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INTRODUCTION

Diabetes is known to be an incurable and a lifetime disease. 
Moreover, it is responsible for significant mortality and charge 
in society. Furthermore, the number of diabetics is expected 
to highly increase in future. For this reason, tight glucose 
control in the diabetic patients is of great importance and 
has been the subject of extensive research over the years.[1]

Diabetes is a metabolic disorder classified into two main 
groups: type 1 and type 2 diabetes. Type 1 diabetes results 
from an autoimmune reaction that destroys the β‑cells in the 
pancreas, preventing it to secrete enough insulin. However, in 
type 2 diabetes, the person develops a resistance to insulin. 
Both cases result in high blood glucose concentration levels. 
In a specific case, postprandial or after‑meal hyperglycemia 
is a blood glucose level higher than 180  mg/dl 2 h after 
meal.[2] Chronically high blood glucose leads into some 
chronic complications, including cardiovascular diseases, 
kidney failure, blindness, stroke, and nontraumatic limb 
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amputation.[3,4] On the contrary, hypoglycemia, blood glucose 
levels lower than 60 mg/dl, can cause loss of consciousness 
and coma. This phenomenon can be lethal.[4,5]

Due to the aforementioned complications, the maintenance 
of blood glucose levels at normal glucose concentrations 
or euglycemia  (70–120  mg/dl) before meals and less 
than 180  mg/dl after meals is of crucial importance for 
diabetic individuals.[6] Over the last four decades, various 
controllers have been designed for insulin delivery in 
order to regulate the blood glucose level. Some of these 
controllers are simple like proportional‑integral‑derivatives 
controller[7‑10] and fuzzy logic based controller.[11,12] However, 
others are more complicated such as feedforward‑feedback 
controller,[4] H∞  controller,[13‑15] discrete linear model 
predictive controller,[16] nonlinear robust model predictive 
control  (MPC),[17] generalized predictive controller,[18] 
gain‑scheduling MPC,[19] multi‑parametric MPC,[20] fuzzy 
high‑order sliding mode control  (FHOSMC),[21] and fuzzy 
scheduled robustness, tracking, disturbance rejection, 
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and overall aggressiveness controller.[22] Some of these 
controllers are open‑loop such as fuzzy logic controller. 
Open‑loop programs deliver a predetermined amount 
of insulin to the patient. In fact, the amount of insulin is 
based on the insulin curve of pancreas secretion of a normal 
individual. Schematic of an open‑loop control is shown in 
Figure 1a. The other controllers are closed‑loop. In other 
words, they are designed based on a criterion which is in 
proportional to the error signal, the difference between the 
desired glucose level and actual one. A  schematic of the 
closed‑loop structure for controlling the blood glucose level 
in diabetic individuals is demonstrated in Figure 1b.[23]

However, each of these approaches has been able to 
partially tackle some challenges of regulating the blood 
glucose levels. These challenges include the existence 
of nonlinearities, noise, and inaccurate measurements, 
the existence of various sources of disturbance, and 
uncertainty affecting glucose regulation  (e.g.,  stress, 
meal, and exercise).[24] Nonetheless, these obstacles are 
not completely solved and moreover, there are some 
other limitations, too. For example, although the exact 
parameter values of patients are required in model‑based 
controllers, the glucose–insulin regulation system is 
nonlinear and time variable. Meanwhile, identification of 
the parameters of patients is expensive and invasive and 
most parameters are time variable, leading to uncertainty 
presence.[25] However, Hernaxndez et al.,[25] and Kaveh and 
Shtessel,[26] have utilized the properties of single order 
sliding mode control (SOSMC) and High order sliding mode 
control such as their nonlinearity and their independence 
on the parameters of model, to overcome the limitations 
of model‑based controllers. Moreover, these approaches 
have significantly reduced the chattering phenomenon, 
which is the inherent part of the sliding mode controller. 
Nevertheless, not only these new approaches have not still 

solved the drawbacks of previous ones completely, but also 
have still suffered from hypoglycemia and hyperglycemia. 
Therefore, being more acute, hypoglycemia must be 
prevented by aggressive management of insulin delivery.

As it was mentioned, some controllers are based on a 
model of the diabetic patient. In other words, these kinds 
of controllers are model‑based and for their designing, a 
model of insulin regulatory system for diabetic patient 
is required. A  wide variety of mathematical models are 
developed for this goal such as minimal model,[27] Cobelli 
and Mari model,[28] Sorensen model,[29] Hovorka et  al. 
model,[17] and Dalla Man et al. model.[30] A review of some 
of these models can be found in.[31,32] The three latter ones 
are more comprehensive than minimal model and even they 
have been used as virtual patients for testing the controller 
performance in some literatures. However, they are so 
complicated in terms of designing a controller. Therefore, 
there is a trade‑off between the simplicity of the model for 
designing a controller and the accuracy of that. Nevertheless, 
as it can be noticed in[25] although the minimal model is 
far simple than the comprehensive ones, the amount of 
accordance of this model to other models are acceptable 
to a large extent. Moreover, it satisfies certain validation 
criteria while having the smallest number of parameters.[25] 
As a result, in this paper, the controller design is based on 
the minimal model.

In this paper, by employing the merits of fuzzy logic 
concept combined with SOSMC, a novel approach is 
proposed, called SOSMC combined with fuzzy on‑line 
tunable gain  (SOSMC‑FOLTG). By applying this controller 
the insulin delivery rate and consequently, the amount of 
insulin delivered to type 1 diabetic individual is managed 
more aggressively. In other words, due to the decrease in 
the amount of insulin delivered at the time of entering 

Figure 1: (a) Open‑loop controller for a diabetic individual, (b) closed‑loop controller for a diabetic individual[23]
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the meal disturbance, this method leads to less possibility 
for hypoglycemia. Therefore, as it will be shown in the 
result section, it needs a much less control effort and as 
a result, prevents hypoglycemia much better than the 
previous methods. Besides, it also uses the distinguished 
properties of SOSMC such as its robustness versus model 
mismatches and disturbances and uncertainties in order 
to overcome inaccurate model parameters of patients and 
undefined dynamics. Moreover, this method will decrease 
the chattering observed in SOSMC significantly.

The remains of this paper are organized as follows. In background 
section, a background about designing the proposed controllers 
is given. It includes the minimal model for nondiabetics 
and diabetics and SOSM control concept. The procedure of 
SOSMC‑FOLTG design is developed in desing procedure of the 
proposed controller section. Simulation results of an in silico trial 
with minimal model for three subjects are given in results and 
discussion section, followed by a conclusion.

BACKGROUND

In this part, some backgrounds needed for designing the 
proposed controller are presented. These requirements 
include the minimal model for nondiabetics and diabetics 
and SOSMC concept, which are discussed in the following 
subsections.

Bergman model

As mentioned before, in this paper, the controller design 
is based on the minimal model. This model is described as 
follows:[25]

2

1 b
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Where G(t), X(t) and I(t) are the glucose concentration in 
the blood plasma, insulin effect on glucose concentration 
disappearance, and insulin concentration in plasma, 
respectively. Gb indicates the nominal amount of glucose 
level and Ib is the basal preinjection level of insulin. u(t) is 
The control input, which shows the insulin infusion rate, 
p1 is the insulin‑independent glucose uptake rate, p2 is the 
rate of reduction of the tissue glucose uptake ability, p3 is 
the insulin dependent increase of the glucose uptake ability 
and n is the first order decay rate for insulin in blood. h is 
the threshold value of glucose above which the pancreatic 
cells release insulin.  is the rate of insulin release of 
the pancreatic β‑cells when glucose concentration is 
above  the  threshold. The “+” sign demonstrates the 
positive reflection to glucose intake and consequently the 
term [G(t)−h] t represents the pancreatic insulin secretion 
after a meal intake at t  =  0 in a normal individual, but 

a diabetic patient who already is on insulin shots therapy 
does not have this natural control. Therefore,  is considered 
zero for diabetics. Due to the fact that this paper is devoted 
to insulin therapy for type 1 diabetes mellitus patients, the 
parameters p1 and  are assumed to be zero in order to 
demonstrate the dynamic of this type of diabetes.[25,26]

Here D(t) represents the food intake as a disturbance. It 
has a decaying exponential form.[33] As it is said in,[34] G 
is in proportional to A×exp(−Bt), so the rate of G is in 
proportional to the derivative of this term. As a matter of 
fact, D(t) in Eq. 1 is the absolute amount of time derivative 
of A×exp(−Bt) according to the following form:

D t
d
dt

A B t( ) ( exp( ))= × − × � (2)

Where A, B > 0 and t is in (min) and D(t) is in (mg/dl/min).

Hence, with considering these points in mind and indicating 
G, X, and I as x1, x2, and x3, Eq. 3 demonstrates minimal 
model for a type 1 diabetic person.
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Single order sliding mode control concept

The SOSMC algorithm, as it is introduced in,[26] is used 
for systems with a relative degree of one. Inasmuch as 
the relative degree of minimal model is three, the sliding 
variable must be defined as following equation in order to 
obtain relative degree of one.

M e c e c e= + + 1 0 � (4)

Where e = Gb− G(t) = Gb − x1. Then, the SOSMC function 
can be designed as:[26]

u k M M M d= − − ∫
0 5.

( ) ( )sign signβ τ � (5)

DESING PROCEDURE OF THE PROPOSED 
CONTROLLER

Single order sliding mode control combined with 
fuzzy on‑line tunable gain design

In recent years, fuzzy logic has been considerably used 
as a successful practical method in control systems with 
uncertainties. One fundamental feature of fuzzy logic is its 
ability to express human thinking.[35] On the other hand, 
because of the significant advantages of sliding mode 
control  (SMC), this controller has gained more attention 
in recent years. Some of its merits are: Good robustness 
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to parameter uncertainty, good transient performance, 
insensitivity to bounded disturbances, fast convergence 
rate, high control accuracy, a remarkable computational 
simplicity with respect to other robust control approaches, 
and easy implementation of the controller.[36-38] Therefore, 
due to the remarkable benefits of SMC and fuzzy control, 
many approaches have been developed to combine them, 
in some of which fuzzy logic theory is applied to adaptively 
tune the sliding mode gain of classical SMC. In this case, 
not only the robustness property of the sliding mode is 
maintained, but also the chattering is attenuated.[35]

In light of the advantages of combining the two methods of 
fuzzy logic and SMC, the proposed controller is designed 
from merging the SOSMC and fuzzy logic, in this paper. In 
other word, although SOSM controller reduces the amount 
of chattering significantly, in this method some chattering 
is still observed. Moreover, one drawback of SOSMC is its 
fixed coefficient, k, which causes a high insulin infusion 
rate even when it is not necessary, leading to a high risk 
of hypoglycemia. As a result, it is beneficial to reduce the 
amount of it by using fuzzy concept. In other words, fuzzy 
control is used to adaptively change the gain of SOSMC 
algorithm, which is denoted as k in Eq. 5. It can change 
in the range from 5 to 50 adaptively. By doing so, the 
control effort, and therefore the risk of hypoglycemia, will 
decrease. Moreover, the chattering observed in the control 
effort of SOSMC will significantly decrease. The scheme of 
SOSMC‑FOLTG is shown in Figure 2a.

To design the SOSMC‑FOLTG, a fuzzy system consisting 
of two input linguistic variables, the error signal 
(S = e = Gb − G(t)) and its rate of change  S e= , and one 
output, k  (i.e., the gain of SOSMC), has been proposed in 

this paper. The structure of the fuzzy logic part in Figure 2a 
is shown in Figure  2b. As shown in Figure  2b, Singleton 
is used as the method of fuzzifier and centroid of area is 
used for defuzzifier. The fuzzy subset of k is denoted by 
KS. Therefore, the fuzzy subsets of inputs and output are 
as follows:

S = {VVN, VN, N, M, SP}� (6)

S
.
 = {VN, N, Z, P}� (7)

Ks = {VS, S, M, B, VB}� (8)

Where the linguistic abbreviations are defined as VVN: Very 
very negative, VN: Very negative, N: Negative, M: Medium, 
SP: Small positive, Z: Zero, P: Positive, VS: Very small, 
B:  Big, VB: Very big. By using these fuzzy sets, 20 fuzzy 
rules are defined. The rule base of the system with respect 
to Mamdani fuzzy model has been determined in Table 1. 
Figure  3 demonstrates the membership functions of the 
inputs and the output and the fuzzy surface.

In order to elaborate on the procedure of selecting the kinds of 
fuzzy membership functions, and shapes of input and output 
subsets, the basic principle of that is presented as follows. 
First, through some simulations obtained from different 
kinds of membership functions such as sigmoid, triangle, and 
trapezoid, trapezoid was concluded to be more favorable. 
Therefore, trapezoid was utilized as the shapes of membership 
functions. Furthermore, input and output subset shapes were 
chosen in such a way that the amount of insulin delivered to 
the patient could reduce the error (S) effectively. For example, 
if the glucose level is above Gb level, which means a negative 
S, and if the procedure of the change in glucose level has a 
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Figure 2: (a) Scheme of single order sliding mode control combined with fuzzy on‑line tunable gain. (b) The structure of the fuzzy logic part used in (a)
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negative slope, which means a positive S, a large amount 
of insulin should be delivered. However, in such a case, the 
amount of insulin delivered is less than that when S is negative 
and S  is negative. In fact, in the second case, the error is 
increasing during time and thus, more insulin is needed to 
return the blood glucose level at the desired level. Moreover, 
if the error is very negative, it means that blood glucose level 
is much further from the desired level, and subsequently a 
much larger dose of insulin should be delivered to the patient 
compared to the case when the error is negative. Nonetheless, 
when the S is positive, it means that the level of blood glucose 
is lower than the desired level. Therefore, for avoiding the 
blood glucose levels to enter in the hypoglycemia region, a 
very small dose of insulin should be delivered.

The fuzzy output of the adaptive fuzzy system can be 
calculated by beneath equation:

1{[ ( ( )) ( ( ))] }, 20n
i i i i

K S t S t K nsm m== ∨ ∧ ∧ =′  � (9)

( )  
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Where ( ( )), ( ( ))i iS t S tm m   are the membership functions of 
the fuzzy input subsets. The number of each rule is i and 
the operators ∧ ∨,  denote the minimum and maximum, 
respectively. The KSi denotes the fuzzy subset of output in 
rule number i. n denotes the number of rules.

RESULTS AND DISCUSSION

In this section, simulations are presented and discussed. For 
simulation goals, the minimal model is adopted with the three 
sets of numerical values, which presented in.[1] These parameter 
values are used as in silico patients to prove the robustness of 
new controllers. These parameters are presented in Table 2. 
In SOSMC, the parameter values are c0 = 0.0001, c1 = 0.02, 
k = 50 and  = 0.025 in Eq. 5 and finally k is adaptive for 
SOSMC‑FOLTG and  is the same as that in SOSMC. The first 
initial values for parameters in Eq. 1 are presented in Table 3.

The simulations are applied for analyzing two different 
situations: Analyzing the performance of the controller,
•	 When hyperglycemia occurs and a severe initial 

condition of glucose concentration average of G (t = 0) 

Table 1: Fuzzy rule bases (the output is the MF for the gain 
of SOSMC (KS))

S (sliding surface MF)

VVN VN N M SP
S
.
 (sliding surface derivative MF)

VN VB VB VB B S
N VB B M M S
Z VB M S S VS
P VB S VS VS VS

MF – Membership function; SOSMC – Single order sliding mode control

Figure 3: (a and b) The membership functions of the inputs (i.e., S,S
.
), (c) the membership function of the output (i.e., KS), (d) fuzzy surface
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= 300 mg/dl is assumed
•	 When initial glucose is 90  mg/dl along with several 

meal ingestion events as disturbances.

For the second situation three meal intakes, including A = 50, 
A = 70, and A = 80 for breakfast, lunch, and dinner, respectively, 
are considered. These disturbances enter the system at the 
time of 100, 460, and 880 min, respectively. Matlab/simulink is 
used for the simulation. The proposed controller is applied to 
the nonlinear model of minimal model. The simulation results 
from this part are illustrated in Figures 4 and 5. It is a critical 
point to notice that the scales of some figures of the same type, 
especially the figures for insulin infusion rate are not the same 
in order to show a better resolution of them.

As can be seen in Figures  4 and  5 the new controller, 
SOSMC‑FOLTG is compared with the conventional SOSMC. 

Table 2: The parameter values of Bergman model for three 
patients
Variable Patient 1 Patient 2 Patient 3 Units

p1 0 0 0 1/min
p2 0.02 0.0072 0.0142 1/min
p3 5.3×10−6 2.16×10−6 9.94×10−5 (μU/ml)/min2

n 0.3 0.2465 0.2814 1/min
γ 0 0 0 (μU/ml×min2) (mg/dl)−1

h - - - mg/dl

Table 3: The initial state values used in simulations
Variable Patient 1 Patient 2 Patient 3 Units

G(0)a 90 90 90 mg/dl
G(0)b 300 300 300 mg/dl
I(0) 20 20 20 μU/ml
X(0) 0 0 0 1/min
aWith disturbance; bWithout disturbance
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The glucose profiles in these two methods [Figures 4a and b, 
5a,  and b] are partly like each other. However, in 
SOSMC‑FOLTG the chattering of the control effort observed 
in SOSMC is significantly reduced [Figures  4c and 5c]. 
The maximum amount of control effort has decreased 
considerably, as well.

It is worth mentioning that in  (fuzzy) SOSMC the relative 
degree of sliding surface is one as the modified sliding surface 
in[26] has been used here. Therefore, in this case, just S and S  
are needed to converge to zero over time. These features 
have been tested and obtained through simulation, as well.

The changing procedure of adaptive gain in SOSMC‑FOLTG, 
that is, k, versus time for two different cases without any 
disturbances and with tree meal disturbances, are shown in 
Figures 4e and 5e.

As what has been said in,[26] the SOSMC Eq. 5 guarantees finite 
time convergence of the sliding variable Eq. 4. Since sliding 
surface is a Herwitz polynomial in terms of the error signal, 
it provides the asymptotic convergence of the tracking error. 
Therefore, because fuzzy part only adjust the adaptive gain 
in Eq. 5 and has no other influences on SOSMC method, the 
blood glucose will be stabilized at its basal level asymptotically.

Moreover, for the evaluation of the new method, it is 
compared to FHOSMC, which can be found in.[21] For 
comparison between these two methods, some criteria 
are considered for three patients including, the reaching 
time of blood glucose level to 180 mg/dl (min), the steady 
state error for blood glucose concentration  (mg/dl), the 
maximum of insulin infusion rate  (µU/ml/min). Then, in 
two different cases  (with hyperglycemia and with three 
meal intake disturbances) the averages of these criteria for 
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In Figures  6 and 7 the simulations for FHOSMC are 
presented. By comparing the glucose profiles of FHOSMC 
and SOSMC‑FOLTG, it is obvious that SOSMC‑FOLTG can 
regulate the blood Glucose level faster. In fact, the settling 
time of SOSMC‑FOLTG, when hyperglycemia exists, is 
568.00  ±  55.45, but that of FHOSMC is 579.67  ±  76.69. 
The reaching time of blood glucose level to 180 mg/dl for 
SOSMC‑FOLTG is 188.3  ±  41.99. However, this value for 
FHOSMC is 205.66 ± 46.44. In addition, the maximum amount 
of control effort in SOSMC‑FOLTG, when hyperglycemia 
exists, is 3.76 ± 0.54, which is much less than that in fuzzy 
HOSMC (20.63 ± 0.04) leading to less risk of hypoglycemia. It 
is a very important factor because when the amount of insulin 
decreases, the risk of hypoglycemia will decrease. Actually, 
there is an inherent delay between the time of injecting 
insulin to the individuals and the time of affecting insulin on 
the blood glucose concentration. Furthermore, controlling of 
hypoglycemia is more important than that of hyperglycemia 
because hypoglycemia has acute and lethal dangers. 
Moreover, the steady state error in SOSMC‑FOLTG is almost 
zero (0.21 ± 0.17 when hyperglycemia exists and 0.13 ± 0.12 
in the presence of three meal intakes) whereas, it has a small 
quantity in FHOSMC (1.80 ± 1.77 when hyperglycemia exists 
and 1.96 ± 2.15 in the presence of three meal intakes). As it 
is shown the average of the reaching time of blood glucose 
level to 180  mg/dl  (min), the  steady state error for blood 
glucose concentration  (mg/dl), and the maximum of insulin 

Table 4: The comparison of two controllers of 
SOSMC-FOLTG and FHOSMC based on several criteria 
when hyperglycemia exists
Several criteria for three patients FHOSMC SOSMC-FOLTG

The settling time (min) 579.67±76.69* 568.00±55.45
The reaching time of blood glucose 
level to 180 mg/dl (min)

205.66±46.44 188.3±41.99

The steady state error for blood 
glucose concentration (mg/dl)

1.80±1.77 0.21±0.17

Maximum of insulin infusion rate 
(µU/ml/min)

20.63±0.04 3.76±0.54

*Results are reported as mean±SD. SOSMC-FOLTG – Single order sliding mode 
control combined with fuzzy on-line tunable gain; FHOSMC – Fuzzy high-order sliding 
mode control; SD – Standard deviation

Table 5: The comparison of two controllers of 
SOSMC-FOLTG and FHOSMC based on several criteria 
with three meal intake disturbances
Several criteria for three patients FHOSMC SOSMC-FOLTG

The steady state error for blood 
glucose concentration (mg/dl)

1.96±2.15* 0.13±0.12

Maximum of insulin infusion rate 
(µU/ml/min)

9.60±4.01 2.33±1.30

*Results are reported as mean±SD. SOSMC-FOLTG – Single order sliding mode 
control combined with fuzzy on-line tunable gain; FHOSMC – Fuzzy high-order 
sliding-mode control; SD – Standard deviation

three patients are calculated and the results are reported in 
Tables 4 and 5 as mean ± standard deviation.
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Figure 7: Simulation results with three meal intake disturbances for fuzzy high‑order sliding‑mode control; (a) Blood glucose concentration, (b) Insulin infusion rate
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Figure  6: Simulation results with no external disturbances when hyperglycemia exists for fuzzy high‑order sliding mode control  (a) Blood glucose 
concentration, (b) Insulin infusion rate
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infusion rate (µU/ml/min) for SOSMC‑FOLTG is more favorable 
than those for FHOSMC. This fact makes the new method 
superior to FHOSMC.

CONCLUSION

In this paper, a new algorithm, SOSMC‑FOLTG, for a more 
effective regulating of the blood glucose level in type  1 
diabetes has been presented. A SOSMC‑FOLTG is proposed 
in order to control the insulin delivery rate more aggressively 
in a feedback controller. This method can stabilize the 
blood glucose concentration of a type 1 diabetic individual 
at the desired level. This stabilization has been done in the 
presence of three food intakes as external disturbances. The 
robustness of the algorithm has been confirmed through 
the parameters of three patients. This method is compared 
to SOSM and FHOSM controllers and the superiority of 
this approach has been shown in terms of alleviating the 
chattering phenomenon and reducing the control effort. 
Beside the advantages of SOSMC, which were mentioned 
before, the proposed SOSMC‑FOLTG has some other merits, 
too. These merits are obtained through the fuzzy logic 
theory part in these proposed controller. For instance, this 
method has robustness versus uncertainties. It has been 
adaptively tuned the gain of control effort, as well as, it 
has alleviated the chattering phenomenon. Moreover, it has 
significantly decreased the amount of control effort and the 
risk of hypoglycemia as a result. It is worth noting that the 
proposed controller has preserved the robustness property 
of the SOSMC, as well.
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