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Introduction

Breast cancer is one of the common malignant diseases 
among women in Iran and many other parts of the world. 
In 2010, the Iran Department of Health has announced 
that over 7,000 women are diagnosed with this disease 
and 1400 die of breast cancer every year in Iran. Medical 
imaging plays a pivotal role in breast cancer care including 
detection, diagnosis, and treatment monitoring. Currently, 
mammography is the primary screening modality that 
is widely used to detect and diagnose breast cancer. 
Unfortunately, it has some limitations.[1-5] 10-30% breast 
cancers’ are not detected by mammography and its positive 
predictive value is less than 35%.[6] Hence, the use of other 
imaging modality such as magnetic resonance imaging 
(MRI)[7,8] is increasing and it is used simultaneously as an 
appropriate scenario with mammography especially for 
women at high risk. Some studies have shown that MRI is 
superior to x-ray mammography and sonography in order to 
determine breast cancer tumor volume.[9-11]

In the recent years, several methods have been proposed 
to segment lesions in mammography and MRI data. The 
references[12,13] provide comprehensive information about 
them. These methods can be categorized into three groups: 
i) contour-based segmentation such as active contour 
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algorithm.[14-17] ii) Region-based segmentation techniques.[18,19] 
iii) Classification-based segmentation that includes supervised 
and unsupervised methods.

Supervised-based segmentation such as Neural Networks[20,21] 
and Support Vector Machines [SVM][22] lead to high accuracy, 
but they require a large amount of labeled data, which is 
hard, expensive, and slow to be obtained. Furthermore, 
they cannot use unlabeled data to train classifiers. On the 
other hand, unsupervised learning methods such as Markov 
Random Field[23] and Fuzzy C Means (FCM)[24] remove the 
costs of labeling and do not use label of training data. So 
these methods need no prior knowledge and will have lower 
performance with respect to supervised methods.

To solve these problems, we propose a semi-supervised 
approach for segmentation of breast lesions in this paper. 
Several semi-supervised algorithms such as B-Training,[25] 
Co-Training,[26] and Expectation Maximization (EM)[27] have 
been presented, although none of them have been used for 
breast lesions segmentation in MRI. It should be mentioned 
that many of the presented methods in breast lesion 
segmentation used only the intensity value as a feature for 
each pixel, which is subject to image noise, patient motion, 
and MR artifacts.[28-30] Textures are one of the most important 
image attributes and can be distinguished objects with 
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different patterns. Gibbs et al.[31] used texture analysis in 
diagnosis of benign and malignant breast lesions.

In this paper, we propose a semi-supervised pixel-by-pixel 
classification method based on texture analysis in order to 
achieve a high performance. In fact, our proposed method 
has two main stages. In the first stage, improved self-training 
(IMPST) classifier is trained only with a labeled image. In 
the next stage, nondeterministic unlabeled data is obtained 
through simple thresholding and this classifier is retrained 
with them to reach high accuracy. This paper is organized 
as follows: In section 2, we introduce three methods that 
were used for extracting features from breast MRIs. Self-
Training algorithm is also presented in this section. The 
proposed approach will be explained in section 3. Section 4 
investigates the experimental results of the proposed 
approach and compares the results with the supervised and 
unsupervised methods. Finally, discussion and conclusion 
come in section 5.

Materials and methods

Image Dataset

In this paper, we used the PIDER Breast MRI dataset 
(https://imaging.nci.nih.gov/ncia). This dataset includes 
breast MRI images from five patients and their ground 
truth (GT) segmentation that has been identified by 
a radiologist manually. GT is used as a reference for 
performance evaluation of segmentation methods in our 
experiments.

Region of Interest Selection

Since automatic segmentation of medical images is a 
challenging task and still an unsolved problem for many 
applications; experience of a radiologist can increase 
algorithm performance. Here, we present an interactive 
segmentation approach according to the identified 
region of interest (ROI). In our approach, an experienced 
radiologist examines and draws ROIs on MR image data 
with the help of image analysis software at first, and 
then, we give these ROIs as an input image to algorithm. 
Since the ROI is defined by placing a box with limited size 
-that completely contains the region of breast lesion, the 
segmentation complexity is reduced. A sample of ROI has 
been shown in Figure 1.

Feature Extraction Methods

Since textures are one of the most important characteristics 
of an image and also radiologists rely on textures to make 
diagnostic decisions, features extraction basis from texture 
is most widely used in medical image processing.[32] Texture 
feature attempts to identify gray level variations between 
adjacent pixels in the image.[33]

In this paper, we used three categories of texture feature: 
histogram statistics, co-occurrence, and run length matrix. 
For each pixel in the region of interest, we used a block 5*5 
whose feature values are assigned to central pixel of block. 
Histogram statistics (six features) describes the intensity 
distribution within the block, such as mean and standard 
deviation.

Co-occurrence matrices[34] which measure the joint 
probability of two adjacent pixels along a given direction 
with co-occurring values i and j are calculated for 0°, 45°, 
90°, and 145°. An average co-occurrence matrix is then 
computed for each texture block since no directional 
variations in texture are expected. Some of the equations of 
these texture features are given as follows.[34]

Notation:
p(i, j): (i, j)-the entry in a normalized gray-tone spatial-
dependence matrix.
px(i): is the i-th entry in the marginal-probability matrix 
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Figure 1: Region of interest
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We calculated 22 features form co-occurrence matrices that 
measure joint probability of two nearest pixels in four directions.

The run-length matrix masseurs the abrasiveness of a 
texture in a given direction q. Direction is the number of 
runs of pixels with a gray-level and a run length. A gray-level 
run is defined as a set of consecutive pixels with the same 
gray value in the given direction.[35] 11 features obtained 
from run-length matrix for same direction q = 0°, 45°, 90°, 
and 145°. And the number of gray levels to use in both 
co-occurrence and run length matrices is 8. Some of the 
equations of these texture features are given as follows:[34]
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Where I(i, j) is defined as the number of runs with pixels of 
gray level i and run length, j. nr is also the total number of 
runs. The texture features are listed in appendix. Totally, we 
extracted 39 texture features for each pixel.

Semi-Supervised Classification Methods

In traditional machine learning, only labeled data were 
used for classification. In general, obtaining labeled data 
is not only a hard working, expensive, and time consuming 
process, but also need human effort. Meanwhile, unlabeled 
data are easy to collect and there are a few ways to use 
them. Recently, semi-supervised learning addresses this 
problem.[36] By having a large number of unlabeled and a 
few numbers of labeled data, we can have a better classifier.

Since semi-supervised learning needs less human effort and 
has higher accuracy, it is interesting both in practical and 
theoretical fields. Medical image processing is one of the 

tasks in which collecting labeled data is difficult; therefore, 
semi-supervised learning is used in many image processing 
applications.[37,38]

Pixel classification is one of the image segmentation 
methods which are based on two approaches: Supervised[22] 
and unsupervised learning. But as it was mentioned, 
obtaining labeled data is a difficult task and the unsupervised 
segmentation methods need no prior knowledge and 
lead to low performance. So to solve these problems, 
we propose a pixel classification method based on semi-
supervised learning which uses the potential of a large 
labeled data in order to increase the segmentation accuracy. 
Semi-supervised learning methods have never been used in 
breast MRI images segmentation.

Proposed Approach

In this paper, a semi-supervised approach is presented for 
breast lesion segmentation which use from IMPST algorithm. 
Figure 2 shows an overall view of this approach. For better 
understanding of the working process of the IMPST, we 
describe this proposed model in detail at first. As mentioned 
before, our approach has two main stages in training step. 
In the first stage, three feature sets are extracted for each 
pixel of training images according to section 2. Then, an 
image is chosen randomly as a labeled training data and 
is given to a radiologist for manual segmentation. In this 
approach, we do not need a radiologist to indicate the exact 
lesion region, but selecting a small region (about 20% of 
image) of the lesion is enough. The Figure below illustrates 
how an image is labeled by a radiologist.

As it is shown in the Figure 3, indicating this region by a 
radiologist is easier than indicating the exact lesion region. 
After manual labeling, these pixels are selected for primary 
training of IMPST. The remaining trained images are used 
as unlabeled data. In the next stage, a simple thresholding 
method is applied to get nondeterministic labeled data 
from unlabeled ones. Then, IMPST classifier is retrained 
with nondeterministic labeled data in an iterative manner. 
The IMPST algorithm is explained in the next section.

In the testing step, for segmenting an image, the first 
mentioned three features sets are extracted for each pixel 
of the image. Then, these pixels are entered to the trained 
classifier to be labeled.

Self-Training

Self-training is a technique commonly used for semi 
supervised learning. In self-training, a classifier is first 
trained with the small amount of labeled data. The classifier 
is then used to classify the unlabeled data. The unlabeled 
data, which is now labeled, are compared with a threshold 
and are added to the labeled training data.
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Figure 2: Illustration of proposed approach

Figure 3: Manual segmentation by radiologist

Figure 4: Illustration of self-training algorithm

Table 1: Pseudo code of self-training algorithm
Self-training algorithm

While unlabeled data U≠ 0 do
Train the classifier c based on L;
Use c to classify the data in U;
X=0;
For each data d CU do
If d.confident ≥ t then X=X U d;
end
L=L + X;U=U – X;

end

Labeled unlabeled example

Unlabeled training examples

Learner

Labeled training examples

The classifier is retrained and the procedure is repeated. 
Table 1 and Figure 4 show the pseudo code and overall view 
of the self-training algorithm, respectively.

The weakness which restricts the performance of self-
training is simple decision policy used to select unlabeled 
data. To surmount this problem, we propose IMPST 
algorithm.

IMPST Algorithm

As described in section 2, the IMPST algorithm creates an 
initial weak classifier based solely on the labeled examples 
at first. The classifier is then used to classify the unlabeled 
training data. These unlabeled samples along with their 
predicted labels are added to the training set. But self-
training algorithm uses a simple decision policy to add 
unlabeled samples to training data. This weakness can 
decrease the performance of algorithm.

To overcome this problem, we defined a more 
sophisticated decision policy. The improved self-training 
algorithm has been described in Table 2 gives a set L of 
labeled training samples and a set U of unlabeled training 
ones. We extract three feature sets and then use them to 
train a classifier C.

The algorithm iterates the following procedure for the 
maximum number of iteration iteration No. First, it recognizes 
the unlabeled examples in U classifier B. The label predictions 
and corresponding class probabilities are recorded in 
(Label, Prob). The class probabilities Prob is regarded as the 
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confidence estimates for better selection. Secondly, the 
algorithm selects some reliable unlabeled data Reliable_
Unlabeled data for which 1) the assigned labels by classifier B 
and sample thresholding be equal and 2) each probability 
label be greater than a specific threshold that is determined 
by problem information. Unlabeled data that do not satisfy 
these two constraints are filtered, but the others are added 
to labeled data examples L and removed from unlabeled data 
U in next iteration. These decision polices reinforce the self-
training which selects the most confident labeled example. 
Hereby, the performance of algorithm is increased.

Experimental results

In previous section, we proposed our semi-supervised 
approach for breast lesion segmentation in MRIs in detail. In 
this section, as mentioned before, the performance of this 
method is investigated by using PIDER Breast MRI dataset 
(https://imaging.nci.nih.gov/ncia). This dataset includes 
breast MRI images and their ground truth (GT) segmentation 
that have been identified by a radiologist manually.

GT is used as a reference for performance evaluation of 
segmentation methods in our experiments. Here, we used 
four images for training process that one of them is a labeled 
image and the others are unlabeled ones. Then, 120 pixels 
(equivalent with labeled part with radiologist) (60 lesions 
and 60 Unlesion) are chosen from labeled image. Also, 400 
pixels (200 lesions and 200 Unlesion) are randomly selected 
from nondeterministic labeled images that are obtained 
through sample thresholding. Hereby, we have the total of 
120 labeled and 1200 nondeterministic labeled pixels for 
the training classifier.

In the next step, 12 breast images from dataset are used as 
the test images. Due to space limitation, we only show the 

result of 5 out of 12 test images in separate Tables. The ROIs 
of these images and their GTs have been shown in two first 
rows of Table 3. Finally, the result of the all 12 test images is 
demonstrated in Table 4.

The analysis methods described in this paper is numerically 
implemented using Matlab 7.9 (R 2009b).

Evaluation Criteria

Many different measures for evaluating the performance 
of an algorithm have been proposed such as volume 
overlap ratio, specificity, sensitivity, precision, accuracy 
and etc. First, we give a definition of some expressions in  
Table 5.
1.	 Accuracy
	 This criterion is used to measure the similarity between 

assigned labels by computer algorithm and real labels 
given by a radiologist.

Accuracy
TP TN

TP FP FN TN
=

+
+ + +

� (11)

2.	 Precision
	 Unlike accuracy, precision criterion is used to measure 

reproducibility or repeatability of assigning a label in 
the same condition.

Precision
TP

TP FP
=

+
� (12)

3.	 Specificity
	 This criterion measures the proportion of negatives 

which are correctly identified.

Specificity
TN

TN FP
=

+
� (13)

4.	 Sensitivity
	 This criterion measures the proportion of actual 

positives which are correctly identified. These two 
latest measures are closely related to the concepts of  
errors.

Sensitivity
TP

TP FN
=

+
� (14)

5.	 Volume overlap ratio
	 In this study, we also use the overlap ratio to quantify 

how well the computer results and the radiologist’s 
delineation agree. If Pc denote the set of lesion pixels 
which came from the computer, algorithm result and Pr 
denote the set of lesion pixels which is came from the 
radiologist’s segmentation, the volume overlap ratio 
(VOR) is defined as:

VOR
P
P
c

c
=

∩
∪
P
P
r

r

� (15)

Table 2: Pseudo code of IMPST algorithm

Inputs:
L = An initial set of labeled examples
U = A set of unlabeled examples
iteration No = Number of training iterations
T = Threshold
Learner = Learning algorithm

Process:
C⇓ Train_classifier (L, learner, Features)
for i = 1: iteration No
Classify examples: (label,prob)⇓ C (U)
for each example of U
IF label = = Non-deterministic_label and prob > T
Add example to Reliable_Unlabeled data
L⇓ Union (L, Reliable_Unlabeled data)
U⇓ U- Reliable_unlabeled data
C⇓ Train_classifier (L, learner, Features)

end for
Output: Trained classifier: C

IMPST – Improved self-training
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Original MR images  

Ground truth  

K.N.N 

   

SVM 

Bayesian 

FCM 

IMPST 

Table 3: Segmentation results for supervised and proposed methods
Segmentation Result

Test image 1 Test image 2 Test image 3 Test image 4 Test image 5

	 In which the ∩ operator is logical and, ∪ is the logical OR. 
It takes value between [0 1], when it is zero. It means that 
there is no overlap and one means the exact overlap.[39]

6.	 Other criterion
	 We also describe the accuracy with other parameters: 

True Positive Volume Fraction (TPVF), True Negative 
Volume Fraction (TNVF), false positive volume fraction 
(FPVF), and false negative volume fraction (FNVF). These 
parameters are defined as follows:[40]

TPVF P P
P P

Pr c
c r

r
,( ) = ∩ � (16)

FPVF P P
P P

Pr c
c r

r
,( ) = −

�
(17)

FNVF P P
P P
Pr c

r c

r
,( ) = −

� (18)

TNVF P P FPVF P Pr c r c, ,( ) = − ( )1 � (19)

We just use the two of these volume fractions and the sum 
of them: TPVF and TNVF.
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Table 4: Segmentation results for IMPST and other (K.N.N, SVM, Bayesian, FCM) classifier (12 test data) 
K.N.N SVM Bayesian FCM

Mean Std. dev. Max Min Mean Std. dev. Max Min Mean Std. dev. Max Min Mean Std. dev. Max Min

VOR (%) 59.53 12.09 75.51 36.09 60.00 18.74 85.88 25.66 55.47 17.44 77.01 22.25 58.68 24.95 84.24 0
TPR (%) 73.32 12.76 86.65 42.29 75.39 19.29 94.31 29.96 75.70 19.02 95.02 30.40 81.90 26.35 99.28 0
ACC (%) 89.51 3.95 95.92 81.83 89.23 5.24 97.63 79.07 87.47 4.52 94.27 78.02 86.78 8.40 96.14 69.39
SPC (%) 93.04 5.29 99.07 79.89 91.97 6.16 99.69 79.40 89.82 5.55 98.84 78.79 87.41 8.68 98.45 67.88
PPV (%) 75.97 11.43 96.55 53.81 73.85 15.94 98.86 37.41 66.11 16.68 95.83 35.81 63.42 27.46 98.89 0
TPVF 0.73 0.13 0.87 0.42 0.75 0.19 0.94 0.30 0.76 0.19 0.95 0.30 0.82 0.27 0.99 0
TNVF 0.75 0.15 0.97 0.99 0.71 0.21 0.99 0.17 0.59 0.25 0.97 0.09 0.42 0.55 0.96 -0.73
TPVF+TNVF 1.49 0.19 1.75 1.85 1.46 0.31 1.85 0.67 1.34 0.35 1.76 0.69 1.24 0.71 1.83 -0.19

IMPST classifier

Mean Std. dev. Max Min

VOR (%) 67.73 16.72 88.96 33.99
TPR (%) 78.78 18.84 96.44 37.89
ACC (%) 92.41 3.25 98.18 87.17
SPC (%) 95.28 4.13 99.77 87.56
PPV (%) 82.96 12.32 99.09 61.59
TPVF 0.79 0.19 0.96 0.38
TNVF 0.83 0.15 0.99 0.58
TPVF+TNVF 1.61 0.21 1.88 1.18
VOR – Volume overlap ratio; TPR – True positive rate; ACC – Accuracy; SPC – Specificity; PPV – Positive predictive value; SVM – Support vector machine; FCM – fuzzy c–means; 
IMPST – Improved self–training; TPVF – True positive volume fraction; TNVF – True negative volume fraction; FPVF – False positive volume fraction; FNVF – False negative 
volume fraction

Table 5: Definition of some expressions
Condition as determined by 

‘radiologist’

Lesion Unlesion

Test 
outcome

Lesion True positive False positive
Unlesion False negative True negative

Performance Evaluation for Supervised Classifiers

Before evaluating the segmentation performance 
in semi-supervised method, we investigate the 
performance of supervised methods in breast MRI 
image segmentation at first. For this purpose, three 
supervised classifiers K-Nearest Neighbors (KNN with 
k=10), SVM, and Bayesian are trained separately 
using 120 labeled data. Then, we compute evaluation 
measures such as VOR, accuracy, and precision of these 
classifiers for test data using Equation 11-19. Tables 6-8  
represent segmentation results of the three supervised 
classifiers on five test images and their segmentation 
results have been illustrated in rows 3, 4, and 5 of Table 3. 
The blue and violet pixels indicate true and false positives, 
respectively, in segmented images. As it can be observed 
in Table 4, supervised methods cannot produce acceptable 
results when we have a few labeled data.

Performance Evaluation for Unsupervised 
Method

In this section, we evaluated the performance of Fuzzy 
c-Means methods as an unsupervised algorithm in breast 

MRI images segmentation. According to Tables 3, 4, and 9 
the Fuzzy c-Means cannot produce proper results compare 
to IMPST. 

Performance Evaluation for Proposed Approach

In this experiment, IMPST uses Bayesian classifier as the 
basic classifier. To train this classifier, we set the iteration 
parameters iteration No to be 400. In Figure 5, classification 
error rate in each iteration has been shown. After training 
the classifier, we compute evolution measures for test 
images. The segmentation results of IMPST have been 
shown in Table 10 and the row 7 of Table 3 illustrates 
segmented images.

The quantitative evaluation results of all 12 test images are 
provided in Table 4. The VOR was (59.53±12.09) (Mean±Std 
dev), (60.0±18.74), (55.47±17.44), (58.68±24.95) and 

Figure 5: Classification error rate in each iteration
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Table 6: Segmentation results for SVM classifier
SVM 
classifier 

Valium overlaps ratio and sensitivity (true positive rate) and accuracy and specificity (true negative rate)  
and precision (positive predictive value) and true positive volume fraction and true negative volume fraction  

and sum of true volume fraction

VOR (%) TPR (%) ACC (%) SPC (%) PPV (%) TPVF TNVF TPVF+TNVF

Test image 1 63.11 76.83 89.04 92.98 77.93 0.77 0.78 1.55
Test image 2 85.80 93.52 97.63 98.37 91.22 0.96 0.91 1.85
Test image 3 73.25 90.86 90.19 89.91 79.08 0.91 0.76 1.67
Test image 4 67.34 81.74 89.80 92.60 79.26 0.82 0.79 1.60
Test image 5 61.5385 67.46 95.13 98.74 87.5 0.67 0.90 1.58
VOR – Volume overlap ratio; TPR – True positive rate; ACC – Accuracy; SPC – Specificity; PPV – Positive predictive value;  SVM – Support vector machine; TPVF – True positive 
volume fraction; TNVF – True negative volume fraction; FPVF – False positive volume fraction; FNVF – False negative volume fraction

Table 7: Segmentation results for K.N.N classifier
K.N.N 
classifier

Valium overlaps ratio and sensitivity (true positive rate) and accuracy and specificity (true negative rate)  
and precision (positive predictive value) and true positive volume fraction and true negative volume fraction  

and sum of true volume fraction

VOR (%) TPR (%) ACC (%) SPC (%) PPV (%) TPVF TNVF TPVF+TNVF

Test image 1 62.68 73.04 89.39 94.66 81.53 0.73 0.83 1.57
Test image 2 75.25 80.94 95.92 98.63 91.46 0.81 0.92 1.73
Test image 3 68.21 82.85 88.59 90.99 79.42 0.83 0.79 1.61
Test image 4 62.18 75.99 88.12 92.32 77.39 0.76 0.78 1.54
Test image 5 57.51 66.87 94.31 97.89 80.43 0.67 0.84 1.51
VOR – Volume overlap ratio; TPR – True positive rate; ACC – Accuracy; SPC – Specificity; PPV – Positive predictive value;  TPVF – True positive volume fraction; TNVF – True 
negative volume fraction; FPVF – False positive volume fraction; FNVF – False negative volume fraction

Table 8: Segmentation results for Bayesian classifier
Bayesian 
classifier

Valium overlaps ratioand sensitivity (true positive rate) and accuracy and specificity (true negative rate)  
and precision (positive predictive value) and true positive volume fraction and true negative volume fraction  

and sum of true volume fraction

VOR (%) TPR (%) ACC (%) SPC (%) PPV (%) TPVF TNVF TPVF+TNVF

Test image 1 62.64 76.12 88.92 93.06 77.97 0.76 0.78 1.54
Test image 2 71.42 93.52 94.27 94.40 75.14 0.93 0.69 1.62
Test image 3 70.46 90.22 88.82 88.24 76.28 0.90 0.72 1.62
Test image 4 66.89 82.40 89.51 91.97 78.04 0.82 0.77 1.59
Test image 5 39.32 69.87 87.57 89.87 47.34 0.70 0.22 0.92
VOR – Volume overlap ratio; TPR – True positive rate; ACC – Accuracy; SPC – Specificity; PPV – Positive predictive value; TPVF – True positive volume fraction; TNVF – True 
negative volume fraction; FPVF – False positive volume fraction; FNVF – False negative volume fraction

Table 9: Segmentation results for fuzzy c-means 
Fuzzy 
C-means

Valium overlap ratio and sensitivity (true positive rate) and accuracy and specificity (true negative rate)  
and positive predictive value eqv. With precision and true positive volume fraction and true negative volume fraction 

and sum of true volume fraction

VOR (%) TPR (%) ACC (%) SPC (%) PPV (%) TPVF TNVF TPVF+TNVF

Test image 1 64.823 88.47 88.29 88.25 70.83 0.88 0.64 1.52
Test image 2 79.77 99.28 96.14 95.58 80.23 0.99 0.76 1.75
Test image 3 83.00 86.06 94.79 98.45 95.89 0.86 0.96 1.82
Test image 4 67.06 92.76 88.29 86.74 70.77 0.93 0.62 1.54
Test image 5 0.0 0.0 74.79 84.54 0.0 0.0 -0.19 -0.19
VOR – Volume overlap ratio; TPR – True positive rate; ACC – Accuracy; SPC – Specificity; PPV – Positive predictive value; TPVF – True positive volume fraction; TNVF – True 
negative volume fraction; FPVF – False positive volume fraction; FNVF – False negative volume fraction

(67.73±16.72) between computer and radiologist for 
K.N.N, SVM, Bayesian, Fuzzy c-Means and IMPST classifiers, 
respectively. As it is evident in Table 4, there are statistically 
significant difference between proposed approach and 
supervised methods. Generally, our proposed method can 

produce more proper results compared to supervised and 
unsupervised method only with 20% labeled data.

To evaluate the performance of the classifiers, Receiver 
operating characteristic (ROC) analysis also is performed. 
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ROC is based on statistical decision theory and it 
has been applied widely to the evaluation of clinical 
performance. The area under the ROC curve is referred 
Az index. It is used as a measure of the classification  
performance.

A higher Az indicates better classification performance 
because a larger value of True Positive (TP) is achieved at 
each value of False Positive (FP). The value of AZ is 1.0 when 
the diagnostic detection has perfect performance, which 
means that TP rate is 100% and FP rate is 0%. The values of 
AZ have been shown in Table 11.

The ROC diagram is shown in the Figure 6.

Conclusion and discussion

In this paper, semi-supervised approach is presented as 
a new approach for breast lesion segmentation in MRIs. 
This approach evaluates through 9 criteria; Accuracy, VOR, 
Precision, Specificity, Sensitivity, True Positive Volume 
Fraction, and True Negative Volume Fraction. The results 
shows that the proposed method has a higher performance 
compared to supervised methods, due to interaction with 
a radiologist. A number of interesting points have been 
revealed from several test images:
1.	 Supervised classifiers have a high performance in 

image segmentation when they are trained with a 
large amount of data. But in many cases (such as 
image processing problems), as repeatedly mentioned, 
integrating labeled data is expensive. According to the 
results of experiments, supervised classifiers cannot 
produce the appropriate results when a few labeled 
data available

2.	 In conditions that limited labeled data are available, 
presented semi-supervised classifier can produce more 
appropriate results compared to supervised classifiers 
by exploiting information which exist in labeled and 
unlabeled data

3.	 By adding a more precise decision policy to Self-
Training algorithm, IMPST classifier trains a confident 
learner. Hence, this approach improves accuracy 
and precision of segmented images according to 
experimental results

4.	 Unsupervised methods remove the cost of labeling, but, 
since these methods don’t need any prior knowledge 
about problem, they have lower performance with 
respect to supervised and semi- supervised methods.

Appendix

The list of three categories (Statistics, Co-occurrence 
Matrix, Run-Length Matrix) textural features have been used 
in this paper is given as follows:

Statistic
1.	 Mean
2.	 Skewness
3.	 Absolute deviation

Table 11: The values of AZ

Methods Area under the curve (Az)

IMPST 0.9713
SVM 0.9480
KNN 0.9496
Bayesian 0.9353
Fuzzy c-Means 0.9390
IMPST – Improved self–training; SVM – Support vector machine; KNN – K nearest  
neighbors

Table 10: Segmentation results for IMPST classifier 
IMPST 
classifier

Valium overlaps ratio and sensitivity (true positive rate) and accuracy and specificity (true negative rate)  
and precision (positive predictive value) and true positive volume fraction and true negative volume fraction  

and sum of true volume fraction

VOR (%) TPR (%) ACC (%) SPC (%) PPV (%) TPVF TNVF TPVF+TNVF

Test image 1 76.29 76.83 94.17 99.77 99.08 0.77 0.99 1.76
Test image 2 88.96 95.68 98.18 98.63 92.68 0.95 0.92 1.88
Test image 3 82.12 91.99 94.08 94.96 88.44 0.92 0.88 1.80
Test image 4 77.68 87.07 93.57 95.84 87.87 0.87 0.88 1.75
Test image 5 69.14 72.89 96.25 99.29 93.07 0.73 0.94 1.67
VOR – Volume overlap ratio; TPR – True positive rate; ACC – Accuracy; SPC – Specificity; PPV – Positive predictive value;  IMPST – Improved self–training; TPVF – True positive 
volume fraction; TNVF – True negative volume fraction; FPVF – False positive volume fraction; FNVF – False negative volume fraction

Figure 6: Average ROC curves obtained on all testing images using 
supervised, unsupervised and semi-supervised approaches
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4.	 Variance
5.	 Kurtosis
6.	 Standard deviation

Co-occurrence matrix
1.	 Uniformity/Energy/Angular second moment
2.	 Entropy
3.	 Dissimilarity
4.	 Contrast/Inertia
5.	 Inverse difference
6.	 Correlation
7.	 Homogeneity/Inverse difference moment
8.	 Autocorrelation
9.	 Cluster shade
10.	 Cluster prominence
11.	 Maximum probability
12.	 Sum of squares
13.	 Sum average
14.	 Sum variance
15.	 Sum entropy
16.	 Difference variance
17.	 Difference entropy
18.	 Information measures of correlation (1)
19.	 Information measures of correlation (2)
20.	 Maximal correlation coefficient
21.	 Inverse difference normalized (INN)
22.	 Inverse difference moment normalized (IDN)	

Run-length matrix
1.	 Short Run Emphasis (SRE)
2.	 Long Run Emphasis (LRE)
3.	 Gray-Level Nonuniformity (GLN)
4.	 Run Length Nonuniformity (RLN)
5.	 Run Percentage (RP)
6.	 Low Gray-Level Run Emphasis (LGRE)
7.	 High Gray-Level Run Emphasis (HGRE)
8.	 Short Run Low Gray-Level Emphasis (SRLGE)
9.	 Short Run High Gray-Level Emphasis (SRHGE)
10.	 Long Run Low Gray-Level Emphasis (LRLGE)
11.	 Long Run High Gray-Level Emphasis (LRHGE)
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