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INTRODUCTION

An electroencephalogram  (EEG) is a test that detects the 
electrical activity over a short period of time, usually 
20–40  min in the brain using electrodes placed on 
the scalp. German physiologist and psychiatrist, Hans 
Berger (1873–1941) measured the first human EEG in 1924, 
although similar studies had been carried out in animals as 
early as 1870.

The common activity of millions of neurons, at the depth 
of several millimeters that have same spatial direction 
yields an electrical field, which is strong enough in order 
to measure from the people scalp.[1] The amplitude of an 
EEG signal is almost in the range of 40–100 µV with the five 
major frequency bands from 0 to 100 Hz.[1]

These frequency bands from low to high frequencies are 
respectively called delta  () 0.5–4 hz, theta  (θ) 4–8 hz, 
alpha (α) 8–13 hz, beta (β) 13–30 hz, and gamma (γ) >30 Hz.

An important branch of studies regarding to EEG is artifact 
removal and noise canceling. EEG is nonstationary and 
highly vulnerable to a variety of noises, especially frequency 
interference, thus, eliminating the noise in the raw EEG 
data so as to obtain useful information that reflects the 
brain activities and states is an important subject for EEG.[2]

A B S T R A C T

The Volterra model is widely used for nonlinearity identification in practical applications. In this paper, we employed Volterra model to find 
the nonlinearity relation between electroencephalogram (EEG) signal and the noise that is a novel approach to estimate noise in EEG 
signal. We show that by employing this method we could considerably improve the signal to noise ratio by the ratio of at least 1.54. An 
important issue in implementing Volterra model is its computation complexity, especially when the degree of nonlinearity is increased. 
Hence, in many applications it is necessary to reduce the complexity of computation. In this paper, we use the property of EEG signal 
and propose a new and good approximation of delayed input signal to its adjacent samples in order to reduce the computation of finding 
Volterra series coefficients. The computation complexity is reduced by the ratio of at least 1/3 when the filter memory is 3.
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Various artifact removal methods were introduced in the 
literature; the most usual artifact elimination method is 
based on linear regression, and its purpose is to reject the 
most repeated artifact, that is, eye movement or blinking. 
This approach can approximate the concurrently measured 
electrooculogram  (EOG) signals in the EEG and eliminate 
them.[3] However, because the EOG electrodes are located 
near the EEG electrodes, they involve a detailed amount 
of brain activity. Therefore, eliminating these signals may 
produce distortions in the EEG signals. More complete 
methods are established on a linear decomposition of the 
multichannel EEG recordings. The most common approach 
is the blind source separation  (BSS).[4] The principal BSS 
assumption is based on the fact that the artifact sources 
are independent from brain sources, either normal or 
pathologic; the goal is to retrieve the original sources (brain 
and artifactual), by giving only sensor observations.

Normally, source separation algorithms outperform in no 
noise conditions, so denoising step  (to remove additive 
noise) should be performed in the preprocessing stage 
of the EEG signal. A common solution for noise canceling 
from nonstationary signals is wavelet denoising  (WD). 
The decomposition of a noisy signal on a wavelet 
basis  (discrete orthogonal wavelet transform, discrete 
wavelet transform [DWT]) concentrates the main signal in 
a few wavelet coefficients that have large absolute values 
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without changing the noise random distribution. Therefore, 
denoising can be performed by putting a threshold on the 
wavelet coefficients.[5‑8]

In this paper, the noise is considered dependent on the 
signal and has a nonlinear relation to it,[9] so we employed 
a nonlinear noise estimation approach based on Volterra 
series expansion to remove the noise. Recognition and 
compensation of undesired nonlinearity is one of the important 
subjects in the field of digital signal processing.[10] Adaptive 
Volterra filtering also has some applications to acoustic 
echo cancelation.[11] It was shown that the performance of 
the system was affected by unwanted nonlinearities in the 
system.[12] The influences of unwanted nonlinearities can be 
decreased by different ways.[13‑15] Nonlinear models also have 
some applications in the speech processing domain and 
result in a better performance in this field.[16] Appling Volterra 
series to model a nonlinear system is widely used with great 
success. However, in the present conditions, methods of 
calculating the Volterra series coefficients are not general, 
despite the fact that they can be estimated for systems with 
known and fixed order. When the nonlinear system order 
is unknown, adaptive methods and algorithms are widely 
used for the Volterra kernel estimation. One important issue 
in kernel calculation is the speed of the process. If there 
is fast Volterra series coefficients estimation, we can use 
a higher order model for the system that leads to a better 
performance. This paper proposes a new implementation 
of the higher order Least mean squares (LMS) Volterra filter. 
A second order nonlinear system with memory is identified 
using the new implementation of the LMS algorithm for 
Volterra kernels estimation.

The new implementation uses the property of EEG signal 
and is based on an approximation of delayed input signal to 
its adjacent samples and then applying only linear adaptive 
LMS algorithm. After finding Volterra series coefficients, we 
employed Volterra model to find the nonlinearity relation 
between EEG signal and the noise, which is a new way to 
estimate noise in EEG signal. We show that, by employing 
this method we can considerably improve the signal to 
noise ratio (SNR).

THE VOLTERRA MODEL

For a discrete-time and causal nonlinear system with 
memory, the input-output relation of the nonlinear Volterra 
filter is given by:[17]

y
1

1
1

1 10
1 0

[ ] ... [ ,...., ] [ ].... [ ]
r

N M
M

r r rk
r k

n h k k x n k x n k
−

−

=
= =

= − −∑ ∑ ∑ � (1)

Where the functions hr, r = 1,…,N represent the Volterra 
kernels, and N represents the nonlinearity degree of the 
model. By choosing N = 2, the Volterra series expansion 
can be expressed as:
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Above equation contains one zero-order sentence, that is, 
h0, M sentence corresponding to first-order Volterra filter 
and M2 sentence corresponding to second-order Volterra 
filter. We can express the relation of input-output by 
applying nonlinear operators as illustrated below.

0 1 2[ ] [ [ ]] [ [ ]] [ [ ]]y n h x n H x n H x n= + + � (3)

In above representations, the functions hi, i = 0, 1, 2 are the 
kernels corresponding to the nonlinear operators Hi [x[n]].

The model characterized by the Eq. 2 and Eq. 3 is called a 
second‑order nonlinear Volterra model. In above expressions, 
filter memory is considered equal for all nonlinearity orders. 
In general form, Eq. 1 can have a different memory for each 
nonlinearity order. We can also consider symmetric Volterra 
coefficients that lead to more simplification.

The second‑order Volterra kernel is an  (M  ×  M) matrix. 
The third‑order kernel has M matrices with the size 
of (M × M). By considering symmetric kernels with memory 
M, we need to determine M (M + 1)/2 coefficients for the 
second‑order Volterra kernel, while the third‑order one 
needs M (M + 1) (M + 2)/6 coefficients.[15]

The accuracy of determining Volterra coefficients is an 
important issue in the practical applications. It was shown 
that homogeneity and non‑orthogonality were two features 
of Volterra kernels. As a result of non‑orthogonality, 
cross‑correlation methods cannot be used to calculate 
Volterra kernels and the quantities of the Volterra kernels 
is dependent to the order of the applied Volterra filter.[18,19] 
However, for inputs that their amplitude density function 
is symmetric, like the Gaussian noise, the odd order 
Volterra functional is orthogonal to the even order Volterra 
functional. Hence, for this kind of input, a second‑order 
Volterra model, with zero DC component, is an orthogonal 
model. Hence, we can apply cross‑correlation technique 
in order to directly calculate Volterra kernel.[17] When the 
higher order Volterra model is used, adaptive techniques 
of kernel measurements are applied. Since the relation of 
the input‑output is linear according to Volterra coefficients, 
using adaptive algorithms for the implementation of Volterra 
model is very easy. Here, we present the input vectors for 
different order filters. The first order input vector, when 
M = 3 is written as follows:

( ) [ ] [ ] [ ]1   1     2TX x n x n x n= − −   � (4)

By considering equal memories for different orders kernels, 
“the second order input vector” is given by:

X(2) = X(1) × X(1)T� (5)
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When the kernels are symmetric, just xi, j on the assumption 
of i ≥ j, of X(2), are chosen in the input‑output relation of the 
Volterra model. Therefore, “the second order input vector,” 
in the vector form is:
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And its length is 6. For “the third order input vector” it is 
proposed to express the multiple input delayed signal products 
in Eq. 2 by matrices elements.[11] Multiplying “the second order 
input vector” (Eq. 5) by the first order input vector can create 
these matrices. By considering equal memory for all filters in 
Eq. 2, M = 3, and symmetric kernels we have:[20]
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Therefore, “the third order input vector” composed of three 
matrices as illustrated in Eq. 7–9.[20] “The third order input 
vector” can be expressed in vector form as indicated below:
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Its size is (1 × 10). These input vectors are used to implement 
the LMS Volterra filter in nonlinear system identification.

ESTIMATING SECOND‑ORDER 
VOLTERRA SERIES COEFFICIENTS

At the first step, it is required to find the nonlinear relation 
between noisy signal and noise. Then, we employ this 
relation to estimate noise present in the signal at next step. 
Consider the following block diagram [Figure 1]:

In which y[n] is noisy signal and e[n] is the noise. As 
expressed in previous part, we have the following relation 
for above block diagram:
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Where the nonlinearity degree of the model is 2 and M is 
the filter memory. h0, h1 (k1), h2 (k1, K2) are Volterra series 
coefficients. These coefficients will be obtained by LMS 
adaptive filter and the technique explained later is used 
for reducing its computation complexity. We employ these 
coefficients in nonlinear modeling of noise.

LEAST MEAN SQUARES ALGORITHM 
FOR TRUNCATED VOLTERRA SERIES 
MODEL

The development of a gradient type LMS adaptive 
algorithm for truncated Volterra series nonlinear models 
follows a similar method of development as for linear 
systems.[21]

The truncated rth order Volterra series expansion is:
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Assuming h0  =  0 and r  =  2, the weight vector can be 
expressed as:
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The input vector is:
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Linear and quadratic coefficients are updated separately by 
minimizing the instantaneous square of the error:

( ) ( ) ( ) ( ) ( )2   ˆ J n e n where e n d n d n= = − � (15)Figure 1: Relation between noisy signal and noise
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Where ( ) ( )ˆy n d n=  is the estimate of d (n). This results in 
the update equations:
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Where µ1 and µ2 are step‑sizes used to control the speed of 
convergence and ensure the stability of the filter.

Using the weight vector notation, H[n], we can combine the 
two update equations into one as the coefficient update 
equation:

e n d n H n X nT[ ] = [ ] − [ ] [ ]

H n H n X n e n+[ ] = [ ] + [ ] [ ]1 µ �� (18)

Where µ is chosen such that 0
2

1 2< <µ µ
λ

,
max �

 and lmax is 

the maximum eigenvalue of the autocorrelation matrix of 
the input vector X[n].

Reducing Computation Complexity to Find 
Volterra Series Coefficients

Consider the following second‑order Volterra representation 
as an example:
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By extending above relation for M  =  3 and considering 
symmetric kernel we have:
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In which h2 [k1] is the same as h2 [k1, k2] if k1 and k2 are equal.

An example of EEG signal is shown in terms of µV in Figure 2, 
Because difference between adjacent samples in EEG signal 
is negligible as shown in Table  1 and Figure  3,[22] we can 
consider x[n] x[n−1] equal by x[n]2, x[n] x[n−2] equal by 
x[n−1]2, and x[n−1]x[n−2] equal by x[n−2]2, then we can 
rewrite above equation:
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We can replace z[n] = x[n]2:
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Instead of employing nonlinear adaptive filter that is very 
complicated, we can use the linear one and compute h2[0], 
h2[1], h2[2], and use these same coefficients instead of 
2h2[0,1], 2h2[0,2], and 2 h2[1,2], respectively.

As a result we do not need to compute 9 coefficients, 
3 coefficients need not to be computed due to symmetry, 

Figure 2: An example of electroencephalogram signal
Figure 3: Difference between consecutive samples of an electroencephalogram 
signal
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and 3 coefficients is obtained by sufficient approximation of 
x[n] with its adjacent samples.

Hence, instead of computing M2 coefficients in second order 
kernel h2 [k1, k2], we only need to compute M coefficients. 
Then when M = 3, we can reduce the computation by the 
ratio of 1/3 even more because we do not consider the 
complexity of nonlinear adaptive filtering.

Estimating Noise Based on Second‑Order 
Volterra Series Coefficients

After estimating the second‑order Volterra series coefficients 
in the previous part, it is time to employ these coefficients for 
estimating noise. Consider the following system [Figure 4]:

In which y[n] is noisy signal, e[n] is estimated noise, and d[n] 
is denoised signal.

We use Volterra series coefficients h0, h1 (k1), h2 (k1, k2) 
obtained in previous part to estimate e[n], that is, noise 
present in the noisy signal y[n]. Then d[n] is obtained 
according to the following equation:

d n y n e n[ ] = [ ] − [ ] � (23)

The Evaluation Criteria

For denoising algorithms evaluation, we have used the 
classical criteria of the mean squared error  (MSE) value 
and  (SNR) value between the original signals and their 
denoised versions, as follow:
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Where x(n) the original signal,  ˆ( )x n  its denoised version and 
N is the length of the signal. Furthermore, we have obtained 
the ratio of SNRs in denoised signal and noisy signal as a 
criterion of reduction of noise as follows:

R
SNR

SNR
denoised signal

noisy signal

  

 

� (26)

Moreover, smaller MSE and larger SNR values indicated a 
better denoisng algorithm.

SIMULATION RESULTS

Synthetic Data

The synthetic noisy signal y has a length 500 and is 
analogous to EEG signal in no stationary points of view. It 
also has variable spectrum. The synthetic signal is a sine 
wave with a specific frequency in every 100 samples and has 
variance 0.5051, and the Gaussian noise is added to signal 
in two cases with mean zero and variance 0.1 and 0.3.[23,24]

As stated above, y can be expressed as follows:
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Where w(n) is the Gaussian noise and f1,…, f5 is the frequencies 
in the range of EEG frequency. Because EEG signal is not 
stationary and has different characteristics at different times, 
the synthetic signal is chosen so that it has the same behavior.

In order to find second‑order Volterra coefficients between y[n] 
and e[n], we divide y[n] into periods of P points and compute 
the noise of current period by using Volterra coefficients of 
previous period, because adjacent points have approximately 
similar coefficients. Tables  2‑4 show the results for noise 
variances (v) of 0.1, 0.3, and 0.5, respectively. As you see, SNR 
is more and more improved by decreasing P as it is expected.

In every case, several simulations were performed, 
and the results of denoising algorithms are shown as a 
mean ± standard deviation.

As nowadays classical solution for noise removal from 
nonstationary signals is WD, which has the capability 
of studying both frequency and time information 
simultaneously. The basic idea is simple: By decomposing 
the signal on a wavelet basis  (DWT), we obtain a 
representation of the signal that concentrates most of its Figure 4: Block diagram of noise estimation by Volterra model

Table 1: An example of 10 consecutive sample of an EEG signal
N (nth sample) Value

1 −776.0625
2 −775.2813
3 −778.2813
4 −777.9375
5 −777.9063
6 −777.2500
7 −773.1563
8 −773.7500
9 −774.8438
10 −774.0313
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energy in few wavelet coefficients having large absolute 
values. On the contrary, most of the noise tends to be 
represented by the wavelet coefficients having small 
values, which means that its energy will not be retained by 
large value coefficients.

Consequently, performing a partial reconstruction of the 
signal using only these large coefficients (by inverse DWT) 
leads to an almost noise‑free version of the signal.[25]

To do comparison between our proposed algorithm with 
other denoising algorithms, the results are computed for 
Daubechies, “db8,” “db6,” and “db4” wavelets and are 
shown in Tables 5‑7 for noise variances of 0.1, 0.3, and 0.5, 
respectively. As you understand from the results, although 
WD is used for no stationary signals, in comparison with 
our nonlinear method, it does not perform well.

Furthermore, we depicted the amount of R in different 
variances of 0.1, 0.3, and 0.5 for Daubechies, “db8,” “db6,” 
and “db4” wavelets and nonlinear modeling of noise when 
P = 2 in Figure 5.

We depicted noisy signal y[n], estimated noise e[n], and 
denoised signal d[n] for 100  sample length  (in order to 
see the details) for the case that variance of noise is 0.1 in 
Figures 6 and 7 for P = 2 and 250, respectively.

Furthermore, in Figure  8 we depicted the histogram of 
estimated noise when P = 250 and variance of noise is 0.3, 
and then we calculated the goodness of fit by applying 
Chi‑square test in different variances of noise and P = 250 
for level significant of 0.05. As we know the P > 0.05 means, 
there is no significant difference between the estimated 
noise and the existing noise in the signal. We performed the 
simulation several times and Table 8 shows the percentage 
of times that the P  value of Chi‑square test is  >0.05 in 
different variances of noise, that is, denoted by G. We can 
see, in most of the time the P > 0.05 and also G is increased 
by increasing variance of noise.

Table 2: Results from denoising simulated signals by changing 
the value of P (variance of noise is 0.1)
P Snr (y[n]) Snr (d[n]) R=Snr 

(d[n])/Snr (y[n])
MSE

250 39.14±0.77 66.35±6.9 1.68±0.16 0.0104±3.92*10^(−4)
100 38.93±0.51 71.57±2.8 1.83±0.08 0.0102±3.96*10^(−4)
50 39.07±0.47 77.40±3.64 1.97±0.08 0.0101±5.76*10^(−4)
25 38.99±0.33 80.69±3.34 2.06±0.08 0.0103±5.09*10^(−4)
20 38.98±0.69 82.14±3.36 2.10±0.07 0.0102±7.04*10^(−4)
10 39.13±0.62 85.56±4.62 2.18±0.13 0.01±6.37*10^(−4)
5 38.82±0.7 91.33±8.13 2.34±0.22 0.0104±8.12*10^(−4)
2 39.49±0.82 97.82±7.03 2.47±0.17 0.0097±8.08*10^(−4)

Table 3: Results from denoising simulated signals by changing 
the value of P (variance of noise is 0.3)
P Snr (y[n]) Snr (d[n]) R=Snr 

(d[n])/Snr (y[n])
MSE

250 17.43±0.66 32.78±2.97 1.87±0.15 0.0732±0.0077
100 16.96±0.54 40.14±2.67 2.36±0.12 0.0829±0.0029
50 17.10±0.65 45.90±3.14 2.67±0.16 0.0859±00.0059
25 17.21±0.46 51.95±2.64 2.92±0.28 0.0870±0.0043
20 17.00±0.51 53.26±1.78 3.12±0.11 0.0892±0.0041
10 16.93±0.50 60.02±1.87 3.54±0.15 0.0904±0.0049
5 17.18±0.37 64.81±4.51 3.78±0.22 0.0901±0.0044
2 17.02±0.86 70.07±8.54 4.11±0.50 0.0917±0.0074

Table 4: Results from denoising simulated signals by changing 
the value of P (variance of noise is 0.5)
P Snr (y[n]) Snr (d[n]) R = Snr 

(d[n])/Snr (y[n])
MSE

250 6.87±0.27 13.18±1.56 1.91±0.17 0.16±0.01
100 6.77±0.36 20.45±2.99 3.01±0.35 0.2±0.018
50 6.79±0.47 27.03±3.17 3.96±0.26 0.21±0.01
25 6.85±0.78 30.56±1.51 4.49±0.43 0.23±0.02
20 7.05±0.59 32.99±3.83 4.67±0.42 0.23±0.01
10 6.49±0.71 39.02±3.46 6.02±0.39 0.25±0.02
5 6.99±0.74 46.83±4.83 6.72±0.72 0.24±0.018
2 6.89±0.68 53.46±4.56 7.79±0.87 0.24±0.019

Table 8: Percentage of times that P > 0.05 in different 
variances of noise
Variance of noise G

0.1 %75
0.3 %81
0.5 %85

Table 5: Results from denoising simulated signals by using 
Daubechies wavelets (variance of noise is 0.1)

Snr(y[n]) Snr(d[n]) R=Snr 
(d[n])/Snr(y[n])

MSE

Db4 39 20 0 57. .± 54 34 1 18. .± 1 38 0 02. .± 0 5008 2 66 10 4. .± × −

Db6 39 11 0 75. .± 57 91 1 41. .± 1 47 0 03. .± 0 5007 2 17 10 4. .± × −

Db8 39 29 0 51. .± 59 95 1 46. .± 1 52 0 02. .± 0 5007 1 41 10 4. .± × −

Table 6: Results from denoising simulated signals by using 
Daubechies wavelets (variance of noise is 0.3)

Snr(y[n]) Snr(d[n]) R=Snr 
(d[n])/Snr(y[n])

MSE

Db4 17 50 0 31. .± 37 60 1 28. .± 2 14 0 09. .± 0 5103 0 0017. .±
Db6 17 17 0 78. .± 37 38 2 01. .± 2 18 0 011. .± 0 5109 0 0023. .±
Db8 16 92 0 72. .± 38 20 2 33. .± 2 25 0 019. .± 0 5107 0 0027. .±

Table 7: Results from denoising simulated signals by using 
Daubechies wavelets (variance of noise is 0.5)

Snr(y[n]) Snr(d[n]) R=Snr 
(d[n])/Snr(y[n])

MSE

Db4 6 63 0 49. .± 27 80 1 79. .± 4 19 0 26. .± 0 52 0 007. .±
Db6 7 07 0 65. .± 28 3 1 48. .± 4 02 0 4. .± 0 52 0 0053. .±
Db8 7 0 7± . 28 34 1 65. . ]± 4 07 0 44. .± 0 52 0 004. .±
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Real Data

EEG has small amplitude in the range of µV. There are five 
major frequency bands in the EEG. These frequency bands 
from low to high frequencies are called delta (), theta (), 
alpha (a), beta (b), and gamma (g), respectively.[1]

Delta is the frequency range up to 4 Hz. It has the highest 
amplitude. It exists normally in adults in slow wave sleep. It is 
also seen normally in babies. Theta waves lie within the range 
of 4 Hz to 7 Hz. Theta is seen normally in young children, in 
drowsiness in older children and adults. Alpha is the frequency 
range from 7 Hz to 14 Hz. It is seen in normal adults during 
relaxed and mentally inactive awareness. Beta waves lie 
within the range of 15 Hz to about 30 Hz. It is associated with 
expectancy states and tension. Gamma is the frequency range 
approximately 30–100 Hz. Usually, it is not of clinical interests 
and thus often filtered out in many practical situations.

The real data were recorded from 32 electrodes placed at the 
standard positions of the 10–20 international system with a 
Biosemi Active Two system and are thus reference free.[22,26] 
They are not recorded from the scalp. The average signal from 

the two mastoid electrodes was used for referencing. Arbitrary 
referencing schemes can be implemented by subtracting the 
reference channel(s) from all other channels. The sampling 
rate is 2048 Hz. Note that the data might contain artifacts 
coming from eye‑blinks, eye‑movements, muscle‑activity, etc. 
This means that the data are recorded under real conditions.

Human data based on five disabled and four healthy subjects. 
The disabled subjects  (1–5) were all wheelchair‑bound but 
had varying communication and limb muscle control abilities. 
The four healthy subjects (6–9) were all male PhD students, 
ages 30, and had no known neurological deficits. Signals were 
recorded at 2048 Hz sampling rate from 32 electrodes placed 
at the standard positions of the 10–20 international system.

We run the proposed algorithm for real data of length 0.48 
s (1000 samples), but for the purpose of better representation, 
Figure 9 shows 100 samples of an EEG noisy signal, y[n], its 
estimated noise e[n] and denoised EEG signal d[n].

In order to compute and investigate the evaluation criteria 
for real data, at first we denoised it by our proposed 
method and consider it as an original signal and then 
add it Gaussian noise with mean zero and three different 
variances. Tables 9‑11 show the results in the case of real 
data for noise variances of 0.1, 0.3, and 0.5, respectively.

In order to do a qualitative comparison of our denoising 
algorithm with other algorithms in the case of real data, we ask 

Figure  5: The amount of R in different variances of 0.1, 0.3 and 0.5 for 
Daubechies, “db8,” “db6,” and “db4” wavelets and nonlinear modeling of 
noise when P = 2

Figure 6: Noisy signal y[n], estimated noise e[n] (it is depicted bigger for 
the purpose of better representation), and denoised signal d[n], for P = 2

Figure 7: Noisy signal y[n], estimated noise e[n] (it is depicted bigger for 
the purpose of better representation), and denoised signal d[n], for P = 250

Figure 8: Histogram of estimated noise when P = 250 and variance of noise 
is 0.3
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some expert to grade the quality of the denoised signal. We 
did it for all data and averaged the grades for final comparison. 
Note that we compared the results of our method when P = 2 
in different variances of noise with wavelet db4.

Table 12 shows the rating system for the quality of denoised 
signal and Table 13 shows the mean grades for it.

CONCLUSION AND FUTURE WORK

This paper uses the property of EEG signal and proposes a 
new and good approximation of delayed input signal to its 

adjacent samples to reduce the complexity of Volterra series 
coefficients computation in nonlinear modeling of EEG 
signal. This method is important in practical applications in 
which computing higher order kernels by using nonlinear 
adaptive filtering is very complicated. By using the proposed 
technique, we only need to compute M coefficients instead 
of M2 so reducing the computation by the ratio of at least 1/3, 
when M = 3. After finding Volterra series coefficients, we 
employed Volterra model to find the nonlinearity relation 
between EEG signal and the noise that is a new way to 
estimate noise in EEG signal. By employing this method, we 
can considerably improve the SNR in comparison with WD. 
We have to combine the linear and nonlinear method of 
estimating noise in the EEG signal in the future.
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