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A New Parallel Approach for Accelerating the GPU-Based Execution of
Edge Detection Algorithms

Abstract
Real-time image processing is used in a wide variety of applications like those in medical care and
industrial processes. This technique in medical care has the ability to display important patient
information graphi graphically, which can supplement and help the treatment process. Medical decisions
made based on real-time images are more accurate and reliable. According to the recent researches,
graphic processing unit (GPU) programming is a useful method for improving the speed and quality of
medical image processing and is one of the ways of real-time image processing. Edge detection is an
early stage in most of the image processing methods for the extraction of features and object segments
from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts’ Cross technique are
some examples of edge detection algorithms that are widely used in image processing and machine
vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture
(CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An
existing parallel method for Canny approach has been modified further to run in a fully parallel manner.
This has been achieved by replacing the breadth-first search procedure with a parallel method. These
algorithms have been compared by testing them on a database of optical coherence tomography images.
The comparison of results shows that the proposed implementation of the Canny method on GPU using
the CUDA platform improves the speed of execution by 2–100× compared to the central processing unit-
based implementation using the OpenCV and MATLAB platforms.

Keywords: Algorithms, computer systems, computers, humans computer-assisted image processing,
optical coherence tomography

Introduction

In the past, graphic processing units (GPUs)
have been used to execute only graphic
applications, and implementing parallel
processing algorithms on this platform was
extremely challenging. In recent years, GPUs
have progressed into general purpose
graphics processing units (GPGPUs) and
have been perfect as a source of parallel
computing.

[1]

GPGPUs are comparable with
field-programmable gate arrays (FPGAs) in
power consumption and Gflops performance.
The FPGA and GPGPUs have been compared
systematically by Cope et al.

[2]

On this basis,
FPGA is more appropriate for algorithms
with large numbers of memory access,
whereas GPGPUs are suitable for algorithms
with variable data.

Compute Unified Device Architecture
(CUDA) is a software which can be used
to obtain better parallelism in a GPGPU

using single instruction multiple threads.
As a result, developing GPGPU programs
becomes more efficient. Nevertheless, im-
plementing image processing algorithms on
GPGPUs in parallel is still challenging
because organizing thread and memory
hierarchy have a great effect on efficiency.

Many image processingworkswere performed
on GPU before the advent of CUDA and
GPGPUs. Fast Fourier transform operations
were implemented on GPU by Moreland and
Angel.

[3]

They gained a 4× speedup compared
to the generic implementation on central
processing unit (CPU).

Strzodka and Garbe
[4]

implemented a motion
estimation algorithm on both the GPU and
CPU. In comparison, the GPU-based exe-
cution was 2.8× faster. Color space con-
version for Moving Picture Experts Group
(MPEG) video encoding was implemented by
Shen et al.

[5]

on GPU using the DirectX, which
improved the implementation speed 2–3×.
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Many parallel algorithms developed for computer vision have
been presented.

[6]

The GPU is now considered a general-purpose platform and
is easily programmable. Hence, some open-source libraries
such as OpenVIDIA[7] are now available for improving the
GPU-based algorithms. Another open-source library called
GpuCV

[8]

provides a platform for connecting the GPU and
Open Source Computer Vision (OpenCV). MinGPU

[9]

is
another open-source library that presents a set of practical
algorithms for image processing and computer vision.

Image processing techniques such as registration, clas-
sification, and feature extraction are important topics in
medical applications. GPU programming is a useful method
for improving the speed and quality of these procedures,
especially in the field of medical image processing.

[10-16]

Until now, several algorithms have been introduced for edge
detection on GPU.

[17-22]

Luo and Duraiswami
[23]

implemented
the Canny edge detection method using the CUDA platform.
This implementation uses the breadth-first search (BFS) for
tracing the edges and for hysteresis thresholding. This
method is time-consuming and inefficient. In our method,
we offer a solution to eliminate the need to use the BFS. The
other parts of the Cannymethod are fairly straightforward and
highly parallel. Moreover, all the well-known edge detectors
are combined and presented as a real-time interface, which
are implemented in both CUDA and OpenCV. It is also
possible to easily modify the different inputs and variables.
The results are compared with Matrix Laboratory
(MATLAB) and other OpenCV and CUDA implementations.

Graphic processing unit

Physical constraints and high power consumption are the
most crucial factors in limiting the use of CPU. By increasing
the number of processing cores, the performance improves;
however, power consumption goes up as well. In comparison,
a GPU consumes less power and has many more processing
cores than a CPU. However, the GPU processing cores are
much more basic than the CPU cores. The architectures of
CPU and GPU are illustrated in Figure 1.

Compute Unified Device Architecture

CUDA is a parallel computing framework and programming
platform introduced by NVIDIA.

[6]

One of the best
advantages of using parallel programming on GPU is
the reduction of runtime for massively parallel algorithms.

By taking advantage of the computational ability of GPUs,
researchers can achieve a higher performance and reduce the
analysis time from several minutes to a few seconds.

Memory management is an essential part of CUDA
programming. CUDA framework defines five types of
memory: global memory, texture memory, shared memory,
registers, and local memory. Global memory has a large
capacity. However, this memory is off-chip and it is not
cached; therefore, there is a large delay in accessing this
memory. Texture memory and constant memory are also
located in the global memory; nevertheless, they are cached
memories.Accessing the constant and texturememories is fast,
but these memories are read-only. Shared memory and the
registers are on-chip, but their size ismuch smaller compared to
the global memory. Registers are the fastest memory available
in CUDA framework. Registers have a much smaller capacity
(in theorder of kilobytes) relative to the globalmemory. Shared
memory has an access time which is as fast as that of registers,
but it also has a similar limited capacity. Shared memory has a
shared storage space with the on-chip cache memory.

Three important terminologies exist in CUDA: thread, warp, and
thread block. Thread is the smallest component of parallel
computing. A thread processes a single data from a stream of
data, for example, a pixel of an image. A block is an arbitrary
groupof threads. Sharedmemory is only accessible fromwithin a
threadblock.Theexecutionof32parallel threads is calledawarp.
Eachwarp is executed independently.Usingasingledata for each
warp allows the threads in the same warp to run in parallel.

The rest of the paper has been organized as follows. The
second section reviews the famous edge detection algorithms.
Our method of implementing these edge detection algorithms
on GPU is explained in the third section. Experimental results
are reported and discussed in the fourth section. Finally, the
conclusion of this study is provided in the final section

Edge Detection Algorithms

Feature extraction is one of the early stages in image processing,
and edges are usually the most frequently extracted features.
There are manymethods available for the detection of edges in a
given image. The Canny method

[24]

is the most famous edge
detection technique and is widely used. Using this method for
certainkindsof images(i.e., images thatareusuallysmoothedbya
Gaussian filter)yieldsabetter result compared tootheralgorithms
such as Sobel filter,

[25,26]

Prewitt filter,
[27]

and Roberts’ Cross.
[28]

An edge delineates a local change of intensity in an image.
Edges usually occur at the boundary between two different
regions of an image.

The edge detection goals can be summarized as follows:
[29,30]

• Providing a line drawing of a scene from an image of that
scene.

• Extracting the edges of an image, such as corners, lines,
and curves.

• Providing inputs for vision algorithms.Figure 1: Architectures of CPU and GPU
[6]
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To implement an edge detection algorithm, four general steps
must be followed:

[29,30]

(1) Smoothing: Removes noises as much as possible without
any effect on the edges.

(2) Enhancement: Executes a filter for edge enhancement.

(3) Detection: Determines which edge should be removed
and which edge should be maintained. (Typically,
thresholding is used for this step.)

(4) Localization: Specifies the particular position of an
edge.

General steps of an edge detector algorithm

Figure 2 illustrates the main steps in the edge detection
procedure. Each algorithm is described in the following
sections.

Roberts’ Cross

The Roberts’ Cross edge detector has been proposed by
Lawrence Roberts in 1965.

[28]

In brief, this detector is a
discrete differentiation operator that calculates the horizontal
and vertical changes in the input. In thisway, the original image
is convolved with two 2×2 kernels.

Eq. (1) shows this operator:

∂f
∂x

¼ f i; jð Þ � f i þ 1; j þ 1ð Þ
∂f
∂y

¼ f i þ 1; jð Þ � f i; j þ 1ð Þ
ð1Þ

The two previous kernels could be replaced by these
approximations:

Mx ¼ 1 0
0 �1

� �
; My ¼ 0 �1

1 0

� �
ð2Þ

Consequently, the horizontal and vertical changes can be
calculated by Eq. (3).

Fx ¼ Mx � F ; Fy ¼ My � F ð3Þ
F is the original image,Mx andMy are the two kernels, and Fx

and Fy are the images that show the horizontal and vertical
changes. The “*” indicates the convolution, which will be
discussed in “Materials and Methods” section.

Prewitt filter

Judith M.S. Prewitt proposed the Prewitt filter in 1970.[7] In
this algorithm, the original image is convolved with two 3×3

kernels. These kernels are represented by Fx and Fy in Eq. (4).
This algorithm is similar to the Roberts’ Cross algorithm.

Fx ¼
�1 0 þ1
�1 0 þ1
�1 0 þ1

2
4

3
5 � F ; Fy ¼

þ1 þ1 þ1
0 0 0
�1 �1 �1

2
4

3
5 � F ð4Þ

Sobel filter

Sobel proposed the Sobel filter.
[4-6]

This detector is similar to
the Prewitt edge detector, but with different kernels. Eq. (5)
expresses these two kernels.

Fx ¼
�1 0 þ1
�2 0 þ2
�1 0 þ1

2
4

3
5 � F ; Fy ¼

�1 �2 �1
0 0 0
þ1 þ2 þ1

2
4

3
5 � F ð5Þ

Canny edge detector

The Canny algorithm
[24]

is the most famous edge detector
used in image processing. Applying this algorithm on
certain kinds of images (e.g., images containing Gaussian
noise) yields better results compared to other algorithms.
The main steps in the Canny algorithm are illustrated in
Figure 3.

Materials and Methods

The methods used in this paper are based on GPU4Vision.
[6]

As was discussed in “Edge Detection Algorithms” section,
each edge detection algorithm includes at least one con-
volution step, which generally can be expressed as

Fxjy ¼ Mxjy � F ð6Þ

F is a subset of the original matrix (here representing a part of
an image). The type of algorithm used defines the size of F.
Mx|y represents the kernels in each algorithm (Mx or My,
depending on the direction), and Fx|y is an integer value. Fx|y

Figure2: Main steps for Roberts’Cross, Prewitt, andSobel edge detectors
[29,30]

Figure 3: Main steps in Canny edge detection procedure
[29,30]

. Illustration of
the local gradient direction and its effect on the output (the calculated
direction is horizontal); (a) The gradient direction is vertical, (b) The
gradient direction is horizontal
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is calculated vertically (Fy) or horizontally (Fx) depending on
the direction of M. The “*” denotes a convolution between
two matrices and is defined as follows:

f x; y
� � � g x; y

� � ¼ ∑
∞

n1¼�∞
∑
∞

n2¼�∞
f n1; n2½ �⋅g x� n1; y � n2

� � ð7Þ

Moreover, the method proposed by Canny involves another
convolution to smooth the input:

F ¼ F � G ð8Þ

G is the Gaussian function and is further explained in “Parallel
convolution” section. The smoothing is the first step in the
Canny approach. The output (F) would be the input (F) in Eq.
(6). The final value of a pixel is calculated by Eq. (9):

Fout i;jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fx

2 þ Fy
2

q
ð9Þ

Eq. (9) specifies the geometric distance of Fx and Fy from the
center of the image and is called the gradient magnitude. Fout

is the output image. (i, j) denotes the index of a pixel in the
output image. For a 3×3 kernel, (i, j) corresponds to the center
of the input matrix (F) in Eq. (6).

Except for the Gaussian filter, the other initial steps of
the Canny method are common with the other edge
detection algorithms and could be efficiently parallelized.
However, as was explained earlier, Canny has proposed two
additional steps to enhance the output. These steps have
been parallelized, but they could be improved further.
First, the efficient method of parallel convolution (the
method used in the initial steps of the Canny method) is
discussed in “Parallel convolution” section. Afterwards,
the two additional steps of the Canny approach are
described in “Non-Maximum suppression” and “Edge
tracing and hysteresis thresholding” sections, and a method
is proposed to further enhance the parallelization.

Parallel convolution

As was mentioned above, an essential part of the process of
parallelizing edge detection algorithms is to have an efficient
parallel convolution.

To efficiently parallelize the convolution [Eq. (6)], several
steps should be taken. First,Mx|y and F should be localized for
each kernel. Usually,Mx|y is a 2×2 or 3×3 matrix and is fixed
for each algorithm. Therefore, it is generally a good idea to
store this matrix in the shared memory of each streaming
multiprocessor (SM), because the shared memory has fewer
fetch cycles compared to other types of memory. Moreover,
to calculate each new pixel for the output image, each
algorithm only needs a small subset of the input image. As
an example, the Sobel filter needs eight adjacent neighbors of

each pixel, as is shown in Figure 4. Since the number of pixels
that are needed for each new pixel is generally small (nine for
Sobel), this set could easily be stored in the cache of each SM.
Storing both the F and Mx|y matrix in the shared memory
vastly enhances the memory access delay.

Now, we have demonstrated the two essential steps for
efficiently parallelizing a convolution. However, there are
further steps that could be taken to have a better parallel
algorithm. These set of “hacks” are specific to each
algorithm.

For the Canny edge detector, the Gaussian matrix does not
theoretically have a size limitation. Thus, the Gaussian matrix
could be applied to any portion of the input image. However,
since the Gaussian function used to generate the Gaussian
matrix decays rapidly, it is reasonable to make the window
size smaller.

In the proposed method, a 3×3 Gaussian filter is used to
both improve the accuracy and simplify the calculations.
Any small dimension would satisfy the accuracy
requirement. The 3×3 dimension is deliberately chosen
since the Sobel filter used in the Canny method also
uses a set of 3×3 kernels. Since only one device call is
needed to compute both the Gaussian filter and Sobel filter,
this selection would also be more appropriate from a
computational perspective. As a note, a 5×5 size for the
G matrix is also fine, but it has one of the following
drawbacks. The first drawback is the unnecessary local
memory usage. This is due to the fact that the Sobel filter
only uses a 3×3 matrix. Another drawback is the
unnecessary device kernel call. Moreover, for the sake
of efficiency, since the size of the Gaussian matrix is
small, it is more efficient to store it individually for
each SM in the shared memory. However, in image
processing’s point of view, the best size of window
should be obtained according to the resolution and type
of image (such as crowded images, texture images, and
smooth images), level of noise, etc.

[31]

We can further simplify our algorithms. A good step is to
unroll the kernels of all proposed algorithms to eliminate
the burden of computing a matrix dot product each time a
device kernel is called. Since the kernel sizes are different
for each method, we have to divide our algorithms to two
subgroups:

Eq. (7) could be unrolled as follows for both 3×3Mx|y. These
kernels are used in Sobel filter, Canny, and Prewitt filter.
Specifically, we are using the same size for our Gaussian

Figure 4: Outcome of matrix multiplication used in Sobel filter

Emrani, et al.: Accelerating the GPU-based execution of edge detection algorithms

36 Journal of Medical Signals & Sensors ¦ Volume 7 ¦ Issue 1 ¦ January-March 2017



matrix too.

Fxjy ¼ Mxjy �1½ � �1½ �⋅Fs 1½ � 1½ � þMxjy 0½ � �1½ �⋅Fs 0½ � 0½ �
�

þ⋯ þMxjy 1½ � 1½ �⋅Fs �1½ � �1½ �Þ ð10Þ

And for 2×2 matrices used in Roberts’ Cross, it is unrolled as

Fxjy ¼ Mxjy �1½ � �1½ �⋅Fs 0½ � 0½ � þMxjy 0½ � �1½ �⋅Fs �1½ � 0½ �þ
�

Mxjy �1½ � 0½ �⋅Fs 0½ � �1½ � þMxjy 0½ � 0½ �⋅Fs �1½ � �1½ �Þ
ð11Þ

In Eqs. (10) and (11), Fx|y indicates a pixel in the output
image. It is intuitively concluded from Eqs. (10) and (11) that
all Fx|y values are independent of each other. Hence, as was
mentioned earlier, by storing Mx|y and F values in the local
memory, the calculations of the output pixels could be run in
a fully parallel manner.

On the other hand, the kernel that is calculating the
output pixel would need to fetch the F from the global
memory the first time it needs to access it. In addition, as is
apparent in the equations, some data are redundant between
each device kernel. This creates a race condition between
device kernels. In such a case, all the conflicting accesses
to the global memory would be serialized. To avoid
this condition, the texture memory is used to fetch the F
matrix from the global memory. The texture memory
incorporates several steps of caching that, unlike the
other cache memories on GPU, contains a locality
function. If a single address is attached to the texture
memory and it is fetched, several neighboring memory
locations would also be fetched and stored in the local
cache. In our case, this functionality is very useful. The
input image does not change throughout the kernel call and
it needs the locality function that the texture memory offers
to avoid the race condition.

Except for Canny, calculating the geometric distance
of each pixel is the final step for all the famous algorithms
discussed in this paper [Eq. (9)]. For each of these algorithms,
a separate kernel is programmed and called.

Moreover, as was mentioned earlier, the Canny method uses
the Sobel filter to extract the edges. However, to enhance the
results, the input is first convoluted with a Gaussian filter.
For this purpose, two kernels are launched. One of them
computes the G matrix and the other performs a parallel
convolution on the input image. In addition, exceptionally in
the case of Canny, the direction of each edge should be
known for the future steps. Hence, our deployed Sobel filter
device kernel must be modified specifically for this need.
The direction of each edge is individually stored in an array
called θ. The grid size for this kernel is set equal to the
number of pixels.

In addition, in the case of Canny, two more steps need to be
executed on the output image before it could be ready. These
two steps are described in the following sections.

Non-maximum suppression

As was mentioned in previous sections, other proposed
algorithms are now at their most efficient levels. However,
the Canny method needs further attention since it includes
two more steps in the end to further enhance the results.

After applying the Gaussian and Sobel filters on the input
image, the outputwould contain the extracted edges. However,
these edges include noise and broken edges, which is not
desirable. In non-maximum suppression, the so-called
“shadows” are removed from the extracted edges in an
effort to reduce the noise. The shadows are formed around
the actual edges and, therefore, make them thicker than they
really are. To remove the shadows from the edges, it is assumed
that a thick edge ismade of several thinner edgeswith different
intensities. Since the calculations are done at pixel level and
there are only eight neighbors to each pixel, the directions of
these pixels are limited to four: horizontal, vertical, +45°, and
−45°. The calculated directions in the previous step are used
here and are classified as one of the above four groups.

Among the parallel lines, the line with the highest intensity is
considered the actual edge and the other lines are removed
(set to zero). This process for two cases is illustrated in
Figure 5. The abovementioned method results in edges with a
thickness of only one pixel. This is due to the fact that only one
pixel is chosen froma set of local pixels. Thismethodmight also
result in distorted edges, since the highest intensity does not
always belong to themost desired pixel, and it might belong to a
shadow. Nevertheless, this step is intuitively parallel, since the
outcome of each pixel does not depend on the results of
neighboring pixels. The highest gradient magnitude, which is
chosen locally, is perfect for the GPU architecture. There is no
need to prevent the neighboring pixels resultswritten tomemory
from affecting the current kernel calculations, since the highest
level of gradient is chosen in each kernel.

Figure 5: Illustration of the local gradient direction and its effect on the
output (the calculated direction is horizontal). (a) The gradient direction is
vertical. (b) The gradient direction is horizontal
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Edge tracing and hysteresis thresholding

The final step in the Canny approach is tracing the edges. In
the previous steps of this method, edges were extracted and
shadows were removed. A hysteresis threshold is used for
detecting the corrupted edges. A corrupted edge is defined as
a false edge or an absence of pixels in a true edge.

Two threshold bounds are considered: a high threshold and a
low threshold. Each pixel with a value above the high
threshold is considered a strong edge. Likewise, each pixel
with a value below the low threshold is considered a noisy
pixel and is removed from the result. Pixels whose values fall
in between these two thresholds are considered potential
edges (weak edges). Every weak edge should be evaluated
and designated as either a strong edge or noise until there are
no more weak edges. A separate kernel is executed for this
step. This kernel could not be combined with the previous
kernel due to the lack of global synchronization in GPU. This
kernel needs a fixed value for all the pixels to run in a fully
parallel manner. Therefore, when the previous kernel has
fully calculated the pixel values, this kernel would be called
from the host. The kernel checks whether a pixel is a potential
edge or not. If so, it will check its neighboring pixels. If a
strong edge is found, the current pixel would be considered as
an edge pixel. However, if no strong edge is found, no
decision could be made at this point.

A global flag residing in the global memory indicates
whether any pixel has changed its status from a potential
edge to a strong edge or not. If a pixel has changed its status,
the kernel should be re-launched to examine the eight
neighboring pixels for potential weak edges. It is
inefficient to localize a kernel to a single neighborhood.
Moreover, managing the memory in this way is hard, if not
impossible. Therefore, the authors have chosen to re-launch
the kernel on the whole image. The future works can focus
on a potential way of improving the efficiency by localizing
the kernel launch to the changed pixels’ neighborhoods.
In the proposed method, the abovementioned kernel is
launched as long as the flag is set.

This method eliminates the need to run a BFS algorithm on
GPU. BFS

[32-34]

is an algorithm for finding the shortest path in
graph searches by starting at the tree root, exploring the
neighbor nodes, and then moving to the neighbors of next
level for exploring.

Running the BFS algorithm in parallel has proved to be
inefficient. There might be conflicting pixels from each
starting point. Unless the shared memory is used, access to
memory locations in the conflicting zones would be serialized.
The test results also indicate a boost in performance. Executing
the heavy and unnecessary BFS algorithm ismuch slower than
running the kernel in the manner proposed. Nevertheless, the
quality of the final outcome suffers a little due to the loss of
precision that the BFS algorithm offers. Our test results show
that the degradation in quality is negligible.

The global flag will generate a race condition. If a thread
changes a pixel’s status, it will try to set the flag. This could
generate a queue of memory write requests as big as the input
size. Oneway of avoiding this situation to some extent is to see
whether the flag is already set or not. In this manner, eachwarp
(32 threads) will read the memory location only once and will
not request a write to memory if the flag is already set. Hence,
the queue size would be reduced. Our test results show that the
overhead of the flag race condition is also negligible compared
to the requirements of running the BFS algorithm.

Eventually, the edges that are not recognized as strong edges
and also those that do not have any strong neighboring pixels
are removed from the result. For this purpose, a kernel is
executed on the result, and it assigns a value of zero to each
pixel that is not considered a part of a strong edge.

Results

These algorithms have been tested using a desktop personal
computer. Table 1 shows the detailed configuration of this
system, and the specifications of our GPU are listed in Table 2.

The proposed method is tested on some randomly selected
two-dimensional enhanced depth imaging optical coherence
tomography (EDI-OCT) images obtained from 10 eyes of
six normal (B-scan (512×768)×61 slice) subjects by an EDI
system of multimodality diagnostic imaging (wavelength:
870 nm; scan pattern: EDI; Spectralis HRA+OCT;
Heidelberg Engineering, Heidelberg, Germany).

[35,36]

Experimental results

The relationships between image size and execution time on
CPU (using the OpenCV standard functions) and GPU
obtained by applying the four abovementioned algorithms

Table 1: Basic system configuration

Host CPU Intel(R) Core(TM) i7 CPU 3930K (3.2GHz)

GPU NVIDIA Geforce GTX 550 Ti

CUDA version 5

Table 2: GPU specifications

Architecture GTX 550 Ti

# of CUDA cores 192

# of transistors (millions) 1170

# of SMs 4

Graphic clock (MHz) 900

Processor clock (MHz) 1800

Memory clock (Gbps) 4.1

Standard memory configuration 1024

# of texture units 32

Processing power (GFLOPS) 691.2

Memory capacity (GB) GDDR5 (1 GB)
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is presented in Figure 6. The corresponding speedup graph is
also shown in Figure 6. This figure shows that the execution
time on GPU is less than that on CPU. Unless the image size
is too large for its storage in the cache, the CPU can handle
these algorithms efficiently. On the other hand, on the GPU,
the large number of parameters might quickly lead to
performance degradation, because the threads are grouped
into blocks, and it is hard for different blocks to communicate
with each other. Furthermore, the cache in each block is local
and cannot be accessed by threads from other blocks.
Nevertheless, despite the massive number of threads, the
GPU can achieve a higher performance by hiding the memory
access latency.

In addition, Figure 6 shows that the Canny edge detector can
achieve a speedup of up to 100×, whereas the Sobel algorithm
can speed up the execution time by up to 400×. The speedup
curves in Figure 6 vary and depend on the image size.

Performance analysis

Unfortunately, there is no standard way of comparing the
powers of CPU and GPU. A good measure is floating point
operations per second (FLOPS). However, it is unfair to
compare a CPU and a GPU with the same FLOPS. For
one thing, theoretically, our CPU (being a decent CPU) is
able to execute 38.4 GFLOPS (12 × 3.2 to 12 × 4 with turbo
boost technology). However, in real world, it is usually less
than that. On the other hand, our GPU, at nearly half the price,
performs 62.34 GFLOPS for double precision operations,
nearly 2× the theoretical performance of our CPU.

In addition to the above explanation, there are many factors
that can affect the performance of a GPU, input size being one
of the important factors. Table 3 shows the comparison
between the results obtained for the same picture with
different sizes. The size of the input image has a direct
effect on the texture memory used, and it also influences
the usage of cache and registers per block. The input image
size has a noticeable effect on the amount of memory used in

both the host and device. For statistical purposes, the standard
deviation along with the calculated average of the runtime for
Canny method using the 512 × 512 input is given in Table 4.
Table 3 shows the variation in runtime.

Another factor that affects the performance in Canny
method is the threshold. Different thresholds result in
different runtimes, since different levels of examination
have to be implemented on the input. Particularly on the
GPU, the size of the block and the number of blocks per grid
directly affect the execution of the threads. In the Fermi
architecture, each SM is limited to run only eight blocks in
parallel; any more blocks assigned to an SM would be
queued.

In addition, on our device, a single SM is limited to run
2048 threads in total and a maximum of 1024 threads per
block. Depending on the block size and the number of
blocks in total, different numbers of SMs are used for a
particular application. For example, our GPU has four
SMs. With a configuration of eight blocks with 256
threads each, only one SM is used. However, when
using 16 blocks with 128 threads each, two SMs are
used, which results in a much faster execution. This
happens because the blocks running on a single SM
share the same resources (cache and register). For
example, if a SM runs out of cache, some blocks will
not launch and therefore will be queued.

Figure 6: Comparison between execution times in CPU and GPU

Table 3: Running times of GPU (CUDA) on OCT image of retina

Algorithms Image size
64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

Canny 1.3967 (ms) 2.4928 (ms) 21.7339 (ms) 37.3520 (ms) 187.7202 (ms)

Sobel 0.0673 (ms) 0.2361 (ms) 0.9170 (ms) 3.6284 (ms) 14.7420 (ms)

Prewitt 0.0674 (ms) 0.2353 (ms) 0.9176 (ms) 3.4249 (ms) 14.7376 (ms)

Roberts’ Cross 0.0335 (ms) 0.1104 (ms) 0.4144 (ms) 1.5411 (ms) 6.7952 (ms)

Table 4: Standard deviation and average of running times of GPU (CUDA) on OCT image of retina (512 × 512)
for Canny

Algorithm Run no. AVG SD
1 2 3 4 5 6

Canny 41.25 (ms) 36.12 (ms) 29.43 (ms) 47.96 (ms) 31.25 (ms) 38.1 (ms) 37.352 (ms) 6.189 (ms)
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Different configurations have been tested. The best result is
achieved by setting the horizontal dimension of the input
equal to the number of threads per block and the vertical
dimension equal to the number of blocks per grid. Since
each pixel is convoluted separately, if the resources are
available, it will be a good idea to assign each thread to a
single pixel.

Another decisive factor is the memory access. To generate
the final result, each thread needs a matrix of pixels that
are considered neighbors to its pixels. This access is

coalesced with the neighboring threads. Using the
shared memory or the constant memory would help
reduce this memory coalescing in only one direction.
To solve this problem in 2D, a 2D texture is used. This
results in a 2D local cache that vastly enhances the
memory access.

The running times of algorithms depend on many different
parameters including the image resolution, the number of
objects in the scene, and also the thresholds in Sobel and
Canny algorithms. Figures 7 and 8 show examples of “GPU

Figure 7: Different implementations of the Canny edge detection method on OCT image

Figure 8: Different implementations of the Sobel edge detection method on OCT image

Table 5: Running times of CPU (MATLAB) on OCT image of retina

Algorithms Image size
64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

Canny 224.085 (ms) 230.195 (ms) 257.99 (ms) 346 (ms) 754.196 (ms)

Sobel 155.237 (ms) 190.751 (ms) 341.331 (ms) 938.582 (ms) 3425.117 (ms)

Prewitt 153.775 (ms) 190.514 (ms) 341.533 (ms) 940.144 (ms) 3414.739 (ms)

Roberts’ Cross 144.713 (ms) 182.25 (ms) 330.103 (ms) 931.11 (ms) 3385.174 (ms)

Table 6: Running times of CPU (OpenCV) on OCT image of retina

Algorithms Image size
64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

Canny 45 (ms) 35 (ms) 55 (ms) 59 (ms) 81 (ms)

Sobel 50 (ms) 45 (ms) 53 (ms) 45 (ms) 2.19231E+14 (ms)
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Edge Detector” using the above algorithms. Tables 5 and 6
illustrate the results of implementing the mentioned methods
on CPU using MATLAB and OpenCV. The comparison
of results shows that the proposed implementation of
the Canny method on GPU using the CUDA platform
improves the speed of execution by 2–100× compared to
the CPU-based implementation using the OpenCV and
MATLAB platforms.

The runtimes are measured using the shown OCT image.
However, for future references, we have measured the
runtime for the standard Lena image as well. The results
are shown in Table 7.

Conclusion

In this work, edge detector algorithms are described and
implemented using the CUDA, MATLAB, and OpenCV
platforms and are tested on medical images. The obtained
execution times from these methods are compared with each
other. Four popular types of edge detectors in image processing
(Canny,Sobel,Prewitt,andRoberts’Cross)arepresentedandthe
involved parallelization process is modified. In Canny method,
thenecessitytorunaBFSalgorithmineachiterationiseliminated.

Thecomparisonof resultsobtainedbyrunning thesealgorithms
in the NVIDIA CUDA, MATLAB, and OpenCV platforms
indicates that the parallel implementation on GPU (using the
NVIDIA andCUDA) achieves a 2–100× faster execution time,
compared to the CPU-based (MATLAB) implementation, and
slightly better results compared to the OpenCV results for
images with dimensions up to 512 × 512, on a Core i7-
Extreme 3.2GHz desktop computer. For instance, for
images with a 512×512 resolution, the implementation of
the Canny approach using our proposed method and the
CUDA platform respectively gained 9 and 1.5× faster
execution times when compared to the MATLAB and
OpenCV (CPU-based) implementations. The experimental
results indicate that the implementation of the edge detector
algorithms using the GPGPU definitely leads to practical
performance enhancement.

Future works

In the current state of the GPU Edge Detector, the focus is on
completeness and the real-time behavior. However, as the
results show above, there is room for many enhancements in
terms of the application runtime.
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