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INTRODUCTION

One of the most common diseases of current century, 
causing disabilities in the young adults, especially women 
is multiple sclerosis  (MS). Studies show that more than 
2.5  million people suffer from MS in the world and this 
number is rapidly increasing.[1] In MS, the immune system 
attacks the central nervous system and destroys myelin 
sheath, which leads to lesion. Depending on which area in the 
brain is damaged, MS appears with symptoms such as lack 
of vision, abnormal gait, squint, and neurological disorder. 
However in the acute phase, the organ paralysis and even 
blindness is expected. Early detection of MS and estimation 
of its progression are critical for optimal treatment of the 
disease. Magnetic resonance imaging  (MRI) is a powerful 
tool to diagnose MS and monitoring the disease activity 
and progression. However, because of the large amount of 

A B S T R A C T

Automatic segmentation of multiple sclerosis (MS) lesions in brain magnetic resonance imaging (MRI) has been widely investigated 
in the recent years with the goal of helping MS diagnosis and patient follow‑up. In this research work, Gaussian mixture model (GMM) 
has been used to segment the MS lesions in MRIs, including T1‑weighted (T1‑w), T2‑w, and T2‑fluid attenuation inversion recovery. 
Usually, GMM is optimized by using expectation‑maximization (EM) algorithm. The drawbacks of this optimization method are, it does 
not converge to optimal maximum or minimum and furthermore, there are some voxels, which do not fit the GMM model and have to 
be rejected. So, GMM is time‑consuming and not too much efficient. To overcome these limitations, in this research study, at the first 
step, GMM was applied to segment only T1‑w images by using 100 various starting points when the maximum number of iterations 
was considered to be 50. Then segmentation results were used to calculate the parameters of the other two images. Furthermore, 
FAST‑trimmed likelihood estimator algorithm was applied to determine which voxels should be rejected. The output result of the 
segmentation was classified in three classes; White and Gray matters, cerebrospinal fluid, and some rejected voxels which prone to 
be MS. In the next phase, MS lesions were detected by using some heuristic rules. This new method was applied on the brain MRIs 
of 25 patients from two hospitals. The automatic segmentation outputs were scored by two specialists and the results show that 
our method has the capability to segment the MS lesions with dice similarity coefficient score of 0.82. The results showed a better 
performance for the proposed approach, in comparison to those of previous works with less time‑consuming.
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data which should be analyzed, manual segmenting of MS 
lesions leads to time‑consuming and becomes a hard task. 
Hence, the automatic segmentation of MS lesions in brain 
MRIs may be a very good solution.

Recently, a number of segmentation methods have been 
presented. The suggested method by Souplet et  al.[2] is 
one of the most significant ones. They used brain atlas to 
register the T1‑weighted  (T1‑w) and T2‑w images. They 
computed the belonging value of each voxel to the three 
different tissues; gray matter  (GM), white matter  (WM), 
and cerebrospinal fluid  (CSF). Resulted values were used 
to initiate Gaussian mixture model  (GMM) parameters to 
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segment all the three  (T1‑w, T2‑w, T2‑fluid attenuation 
inversion recovery  [T2‑FLAIR]) image sequences. Then 
Mahalanobis distance between voxel intensity and average 
intensity in each class was computed and in comparison to 
a constant threshold, lesions were detected. Although this 
approach was robust against noise and inhomogeneity, it 
fails when there are several lesions and also it does not show 
satisfying performance in brain atrophy cases. Complexity 
and time‑consuming registration task are other drawbacks 
of this method.

Subbanna et  al. presented a fully automated framework 
to identify the MS lesions in multi‑channel MRIs.[3] 
Manual segmented images were used to extract intensity 
histograms of both tissue and lesions. Then multivariate 
Gaussian distributions were estimated from the histograms 
and by using Markov random fields (MRFs) the classification 
of brain tissue and lesions was done. This method relies 
on manual segmentation, which may carry human error and 
also it needs to be trained for new image sequences.

Khayati et  al.[4] combined an adaptive mixtures method 
means, MRF and a Bayesian classifier to simultaneously 
classify the three main brain tissues and the MS lesions 
using only FLAIR images. In particular, they first proposed 
to segment the brain into four classes, means: WM, GM, 
CSF and ‘‘others’’. Afterward, inside the ‘‘others’’ class, 
lesions were detected as outliers, which have not correctly 
explained by the model. They used only FLAIR image while 
MS lesions may appear independently in different images.

METHODS

In this study, we introduce a new automatic MS detection 
strategy. It does not need atlas or training database and 
overcomes defects of previously mentioned methods.

The proposed procedure has four stages in order to 
segment the brain tissues and MS lesions. The first stage 
is pre‑processing which includes intensity inhomogeneity 
correction and skull removing. In the second stage, which 
is called the brain tissue classification, the brain tissues are 
classified into three classes of WM, GM, CSF, and some voxels 
will be rejected as outliers. In the third stage, candidate 
lesions are detected from outliers with the Mahalanobis 
distance and in the fourth stage; MS voxels are separated 
from the candidate lesion.

Database

Our database images were acquired from two different 
hospitals in Isfahan to evaluate the performance of the 
proposed automatic segmentation of brain tissues and 
lesions in different scanning machines. Twenty‑five patients 
were scanned by using the same protocol of T1‑w, T2‑w, 
and T2‑FLAIR. All the images were acquired by two 1.5‑T 

MR systems and in axial view with the slice thickness of 5 
mm. The patients were between 11 and 45 years old and 
the same imaging protocol was used for them. 

PREPROCESSING

To reach better and accurate segmentation, some 
preprocessing steps such as skull removing and intensity 
inhomogeneity correction are needed. So, in this step, 
these pre‑processing were done as the followings.

Intensity Inhomogeneity Correction

Intensity inhomogeneity in raw MRIs leads to incorrect 
segmentation results. This inhomogeneity is because 
of the small varying biased field  (BF); so that voxels with 
same coordinate have different intensities. Intensity 
inhomogeneity changes the mean and variance of image 
intensity in a particular area of the image which decreases 
the segmentation accuracy. Since BF alters slowly, it only 
contains low frequencies and, as a result, blurs the images (or 
destroys high frequencies). The real aim of inhomogeneity 
correction is to restore these high frequencies to the images.

Consider the following model image formation in MR:
v x u x f x n x( ) = ( ) ( ) + ( ) � (1)

Where at location of x,  is the measured signal, u is the 
true signal emitted by the tissue, f is an unknown smoothly 
varying bias field, and n is white Gaussian noise, which has 
been assumed to be independent of u. The compensating 
problem of intensity nonuniformity is the task of f 
estimating. The combination of additive and multiplicative 
interference makes this task difficult.

We used low pass filter (LPF)[5] to compensate inhomogeneity. 
In this method, it is assumed that biased field can be 
estimated from image by itself. The following relation was 
used to extract original signal u.

u v v= ( ) −exp lpf log(log ( ( ))) � (2)

This method can be summarized as the following:
1.	 Automatic determination of the lower level threshold 

to reduce the “noise”. To do this, in the first step, image 
histogram was calculated and smoothed by Hanning 
window. Then the first maximum at the histogram was 
determined in the lowest signal intensity. After that, 
the lower level of threshold was considered as 15% of 
this lowest signal intensity. The coefficient of 15% was 
found by experiment and assessment, and the results 
had agreement with the report of two radiologists

2.	 Determination of the average signal intensity in the 
nonnoise locations

3.	 Filling the “noise” locations with the average image 
intensity of the nonnoise locations
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4.	 Smoothing the image data. Image volume was 
smoothed by three‑dimensional  (3D) Gaussian kernel. 
Experimentally, window size of this kernel was set to 3/8 
of the image size. To keep computation time to a practical 
level, the convolutions were performed in k‑space:

	

SI SI x y z G x y z

SI x y z G x y z

smooth raw

raw

= ( )⊗ ( )
= ( )( ) ( )−

, , , ,

, , , ,  1 (( )  � (3)

	 Where F is the Fourier transform operation, F−1 is its 
inverse, ⊗ is the convolution operator, SIraw  (x, y, z) is 
the image intensity of all pixels in the 3D volume, and 
G (x, y, z) is a 3D Gaussian function with the dimensions, 
which have been discussed previously

5.	 Normalize the signal intensity of the raw image by using 
the smoothed image and correct the intensity so that 
the average pixel intensity  (in the volume) is retained 
after correction. Specifically, the image intensity at 
location i (SI[i]) becomes:

	 SI i SI
SI i

SI iavarage
raw

smooth

[ ] = [ ]
[ ] � (4)

	 Where SIraw, SIsmooth, and SIaverage are raw, smoothed, and 
average image, respectively.

LPF method is effective and faster in comparison to the 
other similar intensity correction methods, which use an 
optimization phase to find the biased field. Results of all 
stages of this algorithm have been illustrated in Figure 1.

Skull Removing

Because of the similarity between skull intensity and other 
tissues of the brain, it may affect the segmentation phase 
and usually it is removed from brain image. Since the skull 
is more obvious and detectable in T1‑w, we used this image 
to detect the exact location of skull and remove it from all 
three image sequences. The skull is brighter than other 

brain parts and usually has a component with no rupture. 
Therefore, we used the morphological operation to extract 
and remove the skull. The first operation is detecting the 
connected component  [Figure  2c]. As it has been seen, 
skull is extracted as the first connected component. After 
removing this component from the brain image, still there 
are many pixels, which do not belong to GM, WM, and CFS, 
they are remains of the skull. Otsu’s threshold algorithm[6] 
was applied to detect brighter pixels as remains of the 
skull  [Figure  2d]. After these two phases, some remote 
and unconnected pixels remains which can be removed 
by morphological operation such as erosion, dilation, and 
filling. Results of each phase of this process have been 
shown in Figure 2.

Brain Tissue Classification

Brain can be classified into three distinct classes; WM, GM, 
and CSF. Assuming that intensity variation in each class 
has Gaussian distribution, we used GMM[7] to separate 
these classes from each other. In GMM, K Gaussian 
distributions  (three classes in this work) are considered 
and each sample  (voxel) belongs to the class, which 
maximizes the probability distribution function. GMM 
parameters  (covariance matrix and mean of each class) 
should be determined during the classification process. The 
first step is registering T1‑w to T2‑w and T2‑FLAIR so that 
each sequence has the same number of voxels and each 
voxel in one sequence exactly corresponds to the same 
voxel in other sequences.

Each sample data is a 3D vector, which carries intensity of 
all three aligned voxels in each image:

x x x xi T i T i T F i= ( )−1 2 2( ) ( ) ( ), , � (5)

If each image sequence has K slices and each slice is M * N, 
we have K * M * N samples with 3D which should be clustered 

Figure 2: Result of skull removing,  (a) is the brain image of one of the 25 
patient which were studied in this research,  (b) the first component of the 
image, (c) removing the first component of the image, (d) the processed image 
after applying Otsu’s thresholding algorithm, (e) brain mask, (f) output image

d

cb

f

a

eFigure  1: Result of intensity inhomogeneity correction,  (a) input image, 
(b) automatic determination of the threshold lower level and segmentation 
of the input image to data  (white) and background  (black),  (c) filling the 
noise locations with the average image intensity of the nonnoise locations, 
(d) smoothing image intensity, (e) output image
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to three different classes (WM, GM, and CFS). Suppose that 
each class distribution is independent from those of other 
classes and has independent variance and mean, whole 
probability of each sample can be formulated as follow:

f x| N xi j i j j
θ α µ( ) = ( )∑∑ =

. ; ,
j

k

1
� (6)

N x
À

exp x x

i k k d

i k

T

k i k

; ,
| |

( )

µ

µ µ

∑
∑

∑

( ) =
( )

− −( ) −





−

1

2

1
2

2

1
2

1 � (7)

Where k is the number of classes, αj is prior probability of 
each class  (or merging index), µj is mean vector, and ∑j is 
covariance matrix of class j. Covariance matrix of each class 
is diagonal  (assuming that tissue intensity is identical and 
independent from those of other image) as follow:
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GMM parameters mean covariance matrix and the mixing 
parameter are merged in the parameter vector θ.

These parameters can be estimated using the MLE:

( ) ( )
θ θ

θ θ θ
= i1

=argmaxL =argˆ max f x|
n

i∏ � (9)

In order to obtain the MLE, we can employ the EM algorithm,[8] 
a technique, which is used to iteratively estimate θ̂. From 
a given θl, the EM algorithm obtains another θ(l+1) where 
L(θl) < L(θ(l+1)). The algorithm is generally considered to 
have converged when θl and θ(l+1) are sufficiently close to 
each other. This method is usually chosen because it is easy 
to implement and there is a proof of convergence, but it 
has some drawbacks. The first drawback is that the EM 
algorithm does not ensure to reach the global maximum; 
different initial parameters may lead to different solutions, 
which make the choice of it an important issue. In order 
to overcome this problem, EM algorithm is applied several 
times with different initial point and the best result is saved 
as global maximum. However, this is time‑consuming. We 
used different strategies to increase the speed and accuracy 
of EM algorithm.[9]

Hierarchical Initialization

To make EM robust against initial point selection, we tried to 
choose a reasonable start point instead of random ones. GMM 
was applied to segment only T1‑w image with 100 different 
starting points with the maximum iteration of 50. 
Segmentation results were used to calculate the parameters 
of other two images. Since we limited the maximum iteration 
and only used T1‑w image, simulation time decreased 

considerably and also the initial points were reasonable and 
not random. For the random initial parameters, the mean of 
each class is randomly drawn using a uniform distribution 
between the minimum and maximum of the image and the 
standard deviation of each class is set to a third of the standard 
deviation of intensities of the whole image.

After computing the mean and variance of each class for 
T1‑w image, we clustered each voxel of T1‑w and other 
two images too. Now, we should estimate initial mean 
and variance of each tissue  (GM, WM, and CFS) in T2‑w 
and T2‑FLAR images. First, for each class in T2‑w and 
T2‑FLAR images, we calculated histogram with 256 bins and 
smoothed it with a Gaussian window. Initial mean of tissues 
were set to mode value of these histograms. Furthermore, 
variance of each tissue (class) for T2‑w and T2‑FLAR images 
was estimated as follow:

s s t med, ,. �2
2

1 4918= −( )( )xi t sµ � (10)

Where t belongs to (GM, WM, and CFS) and s is one of the 
T2‑w and T2‑FLAR images and med is median operation. 
Now, we have all start parameters to initiate the EM 
algorithm and find the best parameters so that classify each 
3D voxel and be sure that EM will converge to optimum 
maximum more likely.

Furthermore, trimmed likelihood  (TL)[10] was used instead 
of likelihood to make our process robust against outliers 
and also FAST‑trimmed likelihood estimator (FAST‑TLE) was 
applied to make it faster.

Trimmed Likelihood

The basic idea consists in maximizing the TL instead of the 
likelihood:

TL f x |v ii

n h
θ θ( ) = ( )( )=

−

1

� (11)

Where h is the number of voxels which will be considered as 
outliers, n is the number of all samples, and v(i) is a function, 
which sorts samples as follow:

f x | f x | f x |v v v n1 2( ) ( ) ( )( ) ≥ ( ) ≥…≥ ( )θ θ θ � (12)

In other words, the likelihood is only computed with the 
voxels that most likely belong to the model. Hence, we 
need to do another optimization in order to determine 
which samples are remote enough and do not fit the 
model. To speed up this process, we applied FAST‑TLE.[9] In 
this method, first h samples were considered as outliers, 
randomly and GMM parameters were estimated. In the 
second step, f(xv(i)) was computed and samples with less 
f(xv(i)) value were considered as new outliers. These two 
steps were done till outlier set does not change anymore. 
It should be noticed that h value should be large enough 
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to guarantee that all MS regions and tissue artifact will be 
detected and stored in outlier set. In this research, we set 
h to 10% of all pixels of the sample image. The final result 
of this step is an outlier set and three different classes and 
each sample belongs to one of these four sets. MS voxels 
belong to outlier set and should be extracted from this set.

DETECTION OF CANDIDATE LESIONS

In practice, the rejected voxels contain some voxels that 
actually fit the model reasonably well. Thus, we define the 
distance as the minimal Mahalanobis distance of the voxel 
from one of the Gaussians in the model:

d x xi
�j

i j

T

i j= −( ) −( ){ }∀

−∑min µ µ
j

1
� (13)

The voxel is considered as a candidate lesion when the 
distance is greater than a threshold.

Multiple Sclerosis Voxels Separation from Other 
Candidate Lesion

Candidate lesions detected with the Mahalanobis distance 
include MS lesions, vessels, registration errors, flow artifacts, 
noise, etc., We define five rules in order to discriminate MS 
lesion voxels from the other voxels:
•	 Intensity rule – MS lesions are known to be hyperintense 

compared to the WM intensity on T2‑w and FLAIR 
sequences. We used the information given by the 
model to define hyperintensity. If the voxels’ intensity 
was less than a threshold in T2‑w or FLAR image, it was 
discarded from MS

•	 Size rule  –  In order to avoid false‑positives  (FPs), 
candidate lesions smaller than 6 mm in size were 
rejected. These small candidate lesions are usually 
produced by noise or flow artifacts. In clinical practice, 
lesions must have a radius of 3 mm on one image slice, 
to be considered as MS[11]

•	 Connectivity to WM – MS lesions’ pixels in one slice usually 
connect to WM tissue. Hence, we removed samples from 
MS candidate, which did not connect to WM[9]

•	 Neighbor slices rule – MS candidate, which appear only 
in one slice, was rejected. Based on expertise, MS is a 
volume and if there is a region of lesion in one slice 
it should exist at least in one or two next or previous 
slices. Note that this differs from size rules

•	 Shape rule  –  MS lesions’ regions in one slice are not 
distributed along a line and it almost is like a circular and 
or oval. Therefore, candidate regions, Which were not 
similar to a circular or oval should be removed from final 
MS set. To determine the amount of being circularity, we 
used region’s coordinate variances along x and y‑axis.

Shape rule is used to reject regions, which are similar 
to line or an oval with small diameter of “a” and large 
diameter of “b” while a/b is smaller than a threshold, means 

a/b< threshold. So, in this research when we say resulted 
shape is circular, it means that a/b> threshold (in a circular, 
a=b). We suppose this is the simplest way to measure how 
much an object is similar to line or not. Now, to find “a” and 
“b” we used variance in x and y‑direction and set “a” to the 
smaller value and “b” to the larger one. Note that variance 
is equal to mean of distance from the center and since the 
mean is robust against noises and some possible outliers, 
we can be sure to the “a” and “b” values.

Finally, all remaining voxels in the outlier set were considered 
as MS. The output of each step of proposed algorithm on a 
typical image has been shown in Figure 3.

It should be noted that since the smoothness of MS’s 
boundaries is not considered by GMM, the exact location 
of MS’s boundaries cannot be extracted and always there 
are some little errors. In section 2.2, it was mentioned that 
to find outliers, it is necessary to set h value. This h value 
shows how many voxels have been considered as outliers 
in the first step. If h value is close to one, all voxels will be 
considered as outliers, and if it tends to zero, there will 
have no outliers and all voxels are belong to brain tissue. In 
other words, the higher values of h makes more brain tissue 
and noises to be outlier and probably considered as MS 
in final decision and smaller h values, may consider voxels 
locating in MS boundary as normal brain tissue. Hence, 
h value selecting, is a trade‑off between rejecting noise and 
removing MS boundaries. So, the amount of errors produced 
by GMM is in direct relation to h value, and this error value 
is clarified by dice similarity coefficient (DSC) measurement.

DSC is a spatial overlap index and a reproducibility 
validation metric. DSC measures consistency of results 
and ground‑truth  (extracted by experts) and it is a 
comprehensive measurement of the coincidence of results 
and ground‑truth. The value of a DSC ranges from 0, 
indicating no spatial overlap between the two sets of binary 

Figure 3: Steps of proposed algorithm on a typical image, (a) input image, 
(b) brain tissue classification,  (c) detection of candidate lesions with the 
Mahalanobis distance, (d) outliers after applying intensity rules, (e) outliers 
after applying other heuristic rules (multiple sclerosis lesions)
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segmentation results to 1, indicating complete overlap. It is 
clear that higher the DSC value, more overlap between the 
results and ground‑truth and the more accuracy.[12]

RESULTS

As it was mentioned in the previous section, h value has 
a great effect on the accuracy of MS lesion detection and 
image segmentation. The larger amount of h means, the 
more tissue voxels considered as MS candidate and, on the 
other hand, smaller value of h result means missing some 
MS regions. To find the optimum value of h for our database, 
we changed h value from 0 to 0.5 (limit of convergence) and 
recorded the Dice similarity factor, which was calculated 
by two experts. Results showed that for patient with high 
lesion load  (≥10 cm3), optimum h is 0.25 and for low 
lesion load (<10 cm3) h should be in the range of 0.1–0.15. 
Figure 4 shows h effects on dice factor for both groups of 
patients with low and high lesion load.

As it was referred in previous sections after the first stage 
means classification, there are some voxels, which considered 
outliers while actually they are some part of a normal tissue. 
To extract these voxels from outlier set, we should adapt 
an optimum threshold to Mahalanobis distance. After some 
experiments, we set it to 4. Also, we set intensity rule 
threshold to 130 for images with 256 gray levels.

To evaluate the performance of the proposed algorithm, 
output results were compared with the detected MS regions by 
two experts and specialist. To do so, we used dice, sensitivity, 
accuracy, and specificity. Results were summarized in Table 1.

In this table, true‑positive (TP) is the number of voxels, which 
both the proposed method and experts were detected as 
MS. true‑negative is number of the voxels, which were not 
considered as MS by any of experts and our algorithm. FP is 
a number of the voxels that only our method was detected 
as MS and false‑negative is the number of those which 
have been recognized as MS by experts, and our method 
detected them as normal brain tissue.

As it has been seen in Table 1, the accuracy of the results 
directly depends on the amount of lesion. For a patient with 
less amount of lesion, if only a few numbers of voxels were 
missed to be detected as MS, TP decreases considerably 
while it never happens for images with a high amount of 
lesions. It should be noticed that the volume of lesions is 
small with respect to the whole brain volume and that is 
why specificity values are always close to one.

CONCLUSION

In this paper, we proposed a new strategy to initiate EM 
algorithm without any atlas in order to reach accurate 
results and make the algorithm to converge rapidly. GMM 
was applied to segment only T1‑w image with 100 different 
starting points where the maximum number of iteration 
was considered to be 50. Also, the heuristic rules were 
applied to reject some false alarms and find real MS. These 
rules help the algorithm to reject the errors introduced by 
GMM. We used T1‑w image sequence to extract the needed 
information to find initial set points, which reduce the 
risk of being trapped in local optimums. We used FLAIR 
image sequence as a standard protocol to detect and 
locate MS lesions. Even though this sequence is sensitive 
to periventricular lesions, it is less sensitive to the lesions 
in posterior fossa, which may increase FP  errors. Hence, 
we used T2‑w as complimentary sequence to improve 
segmentation performance. Our method does not need 
any atlas or training images. In contrary to the previous 
methods, which use only image intensity to find MS, we 
tried to take the advantage of other structural and local 
information such as size and shape of lesions, which 
improved segmentation results considerably. Intensity 
based segmentation can be easily affected by noise and 
artifact. Doing many experiments and searches, we found 
optimum values of all thresholds.

Unfortunately, we were not able to compare our approach to 
other similar methods because of two main reasons. First of all, 

Table 1: Statistics of similarity between proposed approach and manual segmentation derived from 25 MS patients
Lesion 
load

DSC 
2TP/(2TP + FP + FN)

Accuracy 
(TN + TP)/(TN + TP + FN + FP)

Specificity 
TN/(TN + FP)

Sensitivity 
TP/(TP + FN)

Low 0.77 0.942 0.998 0.761
High 0.875 0.97 0.996 0.852
Average 0.8225 0.956 0.997 0.8065
DSC – Dice similarity coefficient; MS – Multiple sclerosis; TP – True‑positive; TN – True‑negative; FP – False‑positive; FN – False‑negative
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Figure 4: Effect of h on dice similarity coefficient factor for both groups of 
patients with low and high lesion load
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different studies used different database and second, any MS 
segmentation algorithm parameters were adapted for especial 
MR protocol. However, in the researches of Subbanna et al.[3] 
and Khayati et al.,[4] which were mentioned in the literature, 
DSC values have been reported as 0.71 and 0.75, respectively, 
while in our method this parameter was averagely more than 
0.82. The results showed better performance of the proposed 
approach, compared to those of previous works and these 
results were confirmed by two radiologists.

Financial Support and Sponsorship

Nil.

Conflicts of Interest

There are no conflicts of interest.

REFERENCES

1.	 Lladó X, Oliver A, Cabezas M, Freixeneta J, Vilanovab JC, Quilesc A, 
et al. Segmentation of multiple sclerosis lesions in brain MRI: A review 
of automated approaches. Inf Sci 2012;186:164‑85.

2.	 Souplet  JC, Lebrun  C, Ayache  N, Malandain  G. An automatic 
segmentation of T2‑FLAIR multiple sclerosis lesions. In: The MIDAS 
Journal‑MS Lesion Segmentation (MICCAI 2008 Workshop); 2008.

3.	 Subbanna N, Shah M, Francis S, Narayanan S, Collins DL, Arnold DL, 

et  al. MS Lesion Segmentation Using Markov Random Fields. In: 
Proceedings of International Conference on Medical Image Computing 
and Computer Assisted Intervention, London, UK; 2009.

4.	 Khayati  R, Vafadust  M, Towhidkhah  F, Nabavi  M. Fully automatic 
segmentation of multiple sclerosis lesions in brain MR FLAIR images 
using adaptive mixtures method and Markov random field model. 
Comput Biol Med 2008;38:379‑90.

5.	 Cohen MS, DuBois RM, Zeineh MM. Rapid and effective correction of 
RF inhomogeneity for high field magnetic resonance imaging. Hum 
Brain Mapp 2000;10:204‑11.

6.	 Otsu  N. A  threshold selection method from gray‑level histograms. 
Automatica 1975;11:23‑7.

7.	 Wells WM, Grimson WL, Kikinis R, Jolesz FA. Adaptive segmentation 
of MRI data. IEEE Trans Med Imaging 1996;15:429‑42.

8.	 Dempster  AP, Laird  NM, Rubin  DB. Maximum likelihood from 
incomplete data via the EM algorithm. J  R Stat Soc B Methodol 
1977;39:1‑38.

9.	 García‑Lorenzo  D, Prima  S, Arnold  DL, Collins  DL, Barillot  C. 
Trimmed‑likelihood estimation for focal lesions and tissue 
segmentation in multisequence MRI for multiple sclerosis. IEEE Trans 
Med Imaging 2011;30:1455‑67.

10.	 Neykov  N, Filzmoser  P, Dimova  R, Neytchev  P. Robust fitting of 
mixtures using the trimmed likelihood estimator. Comput Stat Data 
Anal 2007;52:299‑308.

11.	 Barkhof F, Filippi M, Miller DH, Scheltens P, Campi A, Polman CH, et al. 
Comparison of MRI criteria at first presentation to predict conversion 
to clinically definite multiple sclerosis. Brain 1997;120 (Pt 11):2059‑69.

12.	 Alterovitz R, Goldberg K. Motion Planning in Medicine: Optimization 
and Simulation Algorithms for Image Guided Procedures. Chennai, 
India: Springer verlag heidelberg; 2008. p. 141.

Isfahan. He has published more than 150 research papers in 
peer-reviewed journals and conferences. His research 
interests are: Imaging systems - Image processing – 
Dosimetry - Radiotherapy- Monte Carlo simulation and its 
applications in medicine.

E‑mail: Karimian@eng.ui.ac.ir

Simin Jafari received the B.Sc. and M.Sc. 
Degrees in Telecommunication Engineering 
from the Islamic Azad University of 
Najafabad, Isfahan, Iran, in 2009 and 2014, 
respectively. Her main research area are 
image processing and pattern recognition.

E‑mail: siminjafari11@yahoo.com

BIOGRAPHIES

Alireza Karimian received his B.Sc. degree 
in electronics engineering from Ferdowsi 
University, Mashhad, Iran. He also received 
his M.Sc. and Ph.D. degrees in nuclear 
engineering in the field of medicine from 
Amirkabir University of Technology, Tehran, 

Iran. Furthermore he has passed successfully a one year 
fellowship research in the field of medical physics in the La 
Sapienza University, Rome, Italy under grant of ICTP. In 
2006, He joined the Department of Biomedical Engineering 
at University of Isfahan, Iran, as an Assistant Professor, and 
was the lecturer of some courses such as medical imaging 
systems, Simulation and its application in medicine, 
radiation shielding, Dosimetry and radiation detection, 
Biophysics and medical physics. Since February of 2013, He 
was successful to be as Associate Professor in University of 


