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INTRODUCTION

Retinopathy involves diverse vascular complexity and other 
changes in the neuroretina associated with the pathogenesis 
of many ocular diseases including diabetic retinopathy,[1] 
hypertension,[2] and age‑related macular degeneration.[3] 
Once the degree of retinopathic injury can be detected, it will 
be possible to treat and slow down or stop its progression. 
Therefore, the creation of a system with multi‑parameter 
diagnosis of retinal structural changes in their early stages 
is a high priority and helpful to investigate the pathogenesis 
and progression of retinopathy.

Recent studies have reported image procedures on 
retinopathies.[4‑8] However, none of these methods consider 
more than one feature to classify the retina as either 
healthy or injured. For example, there are studies using 
computer‑assisted procedures to measure the caliber of 
retinal blood vessels as a feature of retinopathy,[9‑12] and 
most of these procedures are semi‑automatic. In addition, 
many of these studies analyzed fundus images, which 
typically lack high resolution. Figure  1 shows a typical 
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mouse fundus fluorescein angiogram image and a mouse 
retinal vasculature trypsin digest image highlighting the 
differences between the resolution of these images.

High‑resolution microscopy images of the retinal trypsin 
digest slides allow for quantifying the clinically relevant 
features of the retinal vasculature, the majority of which 
cannot be studied in low‑resolution fundus images. 
Wholemount retinal trypsin digest, which is the gold 
standard method for analyzing the diabetic retinal 
vasculature,[13,14] makes it possible to study various 
structural changes such as capillary degeneration, 
vascular cell apoptosis, and microaneurysms.[15] The 
first two abnormalities are correlated with changes 
in retinal vasculature during early stages of diabetes, 
hypertension,[16] and also are seen in mice with bcl‑2 
deficiency. The bcl‑2 expression plays an important role in 
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regulating apoptosis and angiogenesis, and its deficiency 
is associated with decreased number of vascular cells and 
vascular density in the retina.[17]

We have developed a multi‑parameter image cytometry tool 
to quantify the parameters associated with the early stages 
and progression of retinopathic injury during diabetes. 
Using this tool, two different vascular cell types, endothelial 
cells  (ECs) and pericytes  (PC) can be segmented and the 
number of each cell type quantified and the ratio of EC to 
PC (EC/PC ratio) calculated. Present tool also determines other 
retinal vascular parameters including the number of acellular 
capillaries, vessel coverage, and fractal dimension, all of 
which correlate with progression of diabetic retinopathy.
[18‑20] To the best of our knowledge, this is the first time that 
automatic multi‑feature quantification of diabetic retinopathy 
and vascular changes in retinal trypsin digests has been 
presented. Our quantification method measures subtle retinal 
vascular changes, which are markers of early microvascular 
dysfunction during diabetes. Such developments will open 
the door for advanced quantitative assessments, which 
could substantially contribute to a better understanding of 
the pathogenesis and prediction of diabetic retinopathy. 
Moreover, our cytometric tool selects two, three, or all of 
the detected parameters depending on the disease stage, 
and utilizes classification techniques to separate healthy 
and injured retina. This tool allows for automated analysis 
of retinal trypsin digest preparations for high throughput 
assessment of structural retinopathy changes when needed.

MATERIALS AND METHODS

Animal Models

Retinal vascular parameters are compared in diabetic 
mice (6 months and 11 months of age) and bcl‑2 deficient 
mice  (6  weeks of age) with their corresponding wild 
types  (WTs). Retinal trypsin digests from diabetic 
Akita/+ mice, bcl‑2 deficient  (bcl‑2−/−) mice, and WT 
mice were prepared and imaged. Akita/+ mice  (Jackson 
Laboratory, Bar Harbor, ME, USA) have a mutation in their 
insulin gene, and the heterozygous male  (Akita/+) mice 
become diabetic by 4 weeks of age. The retinas from these 
mice show differences in cell distribution and vasculature 
complexity.[21] They also show the growth of acellular 
capillaries, which are vessels that contain no cell nuclei, 
with long‑term diabetes. These vessels are very thin and are 
a common hallmark of nonproliferative diabetic retinopathy.

The germline‑targeting of the bcl‑2 gene and the generation 
of mutant mice have been previously described.[22] Litters 
produced by mating heterozygote mutant mice are 
genotyped by PCR of genomic DNA extracted from tail 
biopsies. bcl‑2−/− mice exhibit decreased retinal vascular 
density during the development of retinal vasculature prior 
to 6 weeks of age. Decrease in retinal vascular density is 

mainly attributed to decreased numbers of ECs and PC in 
the absence of bcl‑2.[17] These studies were conducted in 
accordance with the ARVO statement for the Use of Animals 
in Ophthalmic and Vision Research and approved by the 
Institutional Animal Care and Use Committee of University 
of Wisconsin School of Medicine and Public Health.

Microscope Slide Preparations

A total of 14 mice were sacrificed including three 
6‑week‑old bcl2−/− and their WT littermates, two 
6‑month‑old diabetic Akita/+ and their WT littermates, two 
11‑month‑old diabetic Akita/+ and their WT littermates. 
Retinas (n = 28) of these six groups of mice were digested in 
a solution of trypsin, which carefully leaves retinal vascular 
network intact while digesting other tissues. Following 
the digestion, retinal vascular preparations are mounted 
on charged slides, dried, stained with periodic acid‑Schiff 
and hematoxylin, and coverslipped for virtualization and 
quantitative assessments, as previously described by us.[23]

Microscopy Imaging

The retinal trypsin digests were imaged using an inverted 
fluorescence microscope (Nikon Ti‑E) at a magnification of ×40. 
The images were captured using a CCD camera (QImaging EXi 
Aqua) at a resolution of 1392 × 1040 pixels, leading to a scale 
of approximately 0.16 μm per pixel. Red fluorescence filter set 
with excitation at 540 nm (25 nm bandwidth) and the emission 
at 620  nm (60  nm bandwidth) was used. Images obtained 
under these settings captured the vasculature network of 
the retina  [Figure  1, middle image]. Besides fluorescence 
imaging, brightfield imaging was performed to capture cell 
nuclei images  [Figure 1, bottom image]. Four fields of view 
were chosen from each group of retina. The fields of view 
were chosen from the mid‑  and far‑periphery areas of the 
retinas, one field of view  (FOV) in each quadrant of retina. 
The acquired images were saved as TIFF files and analyzed in 
MATLAB (MathWorks, Inc. Massachusetts 01760 USA).

Cell Detection and Count

The image processing program is based on the retinal cell 
image (bright field) to segment two vascular cell types, EC 
and PC. The contours of the cell nucleus in each image are 
determined using the segmentation algorithms shown in 
Figure  2. The gradient of the cell images was calculated, 
and the magnitude of this gradient was considered as 
the segmentation function  [Figure  2b, third stage, top 
image]. To avoid over‑segmentation,[24,25] the segmentation 
function was modified based on the foreground and 
background markers [Figure 2b, third stage, bottom image]. 
The location of foreground markers  (cells) is detected by 
applying a spatial finite impulse response  (FIR) filter[26] to 
enhance the object‑background contrast[27,28] and simplify 
the subsequent threshold step.
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For image g (x, y), class c (x, y), and spatial FIR filter k (x, y), 
the contrast enhancement procedure is:
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where * is the convolution operator, f  (x, y) is the filtered 
image, C0, and C1, represent the two classes of the filtered 
images, and T is the threshold. T was initialized using Otsu 
method[29] to minimize the weighted sum of the intensity 
variance within each of the pixel classes (C0, and C1). Then 
using adaptive thresholding,[30] the threshold level for each 
pixel is optimized based on the intensity statistics of a local 
neighborhood surrounding the pixel. Function C (x, y), is a 
two‑category linear classifier implemented as a spatial FIR 
filter. Given an ideal classified image ic (x, y) and the input 
image g (x, y), the optimum FIR filter that maps g (x, y) to 
ic (x, y) is obtained.
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where error e  (x, y) is nonzero only when the filter has 
not acquired the contrast defined by  (A, B). Minimization 
of e (x, y) results in a filter k  (x, y) that yields the best 
contrast for successive thresholding within  (A, B). This 
filter emphasizes the objects by amplifying intensity of the 

Figure 1: Fundus camera and microscopy images of retina. Top: A fluorescein 
angiogram of mouse eye using a fundus camera  (scale bar represents 
100 μm). Middle and Bottom: Microscopy vasculature and cell nuclei images 
acquired from wholemount retinal trypsin digest used in this study to detect 
changes in retinal vasculature and vascular cells (scale bar represents 15 μm)

Figure 2: (a) Flowchart of the cell segmentation procedure. (b) Output of the segmentation algorithm in different stages

b

a
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pixels within the object while negating pixels outside of the 
objects to create a high foreground‑background contrast in 
the image [Figure 2b, second stage, top image].

With the location of the cells detected by thresholding the 
filtered image, a distance transform is calculated for the 
resulting image, in which each pixel value is transformed 
into the distance to the nearest cell. Background markers 
are then computed by applying watershed[30] detection 
on the resultant distance image from the previous stage 
[Figure  2b, second stage, bottom image]. Using SKIZ 
method,[31] watershed detection finds the “ridges” in an 
image, leads to areas where the distance to the nearest 
cell is maximal. The resulting background markers are the 
lines that separate the image into individual cells while 
maintaining the maximum distance between any line and 
the nearest cell. The segmentation function is then modified 
so that only its regional minima occur in the foreground and 
background markers [Figure 2b, third stage, bottom image]. 
At this stage, the watershed transform[30] of the modified 
segmentation function was computed which results in a 
binary mask containing the borders of the cells [Figure 2b, 
last stage].

Calculation of the Endothelial Cells to Pericytes 
Population Ratio

Nuclear morphology was used to distinguish between PCs 
and ECs. PCs have a round nuclei and protuberant position, 
whereas ECs have a more elliptical shape. Since PC is more 
round, the ellipticity of the cell is used as a parameter to 
determine whether a cell is EC or PC. In short, the diameter 
of the cell was measured for each pixel in the cell border 
by determining the distance between the pixel and a pixel 
exactly half way around the border of the cell. The ratio 
of the largest diameter to the shortest was then stored 
as the ellipticity of the cell. Cells with ellipticity >2 were 
categorized as EC, and all other cells were categorized as 
PC. The threshold value of 2 is found empirically to best 
correlate with the results of expert analysis.

To evaluate the accuracy of the proposed nuclei 
segmentation and cell type determination, sixteen FOVs of 
four retinas from 11‑month‑old WT mice were considered 
that covered over  1000 nuclei. Since there is no ground 
truth for the segmentation, manual evaluation was used as 
a benchmark, and we compared the automatic approach to 
this manual benchmark for accuracy counts [Table 1].

Acellular Capillary Detection and Count

The number of acellular capillaries is another parameter of 
interest. These are also referred to as ghost vessels that are 
a sign of later nonproliferative complications of diabetes. 
Acellular capillaries are those blood vessels, which have no 
cell nuclei and lack perfusion, and as a result have smaller 

widths than healthy capillaries [Figure 3a, white arrow]. The 
program measures the caliber of the vasculature using binary 
image [Figure 3b] and marks areas which have a width <40% 
of the average width of vessels in the retina  [Figure  3d]. 
Using morphological tools, the connection of the pixels 
in the marked areas in a small neighborhood was then 
investigated. Capillaries with a diameter smaller than 20% of 
adjacent capillaries were identified as strands or touching 
vessels and were not counted.

To determine the vessel caliber, defined as the average 
width of vessels, the total area of the vasculature from the 
original binary image was divided by the total length of 
the vessel. The total vessel length was determined using 
the morphologically thinned vasculature. A skeleton‑based 
method[32] was applied to achieve the thinned vasculature 
image. In this image, the entire vasculature was reduced to 
a cross‑sectional width of 1 pixel [Figure 3c]. Thus, the total 
number of pixels representing the vasculature is equal to 
the total length of all vessels within the retina.

The performance of the acellular capillary detection algorithm 
is dependent on the quality of the binary image containing the 
retina vasculature and acellular capillaries. This binary image 
is implemented by dynamic local thresholding. The threshold 
level was initialized applying mixture models method[33] and 
then fine‑tuned locally for each 32 × 32 neighborhood within 
the image to detect very thin acellular capillaries.

Determination of Fractal Dimension

Fractal dimension of the retinal vasculature is another 
parameter quantified using a technique known as the 
box‑counting method.[34‑37] In this method, the vasculature 
image was first divided into a number of smaller “boxes.” 
Then, the number of boxes which contain part of the 
vasculature was determined. This process was then 
repeated with boxes of different sizes. If the structure is in 
fact fractal, an exponential relation is expected between the 
box size (ε) and the number of boxes required to cover the 
entire structure (N).   Eq. 3 shows this relationship:

N C= −ε Df � (3)

where C is a constant of no consequence in this context 
and Df is the fractal dimension of the structure. The fractal 
dimension is found by solving Eq. 3 to obtain an expression 

Table 1: Accuracy of the cell count and cell type 
determinations for 16 fields of views of images from four 
11‑month‑old wild‑type mice
Approaches EC 

count
PC 

count
Cell 

count
E/P Cell count 

accuracy (%)
E/P 

accuracy (%)

Manual 1161 688 1849 1.69 100 90
Proposed 1071 619 1690 1.73 91.4 87.87
EC: Endothelial cell, PC: Pericyte
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involving a logarithm with base ε. However, while Eq. 3 will 
work for a true fractal dimension, physical structures do not 
exhibit fractal behavior on all scales. Thus, the limit of the 
Eq. 3 must be taken as the box size approaches zero. To do 
this effectively, L’Hopital’s rule can be used to determine 
the limit of the equation based on the equation’s derivative. 
The fractal dimension can then be found by determining the 
slope of the log‑log plot of N against ε [Eq. 4]:

Df =− =
∂
∂→lim log
(log )

ε ε
ε

ε0
N

N

� (4)

Vessel Coverage

One of the markers of late‑stage retinopathy is a denser 
vasculature. Total vessel coverage is determined for 
each FOV by the total number of pixels representing the 
vasculature in the binary image.

Classification of Retinal Images

The quantified parameters of the cell and vasculature images 
of the retinas were used to classify retinas as normal or 
injured. The classification was performed using a nonlinear 
classifier, support vector machine  (SVM). SVM classifier 
attempts to maximize the margin of error and allows for 
better generalization of the results.[38] This Kernel‑based 
classifier uses radial basis functions and the kernel trick to 
project the data into a high dimensional space for easier 
separation. Gaussian radial basis function was used in the 
current study to map the training data set into kernel space 
where a maximal separating hyperplane was constructed.

The accuracy, sensitivity, and specificity of the classification 
are calculated through the following equations:

Accuracy
+

+ + +

Sensitivity
+

Specificity

=

=

=
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TP TN FP FN

TP
TP TN

TN
TTN FP+
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where TP and FN are the number of diabetic retinas classified 
as diabetic or normal, respectively. Similarly, TN and FP are 
the number of normal retina detected as normal or diabetic. 
FN and FP were determined using the leave‑one‑out 
cross‑validation method.[39] In this method, one data point 
is withheld from the system during its training phase, and 
then the point is classified using the newly trained system.

Statistical Analysis

Two‑tailed Student’s t‑test is used for normally distributed 
data (n = 16 FOVs for each group). P < 0.05 is considered 
significant.

RESULTS

In this study, we have established an image analysis tool 
to assess and quantify the structural changes in the retinal 
vasculature either at the early stage of the disease or as the 
injury progresses. To determine the effect of diabetes and 
germline deletion of bcl‑2 on the retinal vasculature, five 
parameters were quantified in retinas from bcl‑2−/− mice 
and their control littermates at 6 weeks of age, as well as 
retinas from Akita/+ mice and control littermates at 6 and 
11 months of age. The results of this method demonstrated 
a 26.43%, 16.6%, and 25.7% fewer number of cells and 
12.38%, 14.97%, and 17.8% lower vessel coverage in the three 
aforementioned groups of the diseased retina compared to 
the corresponding controls. Both groups of diabetic retinas 
at 6 and 11  months of age showed higher EC/PC ratio 
compared to their controls  (38.7% and 33%, respectively) 
and only 11‑month‑old diabetic retinas showed significantly 
larger number of acellular capillaries  (126.3%) and higher 
fractal dimension  (1.1%) compared to the control. The 
details of the results for the 11‑month‑old diabetic retinas, 
developing changes in the five features, are provided.

Injured Retinas have Fewer Number of Cells

The retinas from diabetic mice contained fewer cells 
compared to the WT normal mice of the same age 
[Figure  4a, left panel]. For instance, the 11‑month age 
group images from mid‑  and far‑periphery areas of 
retina (16 FOVs) contained a mean number of 78.5 cells in 
diabetic mice and 105.6 in the WT mice (P = 5.1205e‑05). 
The first two bars in Figure  4b represent the mean and 
standard errors of the cell counts scaled by 10−1 within 
each group. The higher mean values in the WT groups 
showed that diabetes caused vascular cell death in the 
retina. Please note that cell segmentation algorithm 
resulted in an accuracy of 91.4% compared to manual cell 
count [Table 1].

Diabetic Eyes have a Higher Endothelial 
Cell/Pericyte Ratio

One of the hallmarks of early diabetic retinopathy is loss 
of PC. With progression of the disease, retinal vessels 
lose PC, leading to vascular dysfunction such as increased 
permeability and loss of EC. Thus, loss of PC results 
in a higher EC/PC ratio in diabetic retinas compared 
with retinas from WT mice. The images showed a mean 
EC/PC ratio of 2.4053 for diabetic 11‑month‑old mice and 
1.8084 for the WT mice (P = 5.1772e‑04). As expected, the 
mean values were lower in WT groups than those in the 
diabetic groups. Figure 4b shows the mean and standard 
errors of the EC/PC ratios within each 11‑month‑old group. 
PC determination algorithm resulted in 87.87% accuracy in 
the EC/PC ratio on average compared to manual evaluation 
[Table 1].
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Diabetic Retinas have a Larger Number of 
Acellular Capillaries

Acellular capillaries in the retina arise from chronic 
exposure to hyperglycemia, have no cell nuclei and exhibit 
a very small width. The results from the vasculature images 
(from mid‑  and far‑periphery areas of retina) showed a 
significant difference between the number of acellular 
capillaries in the WT and Akita/+ 11‑month‑old mice 
[Figure 4a, right panel]. The mean acellular capillary number 
were 2.375 and 5.375 for WT and Akita/+ mice, respectively 
(P  =  7.0414e‑04). Figure  4b displays the mean value and 
standard errors of the number of acellular capillaries.

Injured Retinas have Lower Vessel Coverage

Our results indicated that the total area of the vasculature 
in the retinas from diseased mice was smaller compared to 
WT mice  [Figure 4a, right panel]. The mean values of the 
number of pixels representing the vasculature were 672,050 
and 817,790 for diabetic and WT nondiabetic 11‑month‑old 
mice, respectively  (P = 1.4214e‑05). Figure 4b shows the 
mean and standard error of the vasculature area scaled by 
10−5 for each group.

Diabetic Retinas Exhibit Greater Fractal 
Dimension

Our studies reveal a difference between the fractal 
dimensions measured in the retinal images of diabetic and 
nondiabetic 11‑month‑old mice. The mean values of the 
fractal dimension were 1.8733 and 1.8499 for diabetic and 
nondiabetic mice, respectively (P = 1.9167e‑08). Figure 4b 
shows the mean and standard error of these samples, 
illustrating a significant difference between the two groups. 
These results suggest that greater retinal fractal dimension, 
representing increased geometric complexity of the retinal 
vasculature as a sign of chronic diabetic retinopathy.

Classification of Retinal Images Resulted in 85% 
Accuracy

Table 2 provides classification results with different feature 
combinations. Features were selected based on the type 
and duration of the disease. Left panel in Figure 5 shows the 
distribution of two features (cell count and vessel coverage) 
as an example of the classification using SVM classifiers. 
Crosses correspond to bcl‑2 deficient retinas and stars 
are related to normal retinas (control). The hyperplane on 
the top right corner is one of the classifiers that indicate 
the decision boundary between the two groups. This 
classification resulted in 85.4% accuracy, 94.8% sensitivity, 
and 77.5% specificity. The right panel in Figure 5 represents 
the SVM classifier using three features including cell count, 
vessel coverage, and EC/PC ratio. The surface between 
yellow  (diabetic) and blue  (normal) regions is one of the 

classifiers, which makes the decision boundary between 
the two groups. Using these three features yielded in the 
classification with 85.3% accuracy, 88.8% sensitivity, and 
81.7% specificity.

DISCUSSION

We have developed a novel multi‑parameter quantification 
method to evaluate the health of retinal vasculature. 
This method employs image processing algorithms to 
detect the retinal parameters of interest including vessel 
coverage, acellular capillary count, fractal dimension, and 
vascular cell count and cell type. To validate the use of 
the proposed method, we compared the accuracy of the 
nuclei segmentation and cell type determinations with 
manual evaluations. Accuracy counts were divided into 
two categories: EC counts and PC counts. Based on these 
two counts, the total cell count and EC/PC ratios were 
evaluated and shown in Table 1. The total number of nuclei 
identified by each method was not the same. Overall, 
nuclei segmentation algorithm resulted in an accuracy of 
91.4% compared to manual cell counting. The main source 
of error in the cell count was under‑segmentation problem 
occurred due to overlapping cell nuclei. Segmentation of 
images containing touching and overlapping cell nuclei is a 
challenge in cell segmentation,[40,41] and further investigation 
is needed to further reduce this error. New segmentation 
methods, including region‑based active contour[42,43] (single 
phase and multiphase), and graph cut‑based active 
contour[44] were also examined. None of these methods 
were able to improve the segmentation accuracy for our 
application. Therefore, marker‑based segmentation method 
was chosen for high throughput applicability.

It should also be noted that EC counts and PC counts 
assessed by each method were not the same. For 
computer‑based approach, the most common error is the 
under‑segmentation, while for manual segmentation, the 
discrepancy on whether to identify certain nuclei as EC or PC 
play a much larger role in accuracy rate. The inconsistency 
between the manual evaluations of cell type provides an 
idea of how well one could expect to do in comparison to 
the chosen standard. If two experienced biologists can only 

Table 2: Performance of the support vector machine 
classifier for different groups under study
Disease Age Features Accuracy Sensitivity Specificity

Bcl‑2 
deficiency

6 weeks Cell count, 
vessel coverage

85.4 94.8 77.5

Diabetes, 
Akita/+

6 months Cell count, vessel 
coverage, EC/PC

85.3 88.8 81.7

11 months Cell count, 
vessel coverage, 
EC/PC, acellular 
capillary count, 
fractal dimension

75 71.7 81.7

EC: Endothelial cell, PC: Pericyte
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agree on 90% of the cell type results, then it is likely that 
any claim of above 90% for automatic cell type detection 
is just accidental. Our results suggest that performance 
of the proposed method for determining the cell type is 
comparable to manual evaluation. Considering the manual 
segmentation accuracy of around 90%, which is only 2.13% 
better than automatic segmentation method; our results 
reflect the overall difficulty of the problem and indicate 
good performance for the automatic method.

The presented multi‑parameter quantification method 
can analyze and monitor vasculature complexity in rodent 
models of diabetic retinopathy and bcl‑2 deficiency. Cell 
apoptosis,[45‑49] loss of PC,[50‑54] and lower vessel coverage 
are used to assess early signs of nonproliferative diabetic 
retinopathy. However, increased number of acellular 
capillaries[20,52] and higher fractal dimension[55‑58] were later 

Figure 4: (a) Left: cell images represent that 11‑month‑old diabetic retina 
has a fewer number of cell compared to the normal retina at the same 
age. Right: vasculature images demonstrate lower vessel coverage and 
larger number of acellular capillaries  (shown by arrows) in diabetic retina 
as compared to control  (scale bars represent 20 μm).  (b) Bar graph plot 
comparing five unique features in diabetic retina versus normal retina 
from 11‑month‑old mice. Bar graphs show the mean values and standard 
errors of each feature detected in retinas. Diabetic retinopathy resulted 
in significant decrease statistically in the total number of vascular cells, and 
vessel coverage while increase significantly the EC/PC ratio, number of 
acellular capillaries and fractal dimension. Please note that the total number 
of cells and vessel coverage were scaled by 10−1 and 10−5, respectively. For 
showing the difference between the fractal dimensions of the two groups, 
this parameter was presented with different y‑axis on the right. The number 
of the fields of view in each group of retina is 16

b

a

Figure  3: Acellular capillary detection:  (a) vasculature image  (b) binary 
image of vasculature  (c) morphological thinning of vasculature used to 
determine vessel caliber (d) marked connected areas with a width <40% of 
the average vessel’s caliber

dc

ba

Figure 5: Results of the classification using support vector machine method in retinas from (a) 6 weeks bcl‑2−/− deficient and WT mice considering two 
features: Cell count and vessel coverage (b) 6 months diabetic Akita/+ and WT mice with three features: Cell count, vessel coverage, and EC/PC ratio; Red 
crosses correspond to injured retinas and green stars are related to control. The boundary between yellow (injured) and blue (normal) regions is one of the 
classifiers

ba
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complications and become more numerous with progression 
of diabetes. Diabetic retinopathy is a progressive disease 
and goes through all of these changes in a timely 
manner. Loss of PC is an early event, which is followed 
by vascular dysfunction, loss of EC, formation of acellular 
capillaries and microaneurysms, ischemia, and ultimately 
neovascularization that is the latest stage of the disease 
and is normally not seen in rodents. Our multi‑parameter 
method selects these features based on the duration of 
diabetes as a significantly dominant marker for detection 
of diabetic retinopathy. The duration of diabetes has a 
significant impact on the parameters indicated above. Thus, 
for animals with the longest duration of diabetes, all these 
changes are significant marker of diabetic retinopathy. 
Therefore, with longer duration of diabetes in 11‑month‑old 
groups all the features can be used to quantify the retinal 
changes and train the classifier. Figure 4 demonstrates that 
11‑month‑old diabetic retinas have a lower cell density and 
vessel coverage but a greater EC/PC ratio, higher number of 
acellular capillaries, and larger fractal dimension.

The fractal dimension, which is a useful measure of the 
complexity present in the retinal vasculature, determines 
the self‑similarity of the vessel structure. As retinopathy 
progresses, new and smaller blood vessels begin to grow 
out of the existing larger vessels, with similar characteristics 
to the larger vessels, showing that the vessel structure is in 
fact fractal. Our measured fractal dimension is close to the 
reported fractal dimension of a diffusion‑limited aggregation 
process  (~1.7).[55‑58] In addition, there is a correlation 
between retinal complexity and fractal dimension. This 
correlation occurs because of the properties of fractal 
dimensions, which increases as the new vessels grow in 
with the same properties as the existing larger vessels. 
Our studies showed that greater retinal fractal dimension 
represents increased geometric complexity of the retinal 
vasculature associated with diabetic retinopathy. Since 
significant increases in acellular capillary formation and 
fractal dimension are usually observed after 6  months of 
diabetes,[46,52,59] these parameters are not appropriate to 
quantify injury in the 6 month‑old diabetic groups. Thus, 
only cell count, vessel coverage, and EC/PC ratios were used 
for classification [Figure 5b].

In addition to diabetic retinopathy, another type of 
retinopathy induced by bcl‑2 deficiency was studied. 
Vascular cell count and retinal vascular density were 
selected as the markers for the early diagnosis of this type 
of retinopathy.[17] The cell count is an important indicator 
of retinopathy, as it is directly related to the early loss 
and later growth of new blood vessels. Thus, we expect 
the concentration of vascular cells in the retina and also 
vascular density to be two precursors of retinopathic 
injury at the early stages. At 6 weeks of age, bcl‑2−/− and 
healthy retinas were classified [Figure 5a] with 85% accuracy 
showing that these two features are significantly effective, 

and our multi‑parameter method is sensitive to quantify the 
early structural changes of retina with bcl‑2 deficiency.

CONCLUSION

We have studied morphological details of retina including 
cell count, vessel coverage, and the EC/PC ratios which 
were associated with loss of the PC as the earliest sign of 
diabetic retinopathy.[53] Other quantifiable morphological 
features such as acellular capillaries and fractal dimension 
correlated with progression of diabetic retinopathy,[56] were 
also investigated. The current multi‑feature method has the 
capability to detect and quantify the structural changes in 
the vasculature of retina at the early stages of the disease 
and provides an opportunity to get a comprehensive 
view of retinal vasculature at the cellular level. Therefore, 
with new advancements in new imaging modalities with 
cellular resolution, it will be possible to utilize the method 
developed here for quantitative evaluation of retinal 
vasculature with significant accuracy. This knowledge will 
be instrumental in development of new treatment modality 
to stop the development and progression of the disease and 
save vision. With the addition of more features, we hope to 
create a system capable of detecting and classifying even 
small changes in the retinal vasculature, allowing for the 
earliest detection of the injury. Our system can also be used 
to assess the impact of various gene mutations, deletions, 
and overexpression on retinal vascular development and 
function in a high‑throughput and reproducible manner.
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