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Predictive Control of the Blood Glucose Level in Type I Diabetic Patient
Using Delay Differential Equation Wang Model

Abstract
Because of increasing risk of diabetes, the measurement along with control of blood sugar has been of
great importance in recent decades. In type I diabetes, because of the lack of insulin secretion, the cells
cannot absorb glucose leading to low level of glucose. To control blood glucose (BG), the insulin must
be injected to the body. This paper proposes a method for BG level regulation in type I diabetes. The
control strategy is based on nonlinear model predictive control. The aim of the proposed controller
optimized with genetics algorithms is to measure BG level each time and predict it for the next time
interval. This merit causes a less amount of control effort, which is the rate of insulin delivered to the
patient body. Consequently, this method can decrease the risk of hypoglycemia, a lethal phenomenon in
regulating BG level in diabetes caused by a low BG level. Two delay differential equation models,
namelyWang model and EnhancedWangmodel, are applied as controller model and plant, respectively.
The simulation results exhibit an acceptable performance of the proposed controller in meal disturbance
rejection and robustness against parameter changes. As a result, if the nutrition of the person decreases
instantly, the hypoglycemia will not happen. Furthermore, comparing this method with other works, it
was shown that the new method outperforms previous studies.

Keywords: Algorithms, blood glucose, diabetes mellitus type I, glucose, humans, hypoglycemia, insulin,
meals, nonlinear dynamics

Introduction

Diabetes is one of the most common
endocrine diseases in which insulin
secretion is not enough to regulate blood
glucose (BG) due to destruction of
pancreatic β cells. On the other hand, in
case of high BG, glucagon secretion also
stops, and thus, BG level exceeds the
normal range of 80–140mg/dl.

[1]

The most important goal in the treatment of
diabetes is to maintain BG in the normal
range. In fact, as depicted in Figure 1, the
main objective is to find the optimal control
signal for insulin injection rate. According to
block diagram in Figure 1, the rate of insulin
injections is applied by the pump in diabetic
patients as a control signal.

Some efforts to capture the glucose–insulin
mechanism have led to the formulation of
various glucose insulin kinetic models. So
far, several models have been suggested
to predict the dynamic behavior of
glucose–insulin system.

[2-5]

Negative feedback ordinary differential
equation (ODE) model of Sturis and Tolic
(2000) and delay differential equation (DDE)
models of Engelborghs (2001), Bennett and
Gourley (2004), and Kuang, Li and Mason
(2006), together with theWang and Li (2007)
and the extended Wang (2009) models are
among the current and valid ones based on
ODE and DDE.

[2,3,6-9]

Primitive models for diabetes could not
model time delay from the moment BG
level increases till insulin secretion time. In
some models to get insulin secretion
fluctuations, insulin is divided into two
components of plasma and intracellular –

this considered a disadvantage for the
proposed model. However, in this study,
the delayed nonlinear model of Wang and
Li is used considering the nonlinear behavior
of insulin–glucose interaction for type I
diabetic patient.

Closed loop controlmethods to regulate BG in
type I diabetic patients aremainly based on the
model and also the experimental data.
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Methods based on the experimental data identify model
parameters using glucose–insulin data and results are then
obtained by applying proportional–integral–derivative (PID)
controllers.

[10]

In addition, various control methods including
H
∞

,
[11,12]

adaptive,
[13]

proportional–derivative (PD),
[14]

PID,
[15]

fuzzy,
[16,17]

etc. have been proposed to regulate BG levels in
type I diabetic patients. These methods differ in terms of
employing control strategies, use of constraints, mathe-
matical models, and ease of implementation, each with its
own advantages and disadvantages.

In 2008, Gianni Marchetti proposed an improved PID
control strategy for BG control and critically evaluated in
silico using a physiologic model of Hovorka.

[18]

An artificial
pancreas strategy using constrained model predictive control
is developed to achieve closed-loop glucose control for
type I diabetes in 2009. A system of meal detection and
meal size estimation is also developed to automatically
administer meal insulin boluses as feed-forward action to
unmeasured meals.

[19]

In 2010, a model-based predictive
control scheme was applied to a newly developed
diabetic patient model. The controller was provided with
a feed-forward loop to improve meal compensation, a
gain-scheduling scheme to account for different BG
levels, and an asymmetric cost function to reduce
hypoglycemic risk.

[20]

In 2011, a system based on a
nonlinear model-predictive controller was developed
which used a personalized glucose–insulin metabolism
model, consisting of two compartmental models and a
recurrent neural network. The model took as input the
patient’s information regarding meal intake, glucose
measurements, and insulin infusion rates, and provided
glucose predictions.

[21]

A novel automatic adaptive control
strategy based on frequent glucose measurements and a self-
tuning control technique was validated based on a
simulation study for 200 virtual patients in 2013. The
adaptive control strategy was shown to be highly
effective in controlling BG concentration.

[22]

Control
methods based on nonlinear models have been introduced
which employ physiological behavior of patients to provide
different control methods in regulating BG. It is obvious that
if the model behavior is more similar to the patient’s body,
the resulting control law is more accurate too. Hence,
providing a suitable approach to control delayed
nonlinear models for diabetic patients is of great importance.

In this study, the proposed control system is capable of
predicting BG levels and injecting insulin so that the BG
level always lies within normal range, showing suitable

performance against meal disturbances and uncertainties in
the model.

Delay Differential Equation Model

These models range from simple expressions relating
glucose and insulin, to very complicated mathematical
models. To simulate the glucose dynamics of the
patient’s body, two well-known mathematical models are
considered. The first model, proposed by Wang et al. in
2007

[2]

for glucose–insulin interactions in the body, consists
of 2 DDEs describing various sections in the body. They
performed both qualitative and quantitative studies of the
dynamics of the model. The analytical results showed the
existence and uniqueness of a stable periodic solution
corresponding to ultradian insulin secretion oscillations.
Numerical simulation results of insulin administration
based on their model matched with the findings of the
clinical studies.

The second model, known as the Enhanced Wang model,
[3]

consists of 2 DDEs too. The Enhanced Wang model is
a nonlinear compartmental model for insulin therapy
for both type I and type II diabetes mellitus, in which
the insulin degradation rate assumes Michaelis–Menten
kinetics.

It is well known that Michaelis–Menten kinetics is suitable
for the response function in chemical reaction, when the
reaction rate does not increase indefinitely when an excess of
resource is available.

However, the existing models for insulin therapies take it for
granted that the response function of insulin clearance is
proportional to the insulin concentration. Their analysis
shows that it is possible to simulate pancreatic insulin
secretion by exogenous insulin infusions, and their
numerical simulations provide clinical strategies for
insulin–administration practices.

The Wang and the Enhanced Wang models have similar
dynamical behaviors.

Equations related to Wang and Enhanced Wang models are
shown in (1) and (2), respectively:

dG
dt

¼ Gin � f 2 G tð Þð Þ � f 3 G tð Þð Þf 4 I t � T 3ð Þð Þ
þf 5 I t � T 2ð Þð Þ

dI
dt

¼ I in tð Þ � diI tð Þ ð1Þ

dG
dt

¼ Gin � f 2 G tð Þð Þ � f 3 G tð Þð Þf 4 I tð Þð Þ þ f 5 I tð Þð Þ
dI
dt

¼ αI in þ βf 1 G t � T 1ð Þð Þ � d1ðIðtÞÞ
d2 þ IðtÞ

ð2Þ

Figure 1: Closed loop controller for a diabetic individual
[12]
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α > 0; β∈ 0; 1½ � , for type I diabetes: β= 0 . (no insulin is
secreted from the pancreas)

Here, the uptake of food glucose, modeled by (3),
[2]

is denoted
by Gin:

Gin tð Þ :
0:05þ 5

15
t 0≤t < 15 minð Þ

0:05þ 5
45� t
45� 15

15≤t < 45 minð Þ
0:05 45≤t≤240 minð Þ

8>>><
>>>:

ð3Þ

In these models, G(t) is the output and Gin and Iin(t) are the
system inputs. Insulin reduction in body differs from person
to person. In Wang model, insulin reduction is defined as di
and for Enhanced Wang model with Michaelis–Menten
kinetics:

d1 I tð Þð Þ
d2 þ I tð Þ

where d1 is the maximum insulin clearance rate, and d2 is the
half-saturation value.

Functions of the models are as follows:

f 1 Gð Þ ¼ Rm= 1þ exp C1 � G=V g
� �

=a1
� �� �

f 2 Gð Þ ¼ Ub= 1� exp �G= C2V g
� �� �� �

f 3 Gð Þ ¼ G= C3V g
� �

f 4 Gð Þ ¼ UO þ Um � UOð Þ=
1þ exp �β ln I=C4 þ 1= Etið Þð Þð Þð Þ

f 5 Ið Þ ¼ Rg= 1þ expðα I=Vp� C5
� �� � ð4Þ

f1(G): Glucose-dependent insulin secretion.

f2(G): Insulin-independent glucose consumption by the brain
and nerve cells.

f3(G)f4(I): Glucose-dependent insulin consumption by
muscle cells and fat.

f5(I): Glucose production controlled by insulin concentration.

Parameters related to functions f2 to f5 are mentioned in
Table 1.

Designing Nonlinear Predictive Controller for
Insulin Injection System

The method presented in this study is based on predictive
nonlinear controller optimized with genetic algorithm.

Figure 2 depicts the basic principle of model predictive
control. On the basis of the measurements obtained at time
t, the controller forecasts the future.

[23]

Dynamic manner of
the system over a prediction horizon Tp determines the
input such that a predetermined performance objective
function is optimized. If there were no model-plant

discrepancy, and if the optimization problem were
solvable for infinite horizons, then the input function at
time t= 0 to the system is applicable for all times t≥ 0. The
resulting manipulated input function will be implemented
only until the next measurement is available. The time gap
between recalculations can vary; however, it is supposed
to be fixed − the measurement will occur every δ sampling
time-units. Using the new measurement at time t + δ, the
entire process-prediction and optimization will be
repeated to find a new input function with the control
and prediction horizons moving forward. As shown in
Figure 2, the input u is denoted as an arbitrary function of

Table 1: Parameters of the functions in (4)

Parameters Units Values

Vg l 10

Ub mg/min 72

C2 mg/l 144

C3 mg/min 1000

Vp l 3

Vi l 11

ti min 100

Rm mU/min 210

C1 mg/l 2000

a1 mg/l 300

U0 mg/min 40

Um mg/min 940

β l 1.77

C4 mU/l 80

Rg mg/min 180

α l/mU 0.29

C5 mU/l 26

E l/min 0.2

Va l 10

Figure 2: Principle of model predictive control
[18]
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time. The calculation of the applied input based on the
predicted system behavior allows the inclusion of
constraints on states and inputs as well as the opti-
mization of a given cost function. The stabilization
problem for a class of systems is introduced by the
following nonlinear set of differential (5):

X Tð Þ ¼ F X Tð Þ;U Tð Þ;X 0ð Þð Þ ¼ X 0 ð5Þ

which is subject to input and state constraints of the
form:

[23]

u tð Þ∈U ; t≥0࢘
x tð Þ∈X ; t≥0࢘ ð6Þ

where x(t) and u(t) represent the states and inputs vector,
respectively.U and X constraints are given in (7), where umin,
umax and xmin, xmax are constant vectors:

[23]

u࣎ u∈Rmjumin≤u≤umaxf g
x࣎ x∈Rnjxmin≤x≤xmaxf g ð7Þ

To distinguish between the real system and the system
model used to predict the future within the controller, the
internal variables in the controller are denoted by a bar
(e.g., x; u). The finite horizon optimal control problem
commonly described above is mathematically formulated
as following:

[23]

min J x tð Þ; u tð Þ;Tc;Tp
� � ð8Þ

Jðx tð Þ; u;Tc;TpÞ ¼ ∫ iþTp

i F x τð Þ; u τð Þð Þdτ ð9Þ

The function F, hereinafter called cost function, specifies
the favorable control performance that can arise. The
standard quadratic form is the simplest and most often
the used one:

F x; uð Þ ¼ x� xdð ÞTQ x� xdð Þ
þ u� udð ÞTR u� udð Þ ð10Þ

where ud and xd are the desired input and output,
respectively. Q and R are symmetric, definite positive,
and weighing matrices. Tp is the horizon of the predicted
output, and Tc is the control horizon. Eq. (10) gives the error
between desired output and model-predicted output. To
obtain the output values in the next time interval, the
optimal input values in time period Tc are used, and then,
the value of the control variable is set constant in the last
calculated value.

[23]

The block diagram of nonlinear model predictive control
optimized with genetic algorithm is given in Figure 3,
composed of a system model and plant.

The controller is designed based on the data provided by the
Wang model. To show the effectiveness and robustness of the
designed controller, it is used to regulate BG predicted by
both Wang and the Enhanced Wang models.

To design predictive controller for the model, an objective
function needs to be designed. Real-time optimization of
objective function will lead to design of a control signal
that is able to track the suitable reference path by
predicting system behavior. According to the studies,
the optimal amount of BG is 110mg/dl; nevertheless,
the 80-to-140 interval is also known as green or healthy
zone. Therefore, this objective function is proposed:

Figure 3: Block diagram of nonlinear model predictive control optimized with genetic algorithm
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J ¼ k∑
N

j¼1
Ĝ t þ jð Þ � GSk2Q1 jð Þþ

(

k∑
N

j¼1
Ĝ t þ jð Þ � Gupk2Q2 jð Þþ

k∑
N

j¼1
Ĝ t þ jð Þ � Gdownk2Q3 jð Þþ

∑
M

j¼1
kW Z�1� �

u t þ j � 1ð Þk2R jð Þ
)

ð11Þ

In (11), Ĝ is the anticipated blood sugar, GS is the optimal
blood sugar level (110), Gup and Gdown are
high (140) and low (80) blood sugar values, respectively,
t is present, u(t + j) is future control signal, W(Z−1) is defined
to solve a single problem of dynamic matrix that is equal to
1−Z−1, N is the prediction horizon, and M is the control
horizon. Most importantly, Q1,2,3 values have to be
regulated so that blood sugar levels do not lie in
unhealthy conditions.

As a result, parameter tuning is as follows:

Q1 ¼ 1

Q2 ¼ 0 ifĜ < Gup1000ifĜ > Gup

n
Q3 ¼ 1000 ifĜ < Gdown0if Ĝ > Gdown:

� ð12Þ

The R-value in (11), denoting objective function penalty for
taking too much insulin, is taken as 100 in simulations. The
prediction horizon is set as 45min.

[1]

As the objective function is optimized with genetic
algorithm for genetic algorithm parameters, maximum
number of repetitions is 30, initial population size is
25, crossover value is 50%, and mutation rate is
considered as 40%. In addition, the Rollet Wheel
Selection is considered as the method for selecting
members of recombination.

Simulations and Results

In this section, the simulation results in the absence of
controller (open loop system) are examined, the need to
use the controller is checked, and the results of adding
controller to the system are discussed. The proposed
controller is then tested against disturbances and
uncertainties in the system and the obtained results will
be finally compared with other studies, all presented in
Tables 2 and 3.

The proposed simulation method was implemented in
MATLAB software.

Open loop response system

Figure 4 depicts the amount of sugar entering the body in
standard conditions. The profile provided in this diagram is a
standard one defined based on (3).

In the absence of insulin injection, blood sugar is 142mg/
dl and insulin level is 18 U. Please note that the initial
system was deliberately put in unhealthy conditions.
Results are presented in Figure 5. As seen, blood sugar
level always remains in unhealthy situation. In this figure,
the amount of injected insulin is zero, but in Figure 6, we
set the rate of injection at a nonzero level. Because of lack
of a feedback loop in injection system, the amount of BG

Table 2: Numerical simulation results

Simulation terms Daily infused insulin (mU/kg) Blood glucose ± SD (mg/dl) Time consuming (s)

Normal 674.6 109.4 ± 7.3 11.6

Disturbance I 680.4 109.0 ± 3.7 12.0

Disturbance II 686.2 109.6 ± 7.6 11.8

di (1 + 20%) 734.1 110.8 ± 5.5 11.9

di (1 - 20%) 537.2 109.5 ± 5.6 11.9

τ3 increasing 605.1 108.9 ± 9.2 11.6

τ2 increasing 708.8 109.7 ± 7.2 11.5

Uncertainty in model 676.3 116.7 ± 3.1 11.6

Uncertainty in model with disturbances 683.6 117.2 ± 3.7 11.7

Figure 4: Glucose intake rate (Gin) in (3)
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is decreased until it becomes as low as dangerous
situation.

Closed loop response system

As depicted in Figure 7, the amount of BG level is
immediately shifted from unauthorized to authorized level
when the controller is used.

Disturbances and uncertainties in the system

To evaluate the system performance in food disturbances
mode, two states of impact noise and increasing blood
sugar input were studied. In the first case, the patient is
assumed to consume sugar at a time other than the time
period defined in sugar intake profile. This process
exhibits some changes during the time period 8–12
[Figure 8]. As seen, the controller has an appropriate
performance in this case and does not permit above-
limit deviation. However, an excessive amount of 1.6%
insulin is injected here to compensate for the imposed
disturbances.

In this study, another disturbance was studied in which one
of the peaks of sugar intake by patient experienced a 20-fold
jump [Figure 9]. In this case, to use the controller, an
increase of 1.8% in insulin injection is implemented
every 45min.

Insulin reduction parameter varies for different people
in Wang model. Therefore, to compare results for
various modes, di received 20% increase and also 20%
reduction. Results are depicted in Figures 10 and 11. In
more critical situations involving di increase, insulin
injection increases by 8–10%. However, in di decline
mode, injected insulin drops by 20% as shown in
Table 2.

Another parameter that may vary in different patients
is time delay of insulin-dependent glucose consumption

Figure 5: Open loop response system. The rate of insulin (I) and glucose
(G) change in 24h

Figure 6: Open loop response system with constant injection rate. The rate of insulin (I) and glucose (G) change in 24h

Ashari, et al.: Predictive control of the blood glucose level in type I diabetic patient using DDE_WM
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Figure 7: Closed loop response system. Glucose intake rate (Gin), insulin injection (Iin), blood glucose level (G), and blood insulin level (I) in 24h

Figure 8: System behavior for impact noise mode. Glucose intake rate (Gin), insulin injection (Iin), blood glucose level (G), and blood insulin level (I)
in 24h
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Figure 9: System behavior while imposing noise in one of the peaks of sugar intake. Glucose intake rate (Gin), insulin injection (Iin), blood glucose level (G),
and blood insulin level (I) in 24h

Figure 10: System behavior in parametric uncertainty for di increasemode (di (1 + 20%)). Glucose intake rate (Gin), insulin injection (Iin), blood glucose level
(G), and blood insulin level (I) in 24h

Ashari, et al.: Predictive control of the blood glucose level in type I diabetic patient using DDE_WM
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Figure 11: Systembehavior in parametric uncertainty for di reductionmode (di (1−20%)). Glucose intake rate (Gin), insulin injection (Iin), blood glucose level
(G), and blood insulin level (I) in 24h

Figure 12: Systembehavior with delay time of 50 instead of 15min. Glucose intake rate (Gin), insulin injection (Iin), blood glucose level (G), and blood insulin
level (I) in 24h
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τ2 and also time delay related to insulin-dependent
glucose secretion τ3. Any time delay of more than
15min for glucose secretion caused by insulin incline
will put the patient at risk for a severe drop in
blood sugar. Figure 12 represents system simulation in
the event that time delay is 50 min (according to
Wang et al.

[2]

).

As seen in above chart, although some drop in
blood sugar occurs, the controller is still able to
return BG level to permissible range by 10% less insulin
infusion. Result of increasing time delay for
glucose consumption from 5 to 30min is shown
in Figure 13.

Another case studied in this research is the incompatibility
between the model used in controller structure
for prediction and the real model of glucose in the
patient. To do so, the Wang model was used in
controller structure, and the incremental Wang model,
as an extension to Wang model and suitable for both
diabetes types 1 and 2, was used in system structure.
In this model, insulin consumption rate is considered
more realistically as a function of insulin level in blood.
The results of this study verify the appropriate
performance of our system even in the absence of
agreement between controller structure model and
system dynamics model. Simulation results are seen in
Figure 14.

Now, we examine the case in which model
uncertainty and the noise resulting from impact and
increased glucose consumption occur simultaneously.
As shown in Figure 15, despite the fact that BG level
violates the allowable range in noisy moments, the
controller can well bring it back to the range within
permissible limit.

Comparison of the results

On the basis of Table 3, our proposed controller
outperforms in regulating BG levels and also reducing
daily insulin dosage compared with other controllers
such as fuzzy PD, fuzzy proportional–integral (PI),
genetics optimal fuzzy PI, and genetics optimal fuzzy

Figure 13: System behavior with delay time of 30 instead of 5min. Glucose intake rate (Gin), insulin injection (Iin), blood glucose level (G), and blood insulin
level (I) in 24h

Table 3: Comparison of the daily infused insulin under
the genetics optimal nonlinear model-predictive

controller (proposed approach) and that of Lee and
Bequette

[19]

Controller Daily infused insulin (mU/kg)

Fuzzy PD 7232.4

Fuzzy PI 1087.1

Genetics optimal fuzzy PI 708.8

Genetics optimal fuzzy PID 708.1

Genetics optimal NMPC 674.6

Ashari, et al.: Predictive control of the blood glucose level in type I diabetic patient using DDE_WM

Journal of Medical Signals & Sensors ¦ Volume 7 ¦ Issue 1 ¦ January-March 2017 17



PID that were proposed in Al-Fandi et al.
[24]

with same
glucose–insulin model. Fortunately, Ref.

[24]

is one of
the previous studies in this area that reports the amount
of insulin injection per day. In other references,
like,

[1,23,25,26]

the main goal is only to protect the BG at
safe level. We can refer to inattention to optimization of
insulin injection per day as the main drawback of latest
studies. In this research, we optimize the amount of
injection in addition to maintaining the glucose at the
safe level using a nonlinear model predictive control
system.

Conclusions

As evident, this study was aimed at providing a predictive
control method for improving the performance of a
system for automatic injection of insulin to diabetic
patients. In this regard, after observing the unstable
response of open-loop system (untimely insulin
injection), the proposed method was implemented. In

this approach, the dynamic model of blood sugar and
insulin variations is seen within the structure of the
controller, and the controller can predict variations
of blood sugar and insulin level using current
measurements.

Following the prediction done by the controller, the
optimum insulin injection is computed on a real-time
basis using genetic algorithm so that the unhealthy
blood sugar in a patient is maintained in its lowest
possible value in 24 h. To evaluate the performance
of the designed controller, various scenarios ranging
from normal and noisy conditions with unpredicted
factors, to parametric uncertainty, and finally model
uncertainty were designed and implemented. The results
showed the ability of the controller system to regulate
blood sugar levels, ensuring the accuracy of its
performance in different conditions. The results of this
research can well compete with works done by other
researchers.

Figure 14: Evaluating model uncertainty and the mismatch between controller structure model and system model. Glucose intake rate (Gin), insulin
injection (Iin), blood glucose level (G), and blood insulin level (I) in 24h

Ashari, et al.: Predictive control of the blood glucose level in type I diabetic patient using DDE_WM

18 Journal of Medical Signals & Sensors ¦ Volume 7 ¦ Issue 1 ¦ January-March 2017



Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References
1. Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti

M, Orsini Federici M, et al. Nonlinear model predictive control of
glucose concentration in subjects with type 1 diabetes. Physiol
Meas 2004;25:905-20.

2. Wang H, Li J, Kuang Y. Mathematical modeling and qualitative
analysis of insulin therapies. Math Biosci 2007;210:17-33.

3. Wang H, Li J, Kuang Y. Enhanced modelling of the glucose-insulin
systemand its applications in insulin therapies. JBiolDyn2009;3:22-38.

4. Wu Z, Chui CK, Hong GS, Khoo E, Chang S. Glucose-insulin
regulation model with subcutaneous insulin injection and
evaluation using diabetic inpatients data. Comput Methods
Programs Biomed 2013;111:347-56.

5. Sorensen JT. A physiologic model of glucose metabolism in man
and its use to design and assess improved insulin therapies for
diabetes. [Doctoral Dissertation]. Massachusetts Institute of
Technology; 1985.

6. Tolić IM, Mosekilde E, Sturis J. Modeling the insulin-glucose
feedback system: The significance of pulsatile insulin secretion.
J Theor Biol 2000;207:361-75.

7. Engelborghs K, Lemaire V, Bélair J, Roose D. Numerical
bifurcation analysis of delay differential equations arising from
physiological modeling. J Math Biol 2001;42:361-85.

8. Bennett DL, Gourley SA. Asymptotic properties of a delay
differential equation model for the interaction of glucose with
plasma and interstitial insulin. Appl Math Comput
2004;151:189-207.

9. Li J, Kuang Y, Mason CC. Modeling the glucose-insulin
regulatory system and ultradian insulin secretory oscillations
with two explicit time delays. J Theor Biol 2006;242:
722-35.

10. Marchetti G, Barolo M, Jovanovic L, Zisser H, Seborg DE. An
improved PID switching control strategy for type 1 diabetes. IEEE
Trans Biomed Eng 2008;55:857-65.

Figure 15: Evaluation ofmodel uncertainty along with noise. Glucose intake rate (Gin), insulin injection (Iin), blood glucose level (G), and blood insulin level
(I) in 24h

Ashari, et al.: Predictive control of the blood glucose level in type I diabetic patient using DDE_WM

Journal of Medical Signals & Sensors ¦ Volume 7 ¦ Issue 1 ¦ January-March 2017 19



11. Femat R, Ruiz-Velázquez E, Quiroz G. Weighting restriction for
intravenous insulin delivery on T1DM patient via control. IEEE
Trans Autom Sci Eng 2009;6:239-47.

12. KienitzKH,YoneyamaT.Arobust controller for insulinpumpsbased
on H-infinity theory. IEEE Trans Biomed Eng 1993;40:1133-7.

13. Goh W, Pasquier M, Quek C. Adaptive control of infusion
pump for Type-I diabetes control using a self-tuning regulator.
10th International Conference on Control, Automation, Robotics
and Vision, 2008. ICARCV 2008, IEEE. December 17, 2008
p. 1379-84.

14. Chase JG, Wake GC, Lam ZH, Lee JY, Hwang KS, Shaw G.
Steady-state optimal insulin infusion for hyperglycemic ICU
patients. 7th International Conference on Control, Automation,
Robotics and Vision, 2002. ICARCV 2002, vol. 3. IEEE.
December 02, 2002, p. 1168-73.

15. Li C, Hu R. Simulation study on blood glucose control in diabetics.
The 1st International Conference on Bioinformatics and Bio-
medical Engineering, 2007. ICBBE 2007, IEEE. July 06, 2007,
p. 1103-6.

16. Ibbini MS, Masadeh MA. A fuzzy logic based closed-loop control
system for blood glucose level regulation in diabetics. J Med Eng
Technol 2005;29:64-9.

17. Yasini S, Naghibi-Sistani MB, Karimpour A. Active insulin
infusion using fuzzy-based closed-loop control. 3rd International
Conference on Intelligent System and Knowledge Engineering,
2008. ISKE 2008, vol. 1. IEEE. November 17, 2008, p. 429-34.

18. Marchetti G, Barolo M, Jovanovič L, Zisser H, Seborg DE. A
feedforward-feedback glucose control strategy for type 1 diabetes
mellitus. J Process Control 2008;18:149-62.

19. Lee H, Bequette BW. A closed-loop artificial pancreas based on
model predictive control: Human-friendly identification and
automatic meal disturbance rejection. Biomed Signal Process
Control 2009;4:347-54.

20. Abu-Rmileh A, Garcia-Gabin W. A gain-scheduling model
predictive controller for blood glucose control in type 1
diabetes. IEEE Trans Biomed Eng 2010;57:2478-84.

21. Zarkogianni K, Vazeou A, Mougiakakou SG, Prountzou A, Nikita
KS. An insulin infusion advisory system based on autotuning
nonlinear model-predictive control. IEEE Trans Biomed Eng
2011;58:2467-77.

22. Ottavian M, Barolo M, Zisser H, Dassau E, Seborg DE. Adaptive
blood glucose control for intensive care applications. Comput
Methods Programs Biomed 2013;109:144-56.

23. Findeisen R, Allgöwer F. An introduction to nonlinear model
predictive control. 21st Benelux Meeting on Systems and
Control, vol. 11. March 19, 2002 p. 119-41.

24. Al-Fandi M, Jaradat MA, Sardahi Y. Optimal PID-fuzzy logic
controller for type 1 diabetic patients. 2012 8th International
Symposium on Mechatronics and its Applications (ISMA).
IEEE. April 10, 2012 p. 1-7.

25. Toffanin C, Messori M, Di Palma F, De Nicolao G, Cobelli C,
Magni L. Artificial pancreas: Model predictive control design from
clinical experience. J Diabetes Sci Technol 2013;7:1470-83.

26. Hovorka R, Kremen J, Blaha J, Matias M, Anderlova K, Bosanska
L, et al. Blood glucose control by a model predictive control
algorithm with variable sampling rate versus a routine glucose
management protocol in cardiac surgery patients: A randomized
controlled trial. J Clin Endocrinol Metab 2007;92:2960-4.

Ashari, et al.: Predictive control of the blood glucose level in type I diabetic patient using DDE_WM

20 Journal of Medical Signals & Sensors ¦ Volume 7 ¦ Issue 1 ¦ January-March 2017


	JMSS_Prelims 7(1).pdf
	jmss-50-16.pdf
	An Automatic Prolongation Detection Approach in Continuous Speech With Robustness Against Speaking Rate Variations
	Introduction
	Materials and Methods
	Databases
	UCLASS
	Persian database

	Speaking rate estimation
	Feature extraction and similarity measure
	Prolongation detection
	Evaluation methods
	Selected studies

	Results and Discussion
	Conclusion
	Financial support and sponsorship
	Conflicts of interest

	References


	jmss-39-16.pdf
	Predictive Control of the Blood Glucose Level in Type I Diabetic Patient Using Delay Differential Equation Wang Model
	Introduction
	Delay Differential Equation Model
	Designing Nonlinear Predictive Controller for Insulin Injection System
	Simulations and Results
	Open loop response system
	Closed loop response system
	Disturbances and uncertainties in the system
	Comparison of the results

	Conclusions
	Financial support and sponsorship
	Conflicts of interest

	References



