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Introduction

Epilepsy is second incident disease of the brain after 
a stroke that involves about 0.6–0.8% of the people.[1] 
A sudden occurrence of the epileptic seizures makes them 
unbearable and thus limits the patients’ life. One would 
think that patients with seizure do not have a normal life 
because of their sympathy for the unpredictable occurrence 
of seizures. Furthermore, although it is not proved, seizures 
may lead to brain injury. Fortunately, there are special drugs 
for specific patients, depending on the clinical and para-
clinical symptoms. These drugs are advised based on the 
results of the researches carried out by neurophysiologists, 
epileptologists, and others. These researches are mainly 
conducted at a microscopic level, by experiments on 
animals. These are controlled experiments, and their results 
are so limited that the proposed drugs cannot cover all 
the possible conditions of seizure genesis. Thus, it is not 
astonishing if some patients’ epilepsies are drug-resistant. 
Actually, for seizures with only a little difference from what 
is seen during in-vivo experiments, the drugs may not have 
their remedy effects. In fact about 25% of the epileptic 
patients suffer from intractable seizures. On the other 
hand, we should not neglect the side effects of the drugs.

A B S T R A C T

In recent decades, seizure prediction has caused a lot of research in both signal processing and the neuroscience field. The researches 
have tried to enhance the conventional seizure prediction algorithms such that the rate of the false alarms be appropriately small, so that 
seizures can be predicted according to clinical standards. To date, none of the proposed algorithms have been sufficiently adequate. 
In this article we show that in considering the mechanism of the generation of seizures, the prediction results may be improved. For 
this purpose, an algorithm based on the identification of the parameters of a physiological model of seizures is introduced. Some 
models of electroencephalographic (EEG) signals that can also be potentially considered as models of seizure and some developed 
seizure models are reviewed. As an example the model of depth-EEG signals, proposed by Wendling, is studied and is shown to be 
a suitable model.
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For the patients, the final medical remedy is surgery, through 
which the areas of the brain involving seizure generation are 
removed. This operation may also be unsuccessful. In the 
opinion of engineers that deal with the brain as a system, if the 
main signals of a pre-seizure were recognized, then the on-time 
use of drugs, either oral or via injection or even some electrical 
stimulation, would improve both the above-mentioned 
problems. In the former, by ordering a sufficient dose at just 
the right time, the percent of the cured seizure will increase, 
and in the latter, this will notably decrease the amount of used 
drugs and mitigate the side effects. Similar to experiments that 
are conducted for discovering useful drugs, finding the critical 
times of using the drugs or electrical stimulation requires a 
good realization of the seizure mechanisms.

The field that focuses on the techniques of seeking the critical 
times of seizure procedure is called seizure prediction. In 
other words, a critical time or point at which a seizure can be 
turned around is the point that is likely to reach the seizure 
in the near future, but also soon enough to prevent its 
occurrence. Evidently, seizure prediction can be done based 
on the data of different levels from cell recordings to scalp 
EEG recordings. In order to be more clinically applicable, 
usually those seizure prediction studies are being used, 
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wherein the scalp- or depth-EEG signals during pre-surgical 
evaluations are at the center of attention. Prediction of 
seizures based on cellular recordings may be more accurate, 
but nearly impossible for clinical use. If seizure prediction 
and the proper design of electrical stimulation procedures 
are successfully finalized, perhaps in the future, a special 
form of pacemaker will also be installed in the brain.

Since 1970, seizure predictability based on scalp-EEG and 
depth-EEG signals has been studied. To date, results with very 
different promising and despairing reports are presented, 
sometimes based on extraction of similar features, but 
using different data. One would say that different types 
of seizures (generalized vs. focal and also from different 
locations) are predictable at different levels of accuracy. 
Furthermore, it seems that each individual may experience 
his/her seizures by a natural amount of predictability, like 
the fact that only some patients experience aura. Even 
different occurrences of seizures of a special person may 
require different predictions. These variable situations 
justify the various results obtained by researchers.

Indeed, when there are different mechanisms underlying 
each type of seizure and/or seizures of different patients, 
in spite of their similar manifestation, different techniques 
should be used for each seizure type and patient. These 
techniques are preferred to be designed based on their 
seizure genesis procedure. For example, it is concluded that 
it is not enough to consider the nonlinearity of the brain 
system and its features. For every seizure, the nonlinearity 
may have its own detail, and the knowledge about it may 
improve the results.

In this article, after a brief review of different seizure 
prediction algorithms and emphasizing on the contradictory 
results, the importance of state-of-the-art mechanism-based 
algorithms has been justified, and the essential requirement 
of such predication algorithms has been declared and 
abstractly described. It is worth mentioning that when we 
predict seizures based on a physiological model, with some 
parameters indicating cellular or neural network activities, 
it seems that we are predicting seizures from a closer point 
to neurons, but via signals that are easily recorded clinically.

HISTORICAL REVIEW

The seizure prediction concept was propounded as a pre-
ictal state detection at its birth. The seemingly separable 
seizure signals from the normal ones had made the on-hand 
matter very reachable and easy to perform. Thus, only some 
simple features based on linear assumption were used,[2-4] 
and as the importance of the specificity of predictions 
had not been noticed in those days, the reliability of the 
results was overestimated. Later on, the features obtained 
according to linear assumptions were criticized, and to 
improve the sensitivity, they were replaced by nonlinear 

assumptions.[5-22] Accordingly, some features, which largest 
Lyapunov exponents and correlation dimension are their 
pioneers, were had been proposed. However, later the 
researchers realized that in order to be applicable, seizure 
prediction algorithms should also be sufficiently specific. 
This new expectation showed that even by considering 
nonlinearity, the validity of the results could not be 
enhanced. The complexity of the nonlinear features was 
in favor of using linear ones. Therefore, nonlinearity of the 
performance of the brain was suspected. Subsequently, 
some special studies showed that the procedure was not 
linear[23] and that weaknesses of the algorithms considering 
the nonlinear features had other reasons.

In the next steps, the bivariate features, based on using more 
information of the multi-channel signals, were proposed, 
and their better efficiency compared to univariate features 
was proved.[24-35] Synchronization[36-40] was a well-known 
example of these bivariate features. Some algorithms based 
on choosing the optimal couple of channels were also 
proposed.

In 2009, a workshop on seizure prediction was held, in 
which the most important debates about seizure prediction 
were discussed.[41] Evidently, it was declared that there was 
essential ambiguity in some features considered for the 
brain. For example, usually increment of the synchronization 
between two EEG channels was considered as a seizure 
predictor, but some neurologists rejected this result, mainly 
based on their investigations.

On the other hand, a careless look at the seizure phenomenon 
oversimplified the problem and this prevented researchers 
from proposing advanced prediction algorithms for the 
case.

Two recent viable fields of seizure prediction are as 
follows:[2]

1.	 The first involves specialists of pattern recognition. 
They believe that there is no single lone feature that can 
characterize pre-seizure signals, but somehow a number 
of features must be intermingled and composed, perhaps 
in opposite directions, such that all of their information 
can be gathered altogether. Furthermore, the pre-
processing of the signals before feature extraction must 
be extensively considered; signal decomposition and 
artifact removal techniques are two examples. More 
powerful classifiers are also under investigation.

2.	 The second field mainly concerns the neuroscientists. 
They propose to make use of the dynamic mechanism 
underlying seizure generation, in order to predict 
seizures.

The second field is also advantageous, as, for discrimination 
between the types of epilepsies their mechanisms must be 
known. Thus, in this article we focus on the second field.
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MODEL-BASED SEIZURE PREDICTION

The goal of this article lies in describing the role of 
computational models in seizure prediction methods. The 
obstacles and the advantages will be introduced. The steps 
undertaken by a physiological model-based algorithm are 
listed as below:
1.	 Select the type of EEG signals, whether a scalp EEG, 

ECoG or depth-EEG and the local field potentials
2.	 Decide whether a special kind of seizure should be 

considered or all types of seizure are purposed
3.	 Study both the mechanism of seizure generation for the 

determined kind of seizure and the semiology of the 
relevant signals, and how to model them. Developed 
physiological model(s) already at hand can also be 
alternatively selected

4.	 Choose a suitable approach for identifying the hidden 
value of the physiological parameters of the model 
according to the recorded signals. This approach must 
indicate both the cost function and the optimization 
algorithm

5.	 Decide about the parameter sequences, whether they 
are predictors of seizures or not, and how to use them.

The main sections of this article deal with some important 
choices of steps 1–3: Some developed models of different 
EEG types are abstractly described. Subsequently, for 
a special model of a depth EEG signal, the system 
identification algorithms and some approaches for solving 
the optimization problem are illustrated.

Type of Electroencephalogram Signals

Electrical activity of the brain that is caused by firing of the 
neurons can be recorded in different ways. Neurons and the 
scalp are the two extreme points that electrical signals can 
be recorded from. However, intercellular and extracellular 
recordings are performed in the laboratory. Depth-EEG 
signals are captured by needle electrodes that are implanted 
in the cortex. Usually neurologists use these signals to 
localize, more precisely, the area of seizure activity, as a 
complementary diagnosis technique, just before surgery. 
ECoG signals are recorded from the surface of the cortices, 
using some grid or strip electrodes, and EEG signals are 
recorded from the scalp.

All of these signals somehow represent the local field 
potential of the brain areas where the electrodes are located. 
The farther we go from the source of the signals (brain), 
the electrodes integrate voltages of a larger population of 
neurons. Furthermore, the propagation path affects the 
electrical waves and the unavoidable interferences make 
the signals more noisy and susceptible to artifacts. Thus, 
there is a tradeoff between predictions of seizures based 
on signals of different levels. For example, a prediction 
based on a depth-EEG signal is easier to perform than that 

on surface EEG signals, but evidently its recording is an 
invasive act.

Which Kind of Seizure is to be Noted?

The predictability of different types of the seizure is not 
equally strange to neurologists and epileptologists. For 
some types of the seizures there is no definite fact about 
the phenomenon that leads to the seizure. Generalized 
seizures and absence seizures are among this category. The 
role of the non-cortical regions is necessary, but unknown, 
in these types of seizures. On the contrary, there is nearly 
a consensus about the mechanism of occurrence of some 
seizures, like focal epilepsies and specially Mesial Temporal 
Lobe Epilepsy (MTLE). It is perhaps due to the fact that 
a large percent of research about seizure mechanism is 
entitled to MTLE. Thus, in order to predict a special kind of 
seizure, its own related model must be used. If a prediction 
method independent of the type of seizure is required, 
either a more general method or a heuristic approach may 
be used.

Review of the Models of Electroencephalogram 
Signals

Now we try to give a quick review of some models that can 
be useful in this context. Before that, let us illustrate the 
perquisites of a model to be used as a candidate for model-
based seizure prediction algorithms.

To begin with, suppose thatwe have a model at hand that 
is capable of producing signals of different activities of 
the brain, according to the selected EEG signal. Note that 
such a model must inevitably be a stochastic model, to be 
able to imitate the natural randomness of the EEG signals. 
Moreover, suppose that what causes variation in the activity 
types is a set of parameters, and the model relates the 
properties of the signals to some physiological parameters. 
At its extreme (the ideal situation) assume that the model 
is managing an injective relation between the parameter 
vector and the model output. Now, each observed EEG 
signal can be assumed to be a model output of a special 
parameter value. Under such conditions, we can find the 
relevant parameter vector of each observed signal using a 
parameter identification process.

The sketch of the problem mentioned above can inspire 
the required situations for a model to be applied in seizure 
prediction:
1.	 We do not expect of the real models to produce any 

possible activity of EEG signals; but at least, some 
common activities must be produced by the model. 
As the model will be used for seizure prediction, in 
addition to normal EEG signals, seizure-related EEG 
activities, including high frequency signals, must be 
produced by the model.
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2.	 As the number of the model parameters, and 
accordingly, the dimension of the parameter vector 
increases, solving of the optimization problem will be 
more complicated and time consuming. This will be the 
reason for making us exclude the microscopic models 
that possess a number of parameters to control the 
type of activity of the model output; although lumped 
parameter models are preferable.

3.	 The expectation of the model to simulate a one-to-one 
relation between the parameter vector and the model 
output is too optimistic. Sometimes, especially when 
the model is stochastic, some acceptable amount of 
error must be tolerated.

Thus, every model must be evaluated based on the above-
mentioned points, to check whether it is a suitable candidate 
of seizure prediction or not.

In the next sections some intuitive notions about the 
elementary neural mechanisms and modeling of neuronal 
populations are described. It is useful to give a very 
simplified description of an isolated neuron model and 
what is called a neural population model.

MICROSCOPIC (DETAILED) MODELS

The milestone of brain activities is the neuron. There 
is a pile of neurons in both the central and peripheral 
nervous systems, whose most important specificities are 
their interactions, without which the function of the brain 
would be impossible. Thus, at first glance, modeling the 
behavior of individual neurons and also their connections 
is necessary. Accordingly, thousands of these neurons can 
be used to model the potentials of local fields by setting 
suitable relations among them.

Modeling individual neurons is the most important 
precedent in the field of expressing neurophysiological 
phenomena, by some mathematical and computational 
equations. Let us point out that synapses are the sites 
of interface between neurons. At the synapses neurons 
stimulate other neurons that are called efferent neurons. 
Synapses connect the soma of post-synaptic neurons to 
the dendrites of pre-synaptic ones. These dendrites behave 
like transmission lines that transmit electric voltage to on/
off pulses proportional to the amplitude of this voltage. 
Soma produces a low pass filtering effect on the pulse of 
the synapses parts. Usually synapses are junctions of many 
neurons. The low-pass filter then converts a number of on 
pulses at the pre-synaptic neurons, say the rate of firing, 
to the membrane voltage of the soma. Furthermore, when 
a neuron is excited, it takes at least a refractory time to 
the next excitability of the neuron. The Hodgkin-Huxley 
model[42] is one of the most famous models for the neuron. 
The noisy and leaky integrate-and-fire neurons and a Poisson 
spike-train cell model are the other examples. Specialized 

models for hippocampal neurons are also proposed.[43,44] 

These models mainly differ in the nonlinear function of the 
dendrite, the linear impulse response of the soma filter, 
and the modeling refractory phenomenon. The common 
factor is the stochastic modeling of some of these systems. 
These systems have special values for each kind of neuron 
according to their properties.

In the neuronal tissue (gray matter of the brain) the neurons 
can often be divided into two main families, the principal 
neurons and interneurons. These neurons are then 
connected in a similar manner to real neural networks. For 
example, principal neurons have the peculiarity of having 
a privileged spatial orientation, roughly perpendicular 
to the cortical surface (when viewed in the neocortex). 
Interneurons do not have this peculiarity. This has 
great significance for the interpretation of the potential 
measured by a sensor placed within a neural population.

The neurons of a neural network can be connected to each 
other in different lattice forms. Any change in the ratio 
of the number of excitatory to the number of inhibitory 
neurons, as well as the structure of the connected neurons 
and the relevant coefficients can change the type of activity 
of the model output. In other words, there are too many 
effective parameters that prevent the model to be suitably 
intractable. Thus, generally, microscopic models do not have 
the second property of the above-mentioned conditions, to 
be applied in seizure prediction algorithms.

Netoff[45] proposed the brain as a small world network 
in which all the cells are only coupled to their nearest 
neighbors, but small numbers of connections are broken 
and rewired to make long-distance connections at random 
locations. As more long-distance connections are added, the 
network loses the property that most connections are local, 
and the network looks much more random. We find a range 
of normal and epileptiform behaviors in the small-world 
network regimen, where few connections are necessary 
to connect any pair of neurons, but local connections still 
predominate. Bursting and seizing behaviors appear as 
a number of long-distance connections change. However, 
connectivity, chemical distances, and clustering coefficients 
are some features of small world networks that can be 
noted as compressed parameters of the model.[46]

MESOSCOPIC (REDUCED) MODELS

Another type of model, called the reduced model is available. 
In this type of model, the complexity of single neurons is 
down, so a few of them can build EEG signals. The cortex 
is modeled as a matrix, such that each component of it 
contains an excitatory and inhibitory mass of neurons.[47]  
These models are mainly modified versions of the 
microscopic models that can lead to a better comprehension 
of cortex dynamics.
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MACROSCOPIC MODELS

To generate a better insight into the functional significance 
of the emergent dynamics, some form of simplification is 
of critical importance. The neuronal networks of the cortex 
can be considered as a spatially continuous network in 
which the properties of a bulk of neurons at a local region 
are summarized in some state variables that their values 
are a function of both time and space. These variables can 
typically be the mean firing rates or the mean values of the 
cell (soma) membrane potential, just as there is an average 
neuron at that location. This kind of model is called the 
neural mass model. Evidently, a nonlinear function at the 
average dendrite and linear function at the average soma is 
expected. Furthermore, the input of the neural mass models 
is usually a white noise, accounting the influence of all the 
neurons that are far away.

The Elementary Macroscopic Models

At the initial stages, the neural mass models dealt with 
neurons having just excitatory interactions.[48] Later, the 
inhibitory interaction was incorporated. Wilson and 
Cowan[49,50] considered the excitatory and inhibitory 
properties of a neuronal mass as two distinct neuronal 
populations that were connected to each other. The state 
variable was the mean firing rate at time t. By the assumption 
of the homogeneous property of the underlying neuronal 
mass, in both models, a similar behavior was assumed for 
every location of it. The equations underlying these models 
were thus differential equations. These equations could 
easily be extended into partial differential equations, to 
account for the spatial properties of the neuronal mass. 
On the other hand, Amari[51,52] proposed a spatial-temporal 
model with the mean soma membrane potential as a 
macroscopic state variable.

Both these models are oversimplified such that they are 
unrealistic in some cases. For example, in both the models, 
the mean low pass filter is assumed to be of the first order, 
which induces an instantaneous effect at the neuronal 
soma, instead of the fact that these effects steadily increase 
to their maximum levels. Nevertheless, all the later neural 
mass models, proposed up to now, are extensions of these 
models.

Although these models are the simplest models presented 
for a mass of neurons, their differential equations possess 
nonlinear terms as a result of the thresholding effect at 
the dendrites. Thus, no analytical solutions exist for these 
equations and they must be qualitatively analyzed. By 
assessment of the steady states (fixed points) and limit 
cycles, further insight can be gained into the properties 
of the dynamics of the cortex performance. There is no 
claim by these models about producing EEG signals, but if 
the parameters are suitably selected, sustained limit cycle 

activity and damped oscillatory behavior, in response to 
brief stimulating inputs, can be seen.

Subsequently, these models were extended to produce 
EEG signals that had sufficient dynamical complexity and 
empirical merit.

Freeman’s Model

Freeman, in a hierarchal manner,[53] tried to explain the 
electrocortical dynamics of the olfactory bulb and pre-
pyriform cortex. At the lowest level a K0 model exists in 
which there are neurons that are common in the input 
and output, but with no interaction between them. Unlike 
the Wilson and Cowan and Amari’s models, this set is 
characterized by a third order differential linear equation 
as the ‘pulse-to-wave’ function of the average dendrite. 
At level KI, the interactions of these K0 sets are either 
excitatory or inhibitory: KIe and  KIi. Dense functional 
interaction between two KI sets forms the KII set. The KII 
set is equivalent to the Wilson and Cowan model and is 
schematically displayed in Figure 1. It is defined by four 
nonlinearly coupled third order differential equations. The 
nonlinearity represents the ‘wave-to-pulse’ function of the 
average soma. The neocortex can be viewed as one or many 
interconnected KII sets. A range of physiologically relevant 
and complex behaviors, for example, the generation of the 
gamma band (>30 Hz) and the oscillatory activity, can be 
simulated by this model.

Still Freeman is extending his theories to models the cortical 
phenomena realistically.

Lopez da Silva’s Model

As a very simple and also realistic model of the alpha rhythm 
of the EEG signals, Lopes da Silva noticed that the response 
of the average soma to the pre-synaptic spikes is at the 
very least of the second order:[55,56] The average membrane 
potential rises to a peak and then decays. This little, but 
realistic modification of the Wilson and Cowon model 
caused the model to produce a strong resonance in the 
alpha band range (8 – 13 Hz). Lopez da Silva is developing 

Figure  1: Schematic outline of the connection topologies of a number of 
mean-field approaches to modeling the dynamics of EEG[54]
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the models according to the different scenarios of seizure 
prediction.[57,58]

Jansen’s Model

Jansen’s model[59] is based on Lopes da Silva’s lumped 
parameter model.[55] The basic idea behind these models 
is to make excitatory and inhibitory populations interact 
such that oscillations emerge. The wave-to-pulse operator 
at the average soma of a population of neurons and a linear 
pulse-to-wave conversion that are shown in Figure 2, are as 
follows: 
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where x(t) and z1(t) are the input and output signals of this 
filter.

In each area of the cortex, there are two types of the neurons: 
Pyramidal cells and interneurons are mainly involved in the 
generation of paroxysmal activity in the isolated slab.[60] 
Pyramidal cells are always excitatory, but both inhibitory 
and excitatory interneurons exist. Accordingly, three 
interacting subsets of neurons participate in this model. 
The main cells (i.e., pyramidal cells) receive a feedback from 
two other subsets, composed of local interneurons, either 
excitatory or inhibitory.[61]

Nunez’s Global Model

In all cases, when the location is also considered as another 
variable in the differential equations, the local models 
of the neocortex will be global models. Also, the local 
models can be coupled to each other to model the global 
cortex. However, Nunez[62] constructed a global model of 
electrorhythmogenesis by instantaneously considering 
short-term and long-term connections. A diagram of this 
model is given in Figure 1.

Liley’s Model

Liley developed the basic theories of the macroscopic 
models by adding some new physiological facts.[63] Thus, 
effects of the synaptic reversal potentials, which make 
the amplitude of the respective PSPs dependent on the 
ongoing postsynaptic/somatic membrane potential, and 
the transmission function of the axonal pulses in long 
range fibers, are added to the model. The structure of the 
Liley’s model is presented in Figure 1. In other words, the 
effect of synaptic reversal potentials is changing the linear 

relation between the mean soma membrane potential 
and the synaptic input, to an exponential one. The Liley 
model is capable of reproducing the main features of the 
spontaneous human EEG. In particular, the autonomous 
limit cycle and chaotic oscillatory activity in the alpha band 
(8 – 13 Hz) are easily produced.

MODELS OF SEIZURE

The above-mentioned models are proposed ones, to 
produce EEG-like signals. In all of them, interactions of 
excitatory and inhibitory population neurons play the main 
role. In this section, we continue with the models that can 
simulate seizure-like signals. From the seizing and bursting 
activity point of view, Liley and Wendling have specialized 
researches. Wendling has used the Lopes da Silva model to 
model an area of hippocampus, in order to model MTLE 
seizures. Liley has evaluated the role of the parameters 
of his model for the generation of unstable activities like 
seizures.

Wendling’s Model

Based on the Jansen’s model, Wendling tried to model the 
production of realistic epileptiform activity as a result of 
imbalance between excitatory and inhibitory synaptic gains 
(model parameters). Wendling observed that at some special 
values of parameters, normal EEG signals of the Jansen’s 
model are replaced by spike activities or rhythmic signals, 
just like epileptic signals.[64] Then, in order to represent 
fast EEG activity such as low-voltage, rapid discharges that 
are often observed in depth-EEG signals at seizure onset, 
Wendling developed a new version of the mentioned 
model, based on bibliographical material.[65] A fourth 
subset was added to the model as an agent of a second 
class of inhibitory interneurons to raise the kinetics of the 
system.[65] Actually, in addition to the usual GAB AA-mediated 
inhibition,  GAB AB neurotransmitters also had inhibitory 
effects. The kinetics of the GAB AB  were faster than those 

Figure  2: The Jansen neural mass model. Three different populations of 
neurons (excitatory pyramidal cells, excitatory principal cells, and inhibitory 
interneurons) compose a cortical area[61]
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of GAB AA . The impulse responses of the excitatory, slow 
inhibitory, and fast inhibitory activities, respectively, were 
given by 
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The structure of this model is shown in Figure 3. The influence 
from the neighboring areas of the cortex is represented by 
an excitatory input p(t) (modeled by the Gaussian white 
noise in the absence of target stimulation) in the model. 
The model output corresponds to the postsynaptic activity 
of the first subset, and is interpreted as an EEG signal. We 
call this model the depth-EEG model.

Thus, it is a stochastic model and its output corresponds 
to the postsynaptic activity of the first subset, and is 
interpreted as an EEG signal. This process is expressed with 
the following differential equations:
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In,[65] the standard values of the linear system  
(C1 to C2, a, b, g) and nonlinear function parameters (e0, v0 
and r of (1)) are reported. These parameters are obtained 
through accurate experiments.

By changing the excitation and inhibition synaptic gain 
parameters (A, B, and G, respectively) of the depth-
EEG model, six different types of EEG signals can be 
produced:[65] Normal background, sustained discharge of 
spikes, low voltage rapid activity, slow quasi-sinusoidal 
activity, sporadic spikes, and slow rhythmic activity. Each 
of these type of signals can be met in the real world 
(normal and pathological) during different activities of 
the brain. The normal background EEG is observed during 
the normal activity of brain, either in healthy or epileptic 

people, called the interictal state in epileptic patients. 
Sporadic spikes are likely to appear on normal EEG signals, 
but may also be seen during some mental activity, even in 
healthy subjects.

Sustained discharge of spikes may be exposed at the onset 
of seizure, during seizure, and also during some non-
pathological activities like evoked eye saccade.[66] On the 
other hand, low-voltage rapid activity is usually encountered 
at the beginning of MTLE seizures. Furthermore, slow 
rhythmic activity is a possible characteristic of seizures and 
quasi-sinusoidal activity is just the kind of activity that is 
observed during the ictal state.

Figure 4 shows exemplar output signals of the model 
according to the different parameters (i.e., different models 
of the model space). A 3-D symbolic activity map for limited 
range of A, B, and G is also displayed. Differential equations (3) 
are some stochastic differential equations and should 
accordingly be solved by a stochastic numerical algorithm, 
like the stochastic Runge-Kutta algorithm; but, based on,[61] we 
accept the simplicity of solving our equations by the second 
order Runge-Kutta algorithm. However, we have considered 
the stochastic nature of p(t) by first producing it with a random 
generator and then using its samples in the equations (3).

The white Gaussian noise is used as the hippocampcal 
modulatory input. The mean and variance of the input must 
be chosen such that the background activity parameters are 
produced using standard values;[64] to this end we selected 
m=50 and s =50.

Figure  3: Organization of the depth-EEG model. Four neuronal 
subsets: Pyramidal cells, excitatory interneurons (A), dendritic projecting 
interneurons with slow synaptic kinetics (GABAA, slow: B), and somatic-
projecting interneurons (the gray rectangle denotes these group of 
interneurons with its inward and outward connections) with faster synaptic 
kinetics (GABAA, fast: G). The average pulse density of the afferent action 
potentials is changed into an average inhibitory or excitatory postsynaptic 
membrane potential, using a linear dynamic transfer function of impulse 
response hi(t), he(t), hg(t), while this potential (physiologically in the post 
somatic part of the neurons) is converted into an average pulse density of 
firing of a post-synaptic neuron using a static nonlinear function[65]
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Liley Models the Effects of General Anesthetic 
Agents

In Liley’s proposal, the strength and time course of the 
cortical inhibitory–inhibitory and inhibitory–excitatory 
connectivity are the effective parameters of the model. The 
time course of these connectivities has not been considered 
in Wendling’s theory. He tried[67] to justify the influences of 
known pharmacologies via alterations in the strength and 
time course of the fast GABA ergic neurotransmission, and 
accordingly improved what is known about the mechanisms 
of seizure initiation and cessation. In other words, he 
described the generation of high frequency activities 
induced by general anesthetic agents from their effects on 
the neurotransmitters.

Population Models for Absence Epilepsy

The model proposed,[58] is called as the macroscopic model 
by the authors, and is fairly close to a population model. 
It can explain the absence of epilepsy in an animal model 
(rats) that is switching from normal activity to the state of 
crisis and then return to normal. This is associated, in terms 
of the recorded field potentials, with a transition between 
spindle oscillations and spike-wave trains. The model is 
represented graphically in Figure 5a.

Unlike the model of hippocampus, this model, although 
macroscopic, has a thalamocortical loop, thus including 
populations of neurons in the following structures:
•	 A sub-cortical pyramidal cell population (PY)
•	 A subpopulation of inhibitory cortical cells (IN)
•	 A subpopulation of thalamocortical cells
•	 A subpopulation of cell thalamoreticulaires

The first two are located in the cortex and the other 
two in the thalamic region. Figure 5b clearly shows the  
couplings:
•	 From Y to IN, TC and RE (excitatory AMPA)
•	 From IN to PY (GABA inhibitor and GABAB)
•	 From TC to RE, IN and PY (excitatory AMPA)
•	 From TC to RE (GABAA and excitatory GABAB)

In addition there are three input signals:
•	 A cortical excitatory input on PY
•	 An excitatory sensory input on CT
•	 An inhibitory input (GABA) on ER

Terms AMPA, GABAA, and GABAB match the types of 
neurotransmitters.

Another difference in the model of a hippocampus is 
the presence of delays (delay lines) for links ascending 
from the thalamus to the cortex and the corresponding 
downlinks. In this model the 9 Hz discharge signals 
spontaneously emerge and soon disappear. This model 

Figure 4: (a) Relation of the model output activity and the parameter 
vector value (Activity Map) of the depth-EEG model, and (b) six different 
kinds of the model output

Figure 5: (a) The schematic of the absence model, cortex, thalamus, 
and the interface thalamocortical nucleus are displayed, (b) the couplings 
existing in the absence model[58]
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corresponds to a strategy of population modeling, with 
special characteristics integrated in these populations, 
and it is a powerful tool for the investigation predictability 
of absence seizures.
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IDENTIFICATION OF DEPTH-
ELECTROENCEPHALOGRAM MODELS

Now, each observed signal can be assumed as the output 
of, for example, the depth-EEG model, and the parameter 
vector that best reproduces it must be estimated. The 
parameter sequence corresponding to the recorded signal 
can improve the result of MTLE seizure prediction.

As equation (3) implies, the depth-EEG model is a 
stochastic model. Thus, in order to be identifiable, 
the observed signals should be of infinite samples. 
However, the maximum likelihood method ensures the 
acceptable estimation of parameters, based on sufficiently 
observing a large number of discrete samples. The log-
likelihood, p( y:q), is obtained using different approaches.
[68] For example the model output is analytically a Markov 
process, so that the likelihood can be approximated by 
using the optimal filter or Kalman Filter. Optimization 
of the obtained likelihood is conducted by using the 
simulated annealing technique.

On the other hand, as the calculations required for 
approximating the likelihood are too complicated and 
time consuming, an alternative method is used to 
compare the vector computed features identically from 
the observed signal and the model output. In[69], the 
energies of different subbands are used as features. 
The genetic algorithm is applied to efficiently solve the 
optimization problem.

The obtained parameter sequences must then be assessed 
to indicate whether or not they can improve the specificity 
of the seizure prediction algorithms.

Conclusion

The mechanisms of the seizure must be well realized. 
As a direct route, identification of the parameters of a 
suitable physiological model is proposed. As availability of 
an appropriate model is the most important factor some 
of the most famous general models of EEG signals and 
also specialized seizure models are abstractly described. 
Among them, a model of the depth-EEG signals is more 
extensively assessed and the elementary steps of the model-
based prediction approach are mentioned. Furthermore, it 
is seen that the models are mainly based on local field 
potentials, so as to be useful in seizure prediction, based 
on surface EEG signals (to be clinically accessible). Some 
complementary modifications are needed, for example, 
local field potentials must be propagated through three 
shells containing the scalp, the skull, and the brain tissue, 
to form EEG signals. If this is modeled correctly, the EEG 
signal at each point of the surface will be influenced by the 
local field potentials of many points of the brain, which is 
a subject under investigation.[70,71]
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