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A B S T R A C T

Breast cancer is a major public health problem for women in the Iran and many other parts of the world. Dynamic contrast‑enhanced 
magnetic resonance imaging plays a pivotal role in breast cancer care, including detection, diagnosis, and treatment monitoring. 
But segmentation of these images, which is seriously affected by intensity inhomogeneities created by radio‑frequency coils, is 
a challenging task. Markov Random Field (MRF) is used widely in medical image segmentation, especially in MR images. It is 
because this method can model intensity inhomogeneities occurring in these images. But this method has two critical weaknesses: 
Computational complexity and sensitivity of the results to the models parameters. To overcome these problems, in this paper, we 
present Improved‑Markov Random Field (I‑MRF) method for breast lesion segmentation in MR images. Unlike the conventional 
MRF, in the proposed approach, we don’t use the Iterative Conditional Mode method or Simulated Annealing for class membership 
estimation of each pixel (lesion and non‑lesion). The prior distribution of the class membership is modeled as a ratio of two conditional 
probability distributions in a neighborhood which is defined for each pixel: Probability distribution of similar pixels and non‑similar ones. 
Since our proposed approach don’t use an iterative method for maximizing the posterior probability, above mentioned problems are 
solved. Experimental results show that performance of segmentation in this approach is higher than conventional MRF in terms of 
accuracy, precision, and Computational complexity. 
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INTRODUCTION

Breast cancer is one of the leading causes of cancer death in Iran. 
The mammogram is the most effective tool in early breast cancer 
detection; however, it is not 100% effective. The sensitivity of 
the mammogram depends on density, age, and hormone status 
of the patients, and 10-30% breast cancers’ are not detected. Its 
positive predictive value is less than 35%.[1] Hence, we need to use 
other imaging modality such as MRI.[2] The MRI modality is used 
simultaneously as an appropriate scenario with mammography, 
especially for women at high risk. Some studies have shown 
that magnetic resonance imaging (MRI) is superior to X-ray 
mammography and sonography, in order to determine breast 
cancer tumor volume.[3-5]

Several segmentation techniques are presented in the 
literature[6,7] such as region-based segmentation techniques,[8-10]

contour-based segmentation,[11,12] and classification-based 
segmentation methods including supervised and unsupervised 
algorithms.[13-17]

Among the many existing segmentation methods, the 
accurate segmentation of MR images seems a challenging 
task. One of the important persistent difficulties is the spatial 
inhomogeneity of the MR signal with which many methods at 

the present deal. The Markov Random Fields have been used in 
many image processing problems including image restoration 
and segmentation.[18-20]

Since Markov Random Field models spatial interaction between 
neighboring pixels, it can overcome spatial inhomogeneity 
in MR images. Hence, it is used widely in medical image 
segmentation. But this method has also some weakness: 
Computational complexity and sensitivity of the results to 
the models parameters. In order to address these difficulties, 
we have developed a new Markov Random Filed (I-MRF) 
segmentation method.

This proposed method doesn’t need an image with primary 
labels and never used the iterative methods such as SA or 
ICM to maximize posterior probability. For these reasons, the 
computational complexity of algorithm is reduced. We also 
use texture features to measure the similarity between pixels 
in this paper, because textures are one of the most important 
image attributes and can distinguish the objects with different 
patterns. Gibbs et al.[21] used texture analysis in the diagnosis of 
benign and malignant breast lesions.

This paper is organized in different parts and sections.  In 
section 2; we introduce conventional MRF and Finite Gaussian 
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Mixture, the proposed algorithm will be explained in section 3, 
section 4 investigates the experimental results of our approach 
and compare them with by conventional MRF, and finally; 
discussion and conclusion comes in section 5.

MATERIALS AND METHODS

Image Dataset

In this paper, we used the PIDER Breast MRI dataset (https://
imaging.nci.nih.gov/ncia). This dataset includes breast 
MRI images from five patients and their Ground Truth (GT) 
segmentation that have been identified by a radiologist 
manually. GT is used as a reference for performance evaluation 
of segmentation methods in our experiments.

Region of Interest Selection

Since Automatic segmentation of medical images is a challenging 
task and still unsolved problem for many applications, and also 
experience of a radiologist can increase performance of algorithm, 
we present an interactive segmentation approach according to 
the identified region of interest (ROI). In our approach, at first, an 
experienced radiologist examines and draws ROIs on MR image 
data with the help of image analysis software, and then we give 
these ROIs as an input image to algorithm.

Since the ROI is defined by placing a box whit limited size 
(that completely contains the region of breast lesion), the 
segmentation complexity is reduced. A sample of ROI is shown 
in Figure 1.

�e Finite Gaussian Mixture and the MRF Models

Markov random field (MRF) model is not a segmentation 
method in itself, but it is a statistical model, which can be used 
for segmentation methods. It works with the fact that a pixel 
belongs to the class in which the neighbors’ pixels. It means that 
the probability of selecting an outlying pixel is very low. MRF 
provides an approach to model the variety of image properties 
and often works with clustering segmentation such as K-means 
algorithm under a Bayesian prior model.[22-25] It segments the 
images by maximizing the posterior probability with the help of 
the ICM[26] or SA.[18] For a better understanding of the Markov 
Random Field model, we defined the Finite Gaussian Mixture 
(FGM), at first.

In statistics, a Gaussian mixture model is a probabilistic model 
that assumes all the data points are generated from a mixture 
of a finite number of Gaussian distributions with unknown 
parameters. Suppose X={x1, x2,…, xN} is a random observation 
data set. xi is a d-dimensional random variable. pi(x|qi) is the 
corresponding probability density function, in witch x∈Rd is 
the value of xi and qi is the parameter.

In segmentation application, the FGM assumes that the entire 
image can be expressed as overlaps of Gaussian distributions 
of its features. The FGM parameters are learned by sequentially 
applying the Expectation Maximization (EM) algorithm.

Suppose that xi is the observed intensity of pixel. And let L, 
I, and g enote the sets of tissue class L={lesion, non-lesion}, 
pixel index I={1,2, …, N}, and model parameters g={ql|l∈L}, 
respectively. For every 1∈L and i ∈ I,

Ii ∈ L (1)

P(xi|l)=f(xi;θl)  (2)

Finite Gaussian Model is defined by mean m1 and variance s1 
as follows:
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It is a mathematically simple model and can be 
computed efficiently. But one of the limitations is not 
considering spatial information. This method only 
uses the intensity histogram for segmentation, and 
therefore, it is sensitive to noise and other artifacts. 
The Markov Random Field is proposed to overcome this  
weakness.[27]

MRF adds the term P(l) to Equation 3, and solves the 
segmentation problem with maximizing the Equation 4. P(l) 
indicates the prior probability distribution of class tissue l.

P l Z U x andU x V xc
c C

( ) exp( ( )), ( ) ( )= − =−

∈
∑1  (4)

In other words, the only difference between FGM and MRF 
model lies in whether the spatial constraint is encoded. To 
estimate the P(l) based on the Hammersley-Clifford[28] theorem, 
we can write:

P l Z U x andU x V xc
c C

( ) exp ( ) , ( ) ( )= −( ) =−

∈
∑1  (5)

Where, Z is a normalizing constant, U(x) is the energy function, 
and Vc denotes a clique potential.

PROPOSED APPROACH

Although MRF models have provided better results by taking 
into account the spatial relationship between neighboring 
pixels, its computation overhead is much larger than the 
FGM and other method segmentation.[29] This can be easily 
understood because the MRF model uses an iterative 

Figure 1: Region of interest
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optimization method such as SA or ICM to find appropriate 
distribution of labels.

In this new method, we apply the ratio of two conditional 
probability distributions to estimate the prior distribution. 
Hereby, we eliminate the need to use iterative method that 
lead to high computational complexity. 

In this new method, we apply the ratio of two conditional 
probability distributions to estimate the prior distribution. In 
this way, the essentiality of using a repetitive method, which 
causes to enhance the complexity of computation, is omitted.

As mentioned in section 2, a MRF model can be defined as:

l P l x p x l P ll L
Max

i i
* arg ( ( | ) ( | ) ( ))= =∈

 If we define Di as a neighborhood for each pixel xi, then the 
Equation 4 can be rewritten as follow:

l P l x D p x D P l Dl L
Max

i i i i i
* arg ( ( | , ) ( , ) ( | ))= =∈  (6)

According to g, we can use Bayes’ formula to write:

 P(l | Di) ≈ P(ql | Di)   (7)

The main idea of the MRF model is that a pixel is more likely 
to be of a certain tissue type if the neighboring pixels are also 
of the same type. Based on this assumption, we use Equation 8 
instead of Equation 5 to estimate the prior distribution P(ql|Di).

P D P D P Dl i similar l non similar l( | ) ( | ) / ( | )  = −  (8)

Where, Dsimilar and Dnon-similar are the sets of similar and non-similar 
pixels to the xi respectively.

If we assume that the pixels are independent, then term 
P(Dsimilar|ql) can be calculated as follows:

P D xsimilar l j
similar length

j( | ) = ∏ −  (9)

These sets are represented by a simple graphical model in 
Figure 2.

According to the main assumption in MRF, when conditional 
probability P(Dsimilar|ql) has a high value in Equation 8, the 
posterior probability of tissue l is maximized. In this method, 
we also use potential information of non-similar pixels by 
P(Dnon-siimilar|ql). 

To estimate the P(Dsimilar|ql) and P(Dnon-siimilar|ql). in Equation 8, 
we need to create the sets of Dsimilar and Dnon-siimilar. Many of the 
presented methods in breast lesion segmentation used only the 
intensity value as a feature for each pixel, which is subject to 
image noise, patient motion, and MR artifacts.[30,31]

Similarity Measure

On the other hand, since textures are one of the most 
important characteristics of an image, and also radiologists 

rely on textures to make diagnostic decisions, Features 
extraction basis from texture is most widely used in medical 
image processing.[32] Texture feature attempts to identify gray 
level variations between adjacent pixels in the image.[33]

In this paper, we use three categories of texture feature: First 
order statistical parameters based on histogram, second order 
statistical parameters based on Co-occurrence, and Run-Length 
matrixes. For each pixel in the region of interest, we used a 
block 5*5 whose feature values are assigned to central pixel of 
block. Histogram statistics (six features) describes the intensity 
distribution within the block such as mean and standard 
deviation. The equation of these texture features are listed in 
appendix.

Co-occurrence matrices[34] which measure the joint probability 
of two adjacent Pixels along a given direction with co-occurring 
values i and j are calculated for 0°, 45°,  90° and 145°. An average 
co-occurrence matrix is then computed for each texture block, 
since no directional variations in texture are expected. We 
calculate 22 features form co-occurrence matrices that measure 
joint probability of two nearest pixels in four directions.

The run-length matrix masseurs the abrasiveness of a texture 
in a given direction q. Direction is the number of runs of pixels 
with a gray-level and a run length. A gray-level run is defined 
as a set of consecutive pixels with the same gray value in the 
given direction.[35] Eleven features obtained from Run-Length 
matrix for same direction q=0°, 45°, 90°, and 145°. Totally, we 
extracted 39 texture features for each pixel.

After extracting the features for each pixel, we use Equation 10 
to determine similarity between central pixel and their 
neighboring pixels. In this Equation, the pixel i is similar to j, 
when hi, j>0.61.

h
d

i j
i j

,
,exp= −







2

22
(10)

s  2, Indicates the variance of pixel values in D and di,j is Euclidean 
distance between pixel i, j.

Figure 2: Similar and non-similar sets
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EXPRIMENTAL RESULT

In this section, the performance of proposed method is 
investigated using PIDER Breast MRI dataset (https://imaging.
nci.nih.gov/ncia). This dataset includes breast MRI images and 
their Ground Truth (GT) segmentation that have been identified 
by a radiologist, manually.

GT is used as a reference for performance evaluation of 
segmentation methods in our experiments. Sixteen breast 
images from dataset are used as the test images. Due to space 
limitation, we only show the result of 5 images out of 16 test 
images in separate tables. The ROIs of these images and their 
GTs have been shown in two first rows of Figure 3. Finally, the 
result of the all 16 test images is demonstrated in Table 1.

Evaluation Criteria

Many different measures for evaluating the performance of 

an algorithm have been proposed such as volume overlap 
ratio, specificity, sensitivity, precision, accuracy, and etc. 
First, we give a definition of some expressions in Table 2.

Accuracy
This criterion is used to measure the similarity between 
assigned labels by computer algorithm and real labels given 
by a radiologist.

accuracy
TP TN

TP FP FN TN
=

+
+ + +

(11)

Precision
Unlike accuracy, precision criterion is used to measure 
reproducibility or repeatability of assigning a label in the same 
condition.

precision
TP

TP FP
=

+
(12)

Figure 3: Segmentation results for conventional MRF and proposed method

Table 1: Segmentation results for conventional MRF and proposed method (all 16 test images)
Conventional MRF Improved-MRF

Mean Stddev Max Min Mean Stddev Max Min

VOR (%) 69.55 11.57 85.52 44.86 73.31 9.36 86.03 55.45
TPR (%) 83.80 8.65 92.96 63.44 90.05 6.53 98.16 74.01
ACC (%) 92.12 3.36 97.63 86.79 93.10 3.09 96.18 86.08
SPC (%) 93.92 4.57 99.77 87.93 93.76 3.79 99.08 86.30
PPV (%) 80.66 13.51 99.15 56.68 79.74 9.36 96.80 63.80
TPVF 0.84 0.09 0.93 0.63 0.90 0.06 0.98 0.74
TNVF 0.77 0.18 0.99 0.34 0.76 0.13 0.97 0.46
TPVF+ TNVF 1.61 0.20 1.85 1.20 1.66 0.15 1.84 1.41
Time 1246.9 440.63 1960.6 656.2 159.81 47.79 269.21 100.99
MRF – Markov random field; VOR – Volume overlap ratio; TPR – True positive rate; ACC – Accuracy; SPC – Specificity; PPV – Positive predictive value; TPVF – Positive volume 
fraction; TNVF – True negative volume fraction

Segmentation result
Test Image 1 Test Image 2 Test Image 3 Test Imageva 4 Test Image 5

Original MR Images

Ground Truth

Conventional MRF

Improved‑MRF



Azmi and Norozi: Breast lesion segmentation using MRF

Journal of Medical Signals & Sensors

Vol 1  |  Issue 3  |  Sep-Dec 2011160

Specificity
This criterion measures the proportion of negatives which are 
correctly identified.

specificity
TP

TP FP
=

+
 (13)

Sensitivity
This criterion measures the proportion of actual positives 
which are correctly identified. These two latest measures are 
closely related to the concepts of errors.

sensitivity
TP

TP FP
=

+
  (14)

Volume overlap ratio
In this study, we also use the overlap ratio to quantify how well 
the computer results and the radiologist’s delineation agree. 
If Pc denotes the set of lesion pixels which has come from the 
computer algorithm result and Pr denotes the set of lesion 
pixels which has come from the radiologist’s segmentation, the 
volume overlap ratio (VOR) is defined as:

VOR=
P P
P P
c r

c r

I

U

 (15)

In which, the ∩ operator is logical AND, and ∪  is the logical 
OR. It takes a value between [0 1], when it is zero. It means that 
there is no overlap, and one means the exact overlap.[36]

Computational complexity
The computational complexity criterion is used to measure 
the time required to implement each of the algorithms for 
segmentation an image.

The segmentation methods described in this paper is 
numerically implemented using Matlab 7.9 (R 2009b). 

Other criterion
We also describe the accuracy with other parameters: True 
Positive Volume Fraction (TPVF), True Negative Volume Fraction 
(TNVF), false positive volume fraction (FPVF), and false negative 
volume fraction (FNVF). These parameters are defined as 
follows:[37]

TPVF( , )
| |

| |
P P

P P
Pr c

c r

r

=
I (16)

FPVF( , )
| |

| |
P P

P P
Pr c

c r

r

=
−  (17)

FNVF( , )
| |

| |
P P

P P
Pr c

c r

r

=
−  (18)

TNVF FNVF( , ) ( , )P P P Pr c r c= −1  (19)

We just use the two of these volume fractions and the sum of 
them; TPVF and TNVF.

Performance Evaluation for Conventional MRF

We performed several kinds of experiments. At first, we 
evaluate the performance of conventional MRF in breast 
MRI image segmentation. In this section, we used SA 
algorithm to maximize the posterior probability. Since 
the initialization has a significant impact on rapidly of the 
convergence of the SA procedure and on the quality of the 
final estimates, a thresholding method has been used for this  
purpose. 

As it is evident in Tables 1 and 3, MRF has provided good 
segmentation results by 4000 iterations, but its computing 
time is very high.

The segmentation results of Conventional MRF have been 
shown in the row 3 of Figure 3. 

Performance Evaluation for Improved-MRF

Before doing the experiments to investigate proposed method, 
to determine the appropriate size of neighborhood, some 
analyses were done. First, we defined the neighborhood with 
different size of 3,5…27. Afterward, the sum of two volume 

Table 3: Segmentation results for conventional MRF
Conventional 
MRF

Valium overlap ratio and sensitivity (true positive rate) and accuracy and specificity (true negative rate) and precision 
(positive predictive value) and true positive volume fraction and true negative volume fraction and sum of true volume 

fraction and time consuming

VOR (%) TPR (%) ACC (%) SPC (%) PPV (%) TPVF TNVF TPVF+TNVF Time

Test image 1 51.77 85.66 88.98 89.51 56.68 0.86 0.35 1.20 1232.1
Test image 2 60.17 77.73 90.908 93.73 72.70 0.78 0.71 1.49 953.1
Test image 3 70.02 89.83 88.62 88.11 76.05 0.90 0.71 1.61 1216.9
Test image 4 67.92 91.61 88.88 87.93 72.43 0.92 0.65 1.56 1442.5
Test image 5 75.93 79.83 94.06 99.62 98.48 79.83 98.81 1.76 1021.3
MRF – Markov random field; VOR – Volume overlap ratio; TPR – True positive rate; ACC – Accuracy; SPC – Specificity; PPV – Positive predictive value; TPVF – Positive volume 
fraction; TNVF – True negative volume fraction

Table 2: Definition of some expressions
Condition as determined by ‘radiologist’

Lesion Unlesion

Test outcome
Lesion True positive (TP) False positive (FP)
Unlesion False negative (FN) True negative (TN)
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CONCLUSION AND DISCUSSION

Markov Random field approaches are widely studied for medical 
image segmentation, especially in MR images. It is because 
this method can model intensity inhomogeneities occurring 
in these images. But this method has two critical weaknesses: 
Computational complexity and sensitivity of the results to the 
models parameters. To overcome these problems, in this paper, 
we propose a new Markov Random Filed method for breast 
lesion segmentation in MR images and illustrate its effectiveness. 

This approach can produce better results compared to 
conventional MRF, in terms of accuracy and computing time 
because:
1. In conventional MRF, the energy function is calculated 

only based on the labels of neighboring pixels that 
assigned randomly. But in our approach labeling, each 
pixel is performed with high accuracy due to better 
characterization of neighborhoods.

2. Although MRF models have provided good results by taking 
into account the spatial relationship between neighboring 
pixels, but its complexity is very high. The improved-MRF 
eliminates the need to use iterative method and initializing 
that lead to high computational complexity.

Also, we believe that the idea of using the ratio of two 
probability distributions of similar and non-similar pixels in a 
neighborhood may be contributive to other application such 

Table 4: Segmentation results for improved-MRF
Improved-MRF Valium overlap ratio and sensitivity (true positive rate) and accuracy and specificity (true negative rate) and precision 

(positive predictive value) and true positive volume fraction and true negative volume fraction and sum of true 
volume fraction and time consuming

VOR (%) TPR (%) ACC (%) SPC (%) PPV (%) TPVF TNVF TPVF+TNVF Time

Test image 1 66.18 88.59 93.75 94.57 72.34 0.88 0.66 1.55 174.83
Test image 2 68.07 88.69 92.64 93.49 74.54 0.88 0.70 1.58 112.26
Test image 3 860.3 96.34 95.37 94.95 88.93 0.96 0.88 1.84 201.06
Test image 4 81.25 91.94 94.55 95.44 87.48 0.92 0.87 1.79 187.40
Test image 5 83.45 85.82 95.85 99.08 96.08 85.82 97.16 1.83 139.2
MRF – Markov random field; VOR – Volume overlap ratio; TPR – True positive rate; ACC – Accuracy; SPC – Specificity; PPV – Positive predictive value; TPVF – Positive volume 
fraction; TNVF – True negative volume fraction

fractions (TPVF+TNVF) and computing time were calculated 
for proposed approach in each neighboring size.

Figures 4 and 5 shows the results of experiment. The computing 
time and volume fractions of presented method are increased by 
the growing of neighborhood size. As is clear, the neighborhood, 
with size 21*21, provides a proper balance between time and 
sum of (TPVF+TNVF). For these reasons, we used this size of 
neighborhood to evaluate our method.

According to Tables 1 and 4, the results of I-MRF are much better 
than conventional MRF in terms of accuracy and computing 
time. The segmentation results of conventional MRF have been 
shown in the row 4 of Figure 3. 

To evaluate the performance of the classifiers, Receiver 
operating characteristic (ROC) analysis also is performed. 
ROC is based on statistical decision theory and it has been 
applied widely to the evaluation of clinical performance. 
The area under the ROC curve is referred AZ index. It is used 
as a measure of the classification performance. A higher AZ 
indicates better classification performance, because a larger 
value of True Positive (TP) is achieved at each value of False 
Positive (FP). The value of AZ is 1.0, when the diagnostic 
detection has perfect performance, which means that TP rate 
is 100% and FP rate is 0%. The values of AZ have been shown  
in Table 5.

The ROC diagram is shown in the Figure 6.

Figure 5: Sum of two volume fraction TPVF and TNVF in each size of 
neighborhoodFigure 4: Complexity of algorithm in different sizes of neighborhood
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as Microcalcification segmentation in breast MR images, as 
well. In addition, the factor that influences the performance 
of proposed algorithm is the simple policy that has been 
used to determine similarity between central pixel and their 
neighboring pixels (Equation (10)). In fact, we used an empirical 
threshold. If we use the better and more sophisticated policy in 
order to determine similarity between pixels, definitely we will 
get better results. In future work, we intend to use the Gossip 
protocol for this purpose.

APPENDIX

The list of three categories (First order statistical parameters 
based on histogram, second order statistical parameters based 
on co-occurrence matrix, and Run-Length Matrix) textural 
features have been used in this paper is given as follows:
Statistics:

1. Mean
2. Skewness
3. Absolute Deviation
4. Variance
5. Kurtosis
6. Standard Deviation

Co-occurrence Matrix:
Notation:
p i j( , ) : ( , )i j -th entry in a normalized gray-tone 
spatial-dependence matrix.
px(i): Is the i-th entry in the marginal-probability matrix obtained 
by summing the rows of p i j p i j

j

N( , ), ( , )= =∑ 1

N: Is the number of distinct gray levels in the equalized image.

p n p i j withn Nx y i j

i j n

+
+ =
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

4. Variance:

f i P i
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5. Homogeneity/inverse difference moment
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1
1
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7. Sum variance
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2
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8. Sum entropy
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9. Entropy

f P i j logP i j
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10. Difference variance

f n P nn
N
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1 2= −=

−
− −∑ ( ) ( )µ

Where mx−y is the mean of Px−y

Where and are the mean and standard deviations Respectively.

11. Difference entropy

f P n P nx y
n

N

x y11
0

1

= − −
=

−

−∑ ( ) ( ( ))log

Table 5: The values of AZ

Methods Area under the curve (Az)

I-MRF 0.9724
Conventional MRF 0.9663

Figure 6: ROC curve for supervised and IMPST methods
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12. Information measures of correlation (1)

f
f P i j P i P j

P i P j
i j x x

i x x
12

9
=

+

−
∑ ∑

∑
( , ) ( ) ( ))

( ) log ( )

log(

13. Information measures of correlation (2)

f e Hxy fg13
21= − −

−( )

Where,

H P i j P i P jxy i j x x= −∑ ∑ ( , ) log ( ( ) ( ))

14. Maximal correlation coefficient

f Second largest eigenvalue of Q14 =

Where

Q i j P i k P j k p i P k
k x x( , ) ( , ) ( , ) / ( ( ) ( ) .= ( )∑

15. Autocorrelation
16. Cluster shade
17. Cluster prominence
18. Maximum probability
19. Sum of squares
20. Inverse difference
21. Inverse difference normalized (INN)
22. Inverse difference moment normalized (IDN)

Run-Length Matrix:
1. Short run emphasis:

f
n

I i j j
r

i j1
21

= ∑ ∑ ( , ) /

2. Long run emphasis:

f
n

I i j j
r

i j1
21

= ×∑ ∑ ( , )

3. Gray level nonuniformity:

f
n

I i j
r

i j3
21

= ( )∑ ∑ ( , )

4. Run-length nonuniformity:

f
n

I i j
r

j i4
21

= ( )∑ ∑ ( , )

5. Run percentage (RP)

f
n
n
r

p
5 =

6. Low gray-level run emphasis (LGRE):

f
n

p i j
i n

p i
ir

i i
N

r
i

M M

6 1 1 2 1 2

1 1
= == = =∑ ∑ ∑( , ) ( )

7. High gray-level run emphasis (HGRE)

f
n

p i j
i n

p i i
r

i i
N

r
i g

M M

7 1 1 2 1
21 1

= == = =∑ ∑ ∑( , )
( ).

8. Short run low gray-level emphasis (SRLGE)

f
n

p i j
i jr

i j
NM

8 1 1 2 2

1
= = =∑ ∑ ( , )

.

9. Short run high gray-level emphasis (SRHGE)

f
n

p i j i
jr

i j
NM

9 1 1

2

2

1
= = =∑ ∑ ( , ).

10. Long run low gray-level emphasis (LRLGE)

f
n

p i j j
ir

i j
NM

10 1 1

2

2

1
= = =∑ ∑ ( , ).

11. Long run high gray-level emphasis (LRHGE): 

f
n

p i j i j
r

i j
NM

11 1 1
2 21

= = =∑ ∑ ( , ). .
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