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Abstract
The process of interpretation of high-speed optical coherence tomography (OCT) images is restricted 
due to the large speckle noise. To address this problem, this paper proposes a new method using 
two-dimensional (2D) curvelet-based K-SVD algorithm for speckle noise reduction and contrast 
enhancement of intra-retinal layers of 2D spectral-domain OCT images. For this purpose, we take 
curvelet transform of the noisy image. In the next step, noisy sub-bands of different scales and 
rotations are separately thresholded with an adaptive data-driven thresholding method, then, each 
thresholded sub-band is denoised based on K-SVD dictionary learning with a variable size initial 
dictionary dependent on the size of curvelet coefficients’ matrix in each sub-band. We also modify 
each coefficient matrix to enhance intra-retinal layers, with noise suppression at the same time. 
We demonstrate the ability of the proposed algorithm in speckle noise reduction of 100 publically 
available OCT B-scans with and without non-neovascular age-related macular degeneration (AMD), 
and improvement of contrast-to-noise ratio from 1.27 to 5.12 and mean-to-standard deviation ratio 
from 3.20 to 14.41 are obtained.
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Introduction
Spectral domain optical coherence 
tomography (SD-OCT) is a high-resolution, 
noninvasive imaging technique in the 
identification and assessment of internal 
structures of retinal abnormalities and 
to image various aspects of biological 
tissues with high resolving power (5 µm 
resolution in depth).[1,2] The main problem 
regarding these images is in their inherent 
corruption by speckle noise due to its 
coherent detection nature. Traditional 
digital filtering methods including median 
and Lee filtering,[3] adaptive median and 
Wiener filtering,[4,5] and iterative maximum 
a posteriori-based algorithm[6] were 
employed for reducing speckle noise. These 
methods provide inadequate noise reduction 
under the high speckle noise contamination, 
as well as result in the meaningful loss 
of faint features. In recent years, some 
other approaches have been explored for 
speckle noise reduction such as anisotropic 
diffusion-based methods,[7-10] wavelet-
based methods,[11,12] curvelet shrinkage 
technique,[13] dictionary learning-based 
denoising,[14,15] and robust principal 
component analysis-based method.[16] 

However, the necessity of the development 
of more advanced methods to provide 
minimum detail loss under suppression 
high speckle noise makes the speckle noise 
reduction as an important part of the OCT 
image processing.

Here, a novel speckle noise reduction 
algorithm is developed, which is 
optimized OCT image despeckling while 
preserving strong edge sharpness. For this 
purpose, we introduce K-SVD dictionary 
learning in curvelet transform (CUT) 
domain for speckle noise reduction of 
two-dimensional (2D) OCT images. As 
the low scale of curvelet coefficients 
are more affected by the noise and to 
take advantage of this sparse multiscale 
directional transform, we introduce a 
new scheme in dictionary learning and 
take CUT of noisy image, then a nearly 
optimal threshold for thresholding of 
curvelet coefficients for each scale and 
rotation is found based on the standard 
deviation of each coefficient matrix. 
Thresholded coefficients are employed, 
and a curvelet-based K-SVD with 
varying size dictionary dependent on the 
scale and rotation of coefficient matrix is 
introduced. This method does not need 
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any high signal-to-noise ratio (SNR) scans (a fraction 
of repeated B scans from a unique position are captured 
slowly, then these images are registered and averaged 
to create a less noisy image with a sufficiently high 
SNR) for dictionary learning, which is used in other 
works.[14,15]

The paper is organized as follows. Section 2 provides an 
introduction to 2D digital CUT (DCUT). In Section 3, we 
describe the principles of conventional dictionary learning. 
Our proposed method is described in Section 4, and the 
results and performance evaluation are presented in Section 
5. Finally, this paper is concluded in Section 6.

Two-dimensional Digital Curvelet Transform
The CUT is a high-dimensional time–frequency analysis 
of images that gives a sparse representation of objects, 
and it has been developed to overcome the inherent 
limitations of conventional multiscale representations 
such as wavelets (e.g., poor directional selectivity). The 
directional selectivity of curvelets and localized spatial 
property of each curvelet can be utilized to preserve the 
image features along certain directions in each sub-band. 
The good directional selectivity, tightness, and sparse 
representation properties of this multiscale transform give 
new opportunities to analyze and study large datasets in 
medical image processing.[17]

This transform can be implemented by employing two 
simpler, faster, and less redundant methods, i.e., the 
unequally-spaced fast Fourier transform (USFFT) and 
the wrapping transform.[17,18] The main difference of these 
implementations is related to their choice of spatial grid 
to construct the curvelet atoms in each subband. Both 
algorithms have the same output, but the wrapping-based 
transform has faster computational time and is easier to 
implement than USFFT method.[18] The architecture of 
CUT via wrapping is roughly presented in the following 
form:
1. Take the 2D FFT of the image f and obtain Fourier 

samples f̂ (n1, n2),…−n/2 ≤ n1, n2,…< n/2 (f is the 
original image with the size of n × n)

2. For each scale/angle pair (j, l), form the product 
d (n1, n2) = U~j,l (n1, n2) f̂ (n1, n2), here, U~j,l (n1, n2) is the 
discrete localizing window[18]

3. Wrap this product around the origin and obtain 
f~j,l(n1, n2) = W (U~j,l f̂) (n1, n2). If the corresponding 
periodization of the windowed data, i.e., d (n1, n2) is 

defined as Wd n n d n m L n m L
mm

( , ) ,1 2 1 1 2 2

21

= + +( )
∈∈
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, 

then at each scale j, Wd (n1, n2) is restricted to indices 
(n1, n2) inside a rectangle with sides of length L1,j × L2,j 
near the origin (L1,j ~ 2j and L2,j ~ 2j/2)  to construct the 
wrapped windowed data

4. Take the inverse 2D FFT of each f~j,l for collecting the 
discrete coefficients, i.e., cD (j, l, k).

K-SVD Dictionary Learning For Image Denoising
Image denoising problem can be viewed as an inverse 
problem. One of the most recent methods to solve an 
inverse problem is a sparse decomposition over over-
complete dictionaries.[19,20] For a given set of signals 
delineated by Y, suitable dictionary D can be found such 
that yi ≈ Dxi, where xi is a vector which involves the 
coefficients for the linear combination and yi ∈ Y. The 
problem of sparse representation can thus be defined as an 
optimization problem of finding D and xi, which satisfies:

min
,D x i
y Dx x Ti i isubjected to− <

2 0
 (1)

where T is a predefined threshold which restraints the 
sparseness of the representation and || · ||0 indicates the l0 
norm which counts the number of nonzero elements of the 
vector. This problem is thus involved in a selection of the 
dictionary and a sparse linear combination of the atoms in 
the dictionary to illustrate each desired signal. For image 
denoising, the noisy image is broken up into patches and 
the vectorized version of each patch is considered as a 
signal. For a given image, which can be considered as a set 
of signals Y, the denoising problem can be done by finding 
a set of patches Z which are related by:

Y = Z + η  (2)

where η is noise, which corrupts the patches.

To find the denoised patches Ẑ, the following optimization 
problem should be solved:[19,20]

argmin ( )
, ,x Z D

ij
ijijij

Y Z Dx R Z xλ µ− + − +∑∑2

2 2

0
ij ij

F
ij

  (3)

where λ and μ are Lagrange multipliers and Rij is defined 
as the matrix which selects the ijth patch from Z, i.e., 
Zij = RijZ.

The first term in (3) makes sure that the measured image Y 
is similar to its denoised version Z and the second and third 
parts are sparsity-inducing regulation terms.

For solving the above equation:
1. Initialization is done by setting

Z=Y, D = initial dictionary
2. Repeat K times

• For each patch, RijZ computes the representation 
vector xij by using orthogonal matching pursuit 
(OMP) algorithm.[21,22] The OMP is easy in 
implementation and provides a satisfactory stable 
result. The algorithm attempts to find the best 
basis vectors (atoms) iteratively such that the 
representation error is reduced in each iteration

∀ − <ij ij ij ij
ij

such thatmin ( )
x
x R Z Dx C

0 2
  (4)

 where C is the noise gain and σ is the standard 
deviation of noise
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• Once this sparse coding stage is done, the algorithm 
proceeds to update the atoms l = 1, 2,…, k of the 
dictionary one by one to reduce the error term. For 
this purpose the set of patches that use this atom 
Dl = ([i, j]|xij (l) ≠ 0) are calculated and l-th atom 
from dictionary is deselected, then the coding error 
matrix (El) of these signals is calculated whose 
columns are:

 e R X d x m
m l

ij

l

ij ij m ij= −
≠
∑ ( )  (5)

• Minimize this error matrix with rank-1 
approximately from SVD that El = UΔVT. Replace 
coefficient values of atom Dl with entries of V1Δ1 

and updated dictionary column to be D =l
U
U
1

1 2

 .

3. Set

 T 1 T
ij ij ij ij

ˆ ( ) ( )
ij ij

Z I R R Y R Dx −= + +∑ ∑  (6)

Proposed Denoising Method
Our curvelet-based approach consists of first taking the 
2D forward DCUT of noisy image to produce the curvelet 
coefficients, then for each sub-band in the transform 
domain, the coefficients’ matrix is independently denoised 
based on K-SVD dictionary learning with the initial 
dictionary of discrete cosine transform (DCT), in which its 
size is specific for each scale.

In the proposed method for efficient representation of 
different structures in image, we select initial dictionary 
to be variable in size (depends on the size of curvelet 
coefficients’ matrix in each sub-band) instead of traditional 
fixed form. By increasing the scale of curvelet coefficients’ 
matrix (or reducing in resolution), the block size (indicates 
the size of the blocks to operate on) is also increased, 
while in high resolutions, the block size is reduced which 
results in better representation of particular structure in 
image.

The proposed method for image denoising is as follows.

Forward Digital Curvelet Transform

Take the 2D CUT of the data to produce the curvelet 
coefficients C (j, l) (j is the scale and l is the orientation).

According to our image size (512 × 1000), each image is 
decomposed into six scales (it is recommended to take the 
number of scales to be equal or less than the default value, 
⌈(log2

 [min(M, N)] – 3)⌉, here M, N is the image size and 
x denotes the smallest integer being greater than or equal 
to x) then each scale is further partitioned into a number 
of orientations. The number of orientations is l=1, n, 2n, 
2n, 4n, 4n… from finer to coarser scales, where n is the 
number of orientation at the second scale.

Initial denoising

For each scale, apply hard thresholding based on the 
standard deviation of each scale. The hard threshold Tj,l to 
each curvelet coefficient is selected such that:

C j l
C j l T

C j l
( , )

( [ , ])

( , )
=

≤



0 if abs

else

j,l

 (7)

The threshold Tj,l is selected based on the standard deviation 
of selected coefficient matrix (C) in that scale and rotation 
(Tj,l = 0.5 standard deviation [C]).

Initial dictionary selection and K-SVD dictionary 
learning denoising

For each 2D-coefficient matrix in each scale and rotation, 
the varying size initial dictionary for each scale is chosen 
by employing DCT on each sub-band.

We let the block size in dictionary learning to be dependent 
on the size of each coefficient matrix, so the dictionary size 
also varies with block size. After finding the appropriate 2D 
initial dictionary, D, for each sub-band, the noisy curvelet 
coefficient matrices of noisy image in the same scale 
and rotation are despeckled based on K-SVD dictionary 
learning as described in Section 3.

According to the size of curvelet coefficient matrix C, the 
dictionary size and block size are set empirically to be:

Block size=  . min ( , )5 m n  (8)

Dictionary size = Block size.^3 (9)

where m, n are respectively the number of rows and 
columns of coefficient matrix C and [x] indicates the largest 
integer smaller than or equal to x.

Contrast enhancement

Since the CUT is successful in dealing with edge 
discontinuities, it is a good candidate for edge 
enhancement. Hence, to enhance the contrast of intra-
retinal layer boundaries, denoised curvelet coefficients 
can be modified to enhance edges in a B-scan image,[23,24] 
before taking 2D inverse discrete CUT (2D-IDCUT). For 
OCT images, a function kc (Cj,l) defines empirically that 
is similar to function defined by Starck for gray and color 
image enhancement,[25] which modifies the values of the 
curvelet coefficients as follows:

K x
x x N

x s N x N
s x N x

c

if abs

if abs

if abs
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 (10)

In this equation, N = 0.1M, where M is the maximum 
curvelet coefficient of the relative band, and s1 and s2 are 
defined as follows:
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Converting to image domain

Then, we reconstruct the enhanced image from the 
denoised and modified curvelet coefficients by applying 
IDCUT. The outline of the whole denoising process is 
shown in Figure 1.

Results
We tested our algorithm on 100 selected 2D OCT B-scans 
of size 512 × 1000 from publically available datasets[15,26] 
that were acquired using SD-OCT, Bioptigen imaging 
systems, with and without non-neovascular AMD. For 
the better representation of image details in low scale, 
high-frequency components, the block size is selected 
to be dependent on the scale of coefficient matrix. On 
the other hand, for low scales, the coefficient matrix is 
small in size and the size of this matrix will be increased 
in high scale, low-frequency components of the image. 
Figure 2 demonstrates the samples of the variable size 
initial dictionaries in curvelet domain used for K-SVD-
based denoising of each curvelet sub-band.

Figure 3 shows the reconstructed OCT images from 
curvelet-based K-SVD enhancement method.

For K-SVD denoising in each scale and rotation of curvelet 
coefficients, 1000 patches with equal distance between 
the samples in each dimension are selected. To obtain a 
compromise between having enough iterations to obtain a 
good result and having a correct processing time, we set 

K empirically to be 15 for our dataset. According to Eqs. 
3 and 4, we also set C = 1.15 and λ = 30/σ, where σ is 
selected to be 25 for our dataset.

To compare the performance of different denoising 
algorithms quantitatively, we compute the averaged mean 
SNR[27] and contrast-to-noise ratio[28] obtained from ten 
regions of interest (ROIs) from B-scan OCT images 
[similar to the foreground ellipse boxes in Figure 4].

The algorithm that has been implemented in MATLAB 
requires around 2 min of computation time for denoising 
each 512 × 1000 B-scan on an Intel (R) Core i7 CPU with 
4 GB of RAM. The drawback of the proposed method[15] is 
its time complexity so that it takes more than 31 min for 
denoising each B-scan on the same Intel (R) Core i7 system.

Table 1 compares the quantitative performance measure 
values of our method with those from the available 
well-known denoising approaches[15] such as: Tikonov,[6] 
K-SVD[14] and multiscale sparsity-based tomographic 
denoising approach[15] (the reported results[15] are on 
17 images of this dataset). To show the ability of proposed 
method in edge preserving, the average of the edge 
preservation (EP)[29] measure over the selected ROIs is 
obtained, that is, 0.83 ± 0.01. This EP measure ranges 
between 0 and 1, having smaller values when the edges 
inside the ROI are more blurred.

Figure 5 also shows the visual performance of our proposed 
method in comparison with some traditional state-of-theart 
denoising methodssuch as: Bernardes method[10] Tikonov,[6] 
and multiscale sparsity-based tomographic denoising 
algorithm.[15]

To show the ability of our proposed method 
(DCUT + K-SVD), we have demonstrated the reconstructed 
image with thresholded curvelet coefficients and the ability 
of K-SVD in image domain (block size = 8, dictionary 
size = 256) for noise suppression in Figure 6. Table 2 also 
compares the quantitative performance measure values of 
our method with thresholded curvelet coefficients (without 
dictionary learning) and the K-SVD-based denoising 
(without CUT) method.

Figure 1: The outline of the proposed method

Figure 2: Samples of the trained two-dimensional initial dictionaries in 
K-SVD-based denoising of each curvelet coefficient matrix. The block size 
in (a) is 3 × 3 and in (b) is 4 × 4

ba
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Conclusion
Speckle noise in OCT images causes difficulty in the 
actual recognition of morphological characteristics which 
can be viewed and quantified using OCT tomograms, such 
as the thickness of intra-retinal layers and the shape of 
structural features (e.g., drusens, macular holes, macular 
edema, and nerve fiber atrophy and cysts, which can be 
used as markers in clinical investigation and diagnostics of 
retinal diseases). Hence, to suppress noise while preserving 
and enhancing the edges and to consider the geometric 
properties of structures and exploit the regularity of edges, 
we introduced a new curvelet-based K-SVD despeckling 
and contrast enhancement method for OCT datasets. We 
discussed the application of dictionary learning along 
with CUT for denoising of SD-OCT of normal and 
AMD retinal images. Our proposed method also does 
not need any high-SNR scans or any repeated scans (or 
averaged versions of scans) for dictionary learning (since 
in some cases, there is no access to the averaged frames). 
Moreover, since the proposed method decomposes the 

image into lower dimension sub-components, we achieved 
a significant reduction of computational time by reducing 
the size of initial dictionary to be dependent with the 
size of each scale. The EP value also shows that the 
proposed method can preserve edges very well while 
removing speckle noise. As OCT is a medical imaging 
technique that captures three-dimensional (3D) images 
from within optical scattering media, it seems that the 
direct analyzing of 3D images with 3D sparse transforms 
and also considering the 3D geometrical nature of the 
data outperform analyzing 2D slice-by-slice, which is our 
ongoing research to extend this work to 3D domain.
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Figure 4: Selected background and foreground regions of interest for 
evaluation. Bigger ellipse outside the retinal region is used as background 
region of interest and other circles represent foreground regions of interest

Figure 6: Visual comparison of our proposed method with thresholded 
digital curvelet transform coefficients and K-SVD (a) initial images, 
(b) reconstructed image with thresholded digital curvelet transform 
coefficients, (c) obtained images by using K-SVD on image domain 
(d) proposed method

dc

ba

Figure 3: The implementation of proposed method (a and c) initial images 
and (b and d) obtained images by proposed method

dc

ba

Figure 5: Visual performance for spectral domain optical coherence 
tomography retinal image using Bernardes, Tikhonov, multiscale sparsity-
based tomographic denoising, and the proposed method. (a) Original noisy 
image (b) denoising results using the Bernardes method. (c) Denoising 
results using the Tikhonov method. (d) Denoising results using the 
multiscale sparsity-based tomographic denoising. (e) Proposed method

dc

ba

e

Table 1: Mean and standard deviation of the mean signal-to-noise ratio and contrast-to-noise ratio results for 17 
spectral domain optical coherence tomography retinal images using the Tikonov, K-SVD, multiscale sparsity-based 

tomographic denoising, and proposed methods
Original Tikhonov[6] K-SVD[14] MSBTD[15] Proposed method

Mean (CNR) 1.27 3.26 4.11 4.76 5.12
STD (CNR) 0.43 0.22 1.23 1.54 1.81
Mean (MSR) 3.20 7.64 11.22 14.76 14.41
STD (MSR) 0.46 0.63 2.77 4.75 4.12
MSR – Mean signal-to-noise ratio; CNR – Contrast-to-noise ratio; MSBTD – Multiscale sparsity-based tomographic denoising
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Table 2: Mean signal-to-noise ratio and contrast-to-noise 
ratio results of our proposed method in comparison with 

reconstructed image from thresholded digital curvelet 
transform coefficients and K‑SVD‑based denoising 

method in an image of Figure 6
Original Thresholded 

DCUT
K-SVD Proposed 

method
CNR 1.17 3.53 4.23 5.03
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DCUT – Digital curvelet transform; MSR – Mean signal to noise 
ratio; CNR – Contrast- to-noise ratio
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