mobile manipulators
Method Criteria

Computational 
complexity

Considering differential 
constraints in the trajectory

Guarantees to find a 
solution if it exists

Applicable to high 
dimensional systems

Complete methods
Optimal control based 1,11
Numerical optimization 2,3
Artificial potential fields 6

Very high
High
Very high

Yes
Yes
Yes

Yes
No
Yes

No
No
No

Randomized or probabilistic complete methods 
Single query methods 13
Multiple query methods 13-16

Moderate
Low

No
No

Yes
Yes

Yes
Yes

Our method Low Yes Yes Yes

system B{ } into A{ }, and the different coordinate systems 
in the above equation are defined as follows:

Therefore, from (A.1), after further manipulation, the 
validity of (1) can be verified.

Proof of Equation (15)

The reachable workspace of any articulated mechanism 

can be bounded by two concentric spheres, as shown in 
Figure 5. The radii of these spheres correspond to the length 
of the mechanism in the case of minimum and maximum 
extensions. This length is defined by the distance between 
the origins of the base-frame and the end-frame as:

r L ai i
i

k

=
=
∑

1

� (B.1)

Bolandi and Ehyaei: A novel method for trajectory planning of cooperative mobile manipulators



Journal of Medical Signals & Sensors

Vol 1  | Issue 1  |  Jan-Apr 201134

Bolandi and Ehyaei: A novel method for trajectory planning of cooperative mobile manipulators

where Li (i k= 1, , ) is the length of ith link and ai ∈ −[ ]1 1,  is 
a factor that maps these lengths in the direction of the 
vector, connecting the origins of the base-frame and the 
end-frame. Thus, by substituting ai = −1 or 
a i ki = ∀ ∈{ }1 1, , ,  in (B.1) we can compute a maximum 
value for r  as follows:

r Li
i

k

max =
=
∑

1

� (B.2)

Now, suppose that the jth link of the system has the longest 
length, Lmax; then, from (B.1) one gets:

r L a L a L a L a L aj k k= + + + + + +1 1 2 2 3 3 n nmax � (B.3)

Therefore, we can write the following equation to compute 
a minimum value for r :
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and from (B.2) we can conclude that:

r
L r if L r

if L rmin
max max max max

max max
=

− >
≤





2 2

0 2
� (B.5)

which shows the validity of (15).
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