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A B S T R A C T

Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate 
that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that 
the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, 
for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension 
of each windowed section using a computationally efficient two‑dimensional box‑counting algorithm. Furthermore, using appropriate 
wavelet sub‑bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced 
features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets 
by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal 
boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold 
on fractal dimensions matrix, the best‑segmented boxes are selected. In the next step, the segmented Cancerous zones which are 
candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels. 
After nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed 
image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous 
zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 
method. For classification of detected microcalcification into benign and malignant cases, eight features are identified and utilized in 
radial basis function neural network. Our simulation results indicate the accuracy of 92% classification using F1W2 method.
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INTRODUCTION

In 2013, an estimated 232,340 new cases of invasive breast 
cancer were expected to be diagnosed among US women, 
as well as an estimated 64,640 additional cases of in  situ 
breast cancer. That year, approximately 39,620 US women 
were expected to die from breast cancer. Only lung cancer 
accounts for more cancer deaths in women.[1] It is also 
documented that early detection, diagnosis and treatment 
of illness can play a significant role in preventing mortality 
caused by cancer.[1] During recent years, considerable 
research has been carried out to reduce detection errors 
by applying some of the advanced image processing 
methods in the field of digital radiology. In our previous 
papers,[2,3] we used fractal modeling and wavelet transform 
for detection of microcalcifications, a comparative study 
analysis using probabilistic neural network, eight features 

such as fractal dimension variations, entropy and wavelet 
coefficients were proposed to classify both malignant and 
benign cancerous zones. Gulsrud and Husoy[4] presented an 
effective CAD system based on the application of an optimal 
filter as a texture feature separator. By using a preprocessing 
technique based on spatial filters for enhancing signals, 
the characteristic extraction plan was applied on signals 
which included microcalcifications and normal tissues. For 
increasing the accuracy of performance, they used a large 
smoothing filter on post processed feature images. Liyang 
et  al.[5] introduced a method based on relevance vector 
machine  (RVM) to detect microcalcifications in digital 
mammograms. Furthermore, to increase the speed of 
the detection algorithm, they proposed a two‑stage RVM 
classification method that non‑MC pixels were eliminated by 
a faster linear RVM classifier. Higuera and co-workers.[6] used 
the property of Gaussian models and produced a Bayesian 
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classifier for the detection of microcalcifications in digital 
mammograms. By using the posterior probability estimation 
and an additional model selection algorithm based on prune, 
split and merge operations, they could show a significant 
relationship between entropic cost and area under the 
receiver operating characteristic curve. The main difference 
between malignant and normal cancerous cells is on the 
distribution and number of microclassifications. When a 
large number of microclassification cells form a dense mass 
clustered in a small area, they are categorized as malignant.[7] 
Masses in benign and malignant cases of mammograms have 
distinct and meaningful differences in terms of their shape 
and formation. In general cases, it seems that malignant 
tumors have irregular boundaries characterized with high 
and low‑density contours where in cases of nonmalignant 
tumors, they have rather smooth boundaries with high and 
low oval type shape.[2,7] Beheshti et al.[8] presented a method 
for the detection and diagnosis of masses in digitized 
mammograms by using fractal modeling in two stages. First, 
they differentiated between masses and background tissues 
by using preprocessing techniques. Second, by applying the 
fractal dimension method, they could extract new fractal 
features to identify the roughness of the masses contours. 
Chang et  al.[9] were able to classify tumors into benign 
and malignant types by using fractal Brownian motion 
to calculate the fractal dimension of ultrasound images, 
where they applied shape detection and K‑means clustering 
algorithms for classification of tumors. In order to promote 
the classification performances, they applied morphology 
techniques and histogram equalizations on the ultrasound 
images as preprocessing methods. Öktem and Jouny[10] used 
fractal analysis and spatial moment distributions with the 
combination of back propagation neural network and a 
self‑organizing map to classify unknown test mammograms 
into benign and malignant categories. In addition, they 
applied two‑stage back propagation neural network and 
the one‑stage self‑organizing map to improve their study 
results. Nguyen and Rangayyan[11] used the fractal dimension 
based on shape analysis to classify the mammographic 
masses. They applied the box counting algorithm on 
mammograms and found that the fractal dimension may not 
be sensitive for detection of masses. Thus, they benefited 
the statistical measures of the texture of breast masses 
and tumors in a combination of fractal dimensions on gray 
scales mammograms to draw the shapes of tumors. Kontos 
et al.[12] showed that numerous types of breast cancer tissues 
tend to spread along the ductal lumen. They first calculated 
the fractal dimension containing ductal lumens and then 
they analyzed the fractal details of the ductal network in 
galactograms to detect early signs of cancerous tissues. 
Wavelets and wavelet transform have also been used as 
an independent framework of analysis in most of image 
processing applications. Lemaur et  al.[13] produced a new 
wavelet algorithm with a higher regularity compare to the 
classical wavelets, then by using this new approach, they 
could improve the results of microcalcifications detections 

in digitized mammograms. For this goal, the comparison 
algorithm was based on some features such as rate of 
correct detection, modulus of the wavelet coefficients, 
the rate of false alarm and number of detected spots. 
Heinlein et al.[14] used integrated wavelets to enhance the 
microcalcifications in digital mammograms. Their algorithm 
was gradually changing the image resolutions by converting 
scales given in millimeter‑to‑pixel resolutions. They could 
design a filter bank for decomposition and reconstruction 
without using slowly converging iterative plans. Finally, 
they showed that enhancement becomes more specific to 
microcalcifications. Nakayama et  al.[15] used eight features 
based on the multi‑resolution approach of the shape 
features, which were extracted by the enhancement of 
nodular components and linear nodular components. For 
more information, they proposed a new filter bank with 
high efficiency for the detection of microcalcifications 
clusters in mammograms. Mencattini et  al.[16] used the 
dyadic wavelet transform as enhancement and denoising 
techniques for the preprocessing of microcalcifications and 
masses detection in digital mammograms. The main benefit 
of their method was adaptability to the different nature of 
diagnostic relevant features in the mammographic images. 
Karahaliou et al.[17] compared two classes of features which 
relate to the combination of gray level texture features and 
wavelet coefficient texture features to find a malignant 
underlying biological process. This paper tries to benefit 
from the advantages of both fractal and wavelet theories as a 
new algorithm named F1W2 is introduced in section II.E. In 
F1W2, the original image is segmented into appropriate 
fractal boxes, and the fractal dimension of each windowed 
section is extracted to detect the cancerous zones. Wavelet 
coefficients of the fractal segmented image at a first scale 
and low‑frequency band of the third scale are set to zero. In 
section III, the performance of this algorithm is evaluated, 
and a few detection results are represented, as they were 
applied on various mammograms and compared with the 
proposed marked cancerous zones by a radiologist. Finally, 
this paper is concluded in section IV.

MATERIALS AND METHODS

Mammograms used in this study are from MIAS  (Mini 
Mammographic Database). The cancerous zones in this 
database are marked by radiologist by a single dot (as the 
center of the circle) and a circle around to identify the 
region. Furthermore, these mammograms, based on their 
background, are divided on to fatty, fatty‑glandular, and 
dense‑glandular; where from the point of view of being 
natural or not natural, they are classified into seven classes. 
In this study, we considered 127 mammograms consisting of 
mass cases which were used for detection of tumor lesions 
and microcalcification cases. We examined performance 
of our proposed hybrid approach using combination of 
fractal with wavelet which led to three algorithms, fractal 
analysis  (section II. A), wavelet analysis  (section II. B), and 
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combinations of fractal analysis and wavelet transform 
namely F1W2 (section II. C).

Detection of Cancerous Zones Based on Fractal 
Dimension Analysis

In this section, we use a box‑counting algorithm to extract 
the fractal dimension. This dimension gives an estimate 
of the space occupied by the fractal zone. In fractal 
zone analysis, assuming the size of the network cell is r 
and number of cells is n, if the area under the study is 
covered by a network of different sizes, then the cells of 
the network covering the image are assumed to increase 
without any bound in accordance with the following Eq. 
1 after which fractal dimension is derived using following 
equation:

= −
log
logB

n
D

r
� (1)

In this method, an image is placed on a cross‑word puzzle 
type grid having a cell size ranging from 1 to 100 pixels after 
which the number of cells that cover the entire image is 
counted as n regardless of the number of pixels in the cell. 
Then box counting is applied to the selected counted cells 
based on the algorithm used for cell size. This procedure is 
repeatedly applied to smaller size grid networks followed 
by counting number of cells n (r) that cover the given image. 
Slope of this line is fractal dimension of the image using the 
following formula:[2,7]

( )
( )

−
=

−
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D

r log r
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However, noting that in real‑world situations, images are 
rarely identical to each other, it is almost impossible to 
obtain a fractal dimension for the entirety of images. But we 
also note that there are similarities between images when 
localized sections in images are considered.[2,3] As such, a 
given image is segmented into smaller sections [Figure 1] and 
for each segment, fractal dimension is derived [Figure 2]. In 
Figure 3, the plot of log (n) versus log (r) for a segment of 
Figure 1 was shown where the average of the fractal array is 
the fractal dimension of this image segment. This is followed 
by averaging the fractal dimension of image segments and 
placing them into a matrix in accordance with the ordering 
used during the windowing for threshold purposes. At last, 
regions with maximal fractal dimension are identified as a 
cancerous zone.[3]

Wavelet‑based Cancerous Zones Detection

This section presents an algorithm for extraction of 
cancerous zones from mammograms using wavelet 
transform. Since wavelet transform classify features 
of image in different resolutions and noting that 
microcalcification and masses often reside in mid‑range 

of resolution, it is possible to reconstruct image 
components that reside in medium scale range and as 
such to reconstruct image containing cancerous regions. 
At the first stage, an initial mammogram is analyzed in 
two distinct frequency bands using orthonormal wavelet 
transform in three different resolution levels. We used 
low order db2, which is suitable for detection of edges, 
as analyzing wavelets. Sub image of the low frequency 
band in third resolution contains information at the low 
frequency and mainly represents the background of a 
mammogram. However, sub‑images of first resolution 
contain information about features that are of smaller 
dimensions as compared with microcalcification. For 
detection of microcalcification, it is necessary to nullify 
wavelet coefficients of the image at first scale as well as 
low frequency components at the third scale sub images, 

Figure 1: Left image: Original mammogram, Right: Expanded image segment

Figure 2: Plot of n and r of image segment of Figure 1

Figure 3: Logarithmic plot of fractal array
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whereby applying inverse transform on the remaining 
coefficients, reconstructed mammogram will have 
necessary information on medium frequency containing 
microcalcification. This is followed by applying a threshold 
to obtain the final results. Figure 4 shows sub‑images of 
the first scale of a mammogram. In this figure, the texture 
of the mammogram can be clearly seen in low‑frequency 
sub images while other sub‑images contain information 
of high‑frequency bands.[3]

F1W2: Wavelet‑based Cancer Detection in 
Images Extracted from Fractal Analysis

In this algorithm, at first the cancerous zone is extracted 
using fractal modeling  (as described in section II. A) and 
then wavelet transform is used in a similar procedure 
explained in section II. B to produce a modified image for 
applying threshold operator. This method is implemented 
using the following steps:
•	 Extract the fractal dimension of each 3 × 3 (overlapped) 

block of image and produce the fractal dimension 
matrix

•	 Apply a threshold on extracted matrix of step 1 and 
remove all coefficients smaller than threshold

•	 Apply db2 wavelet transform on produced image in the 
previous step (at three level resolutions)

•	 Nullify wavelet coefficients of the image at the first 
scale and low‑frequency band of the third scale

•	 Apply inverse wavelet transform
•	 Apply Otsu’s method threshold.

Otsu’s Method Threshold

In computer vision and image processing, Otsu’s method 
is used to automatically perform clustering‑based image 
threshold,[18] or, the reduction of a gray level image to 
a binary image. The algorithm assumes that the image 
contains two classes of pixels or bi‑modal histogram then 
calculates the optimum threshold separating those two 
classes so that their combined spread (intra‑class variance) 
is minimal.[19] The extension of the original method to 
the multi‑level threshold is referred to as the multi‑Otsu 
method.[20] In Otsu’s method, we exhaustively search for 
the threshold that minimizes the intra‑class variance  (the 
variance within the class), defined as a weighted sum of 
variances of the two classes:

( ) ( ) ( ) ( )s s s= +2 2 2
1 1 2 2 ( )w t w t t w t t � (3)

Weights wi are the probabilities of the two classes separated 
by a threshold t and s 2

i  variances of these classes. Otsu 
shows that minimizing the intra‑class variance is the same 
as maximizing inter‑class variance:[18]

( ) ( ) ( ) ( ) ( )s s s m m= − = −2 2 2 2
1 2 1 2[ ( )]b wt t w t w t t t � (4)

Which is expressed in terms of class probabilities wi and 
class means i, the class probability w1 is computed from 
the histogram as t:

( ) = ∑∑1 1 i
tw t p � (5)

While the class mean µ1 is:

( )m = ∑1 10
[ ( ) ( )] /

t
t p i x i w � (6)

Where x  (i) is the value at the center of the ith histogram 
bin. Similarly, w2(t) and µ2 on the right‑hand side of the 
histogram for bins greater than t can be computed, and 
the class probabilities and class means can be computed 
iteratively.

Classification of Malignant and Benign Lesions

In previous sections, three methods were introduced 
for the identification of cancerous zones and detection 
of microcalcifications. Now these extracted images are 
utilized to extract several features including average of 
fractal dimensions and their variance, mean, variance, 
entropy, skewness, kurtosis, and index of dispersion of 
detection results where they are used as an input vector to 
probabilistic neural network classifier. Probabilistic neural 
networks can be used for classification problems in which 
the first layer computes distance from the input vector 
to the training vector where it produces a vector whose 
elements indicate how close the input to a training data 
is. The second layer sums these contributions for each 
class of inputs to produce as its output, a vector giving 
a probabilistic interpretation of proximity values. Finally, 
a complete transfer function on the output of the second 
layer selects the maximum of these probabilities and 
produces an integer value of 1 for that class and 0 for the 
other classes. For the probabilistic neural network, we have 

Figure 4: From left to right: original image, low frequency sub band of first scale, horizontal, vertical and diagonal sub bands of first scale of image
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used the standard radial basis function in which Bayesian 
approach for density function estimation is utilized. Under 
this approach, input feature vectors are classified into two 
groups M (Malignant) or B (Benign). When an input vector 
belongs to a class such as M, the following probabilistic 
statement can be made using Bayesian estimation approach 
and classifier.

( ) ( )>M M M B B BP C f x P C f x � (7)

Where PM is the probability of input features belonging to 
class M and CM is the corresponding cost function. XMi shows 
ith learning pattern belonging to class M, mM is the number of 
learning patterns of class M, and s is smoothing parameter 
(equivalent to the variance of Gaussian pdf). In probabilistic 
neural network, the following estimator is used to derive 
density function:[12]

( )
( )
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s s

=

− −
= − −∑ 21

2
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[ 2 ]

2

x

T
m x xi

x n i
n n

x x x x
f x exp

m
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The decision function for classification is given by:

Decision function = (fM − fB) >0� (9)

Where fM  (x) is the discriminate function for class  M 
(Malignant), and fB (x) is the discriminate function for class B 
(Benign). If the decision is >0, the unknown pattern x is 
assigned to class  M; otherwise the unknown pattern is 
assigned to class B [Figure 5].

The first‑layer “input weights1,1” are set to the transpose 
of the matrix formed from the number of input training 
pairs. When an input is presented to the “distance” box, it 
produces a vector whose elements indicate how close the 
input is to the vectors of the training set. These elements are 
multiplied element by element by the corresponding value 
of the bias term (first element) in Eq. 8. An input vector close 
to a training vector is represented by a number close to 1 in 
the output vector a1 [Figure 5]. If an input is close to several 
training vectors of a single class, it is represented by several 
elements of a1 that are close to 1. The second‑layer weights 
are set to the matrix of target vectors. Each vector has a1 in 
one row only which is associated with that particular class 

of input, and 0’s elsewhere. Finally, the second layer transfer 
function as a competitive layer produces a1 corresponding to 
the largest elements and 0’s elsewhere. Thus, the network 
has assigned the input vector into a class among the two, 
having the maximum probability value. As explained in 
previous sections, we used 102 mammograms in fractal 
approach  (including 56 benign and 46 malignant) and in 
the other approach 25 mammograms (including 13 benign 
and 12 malignant) were used in classification of two groups 
into benign (benign and normal) and malignant (cancerous 
zone). We also used radiologist’s decision on benignancy/
malignancy tests which was considered as gold standard. The 
results of applying proposed methods are given in Table 1. In 
this table, classification of cancerous regions into benign or 
malignant are evaluated based on false negative (FN = true 
diagnosis of benign), true negative (TN = false diagnosis of 
benign), true positive  (TP = true diagnosis of malignant)” 
and false positive  (FP  =  false diagnostic of malignant) 
evaluation results. From these measures set of secondary 
parameters such as accuracy, sensitivity, specificity of 
the network, prediction evaluation of malignancy and 
prediction evaluation of benign are extracted. According to 
the results, the positive predictive value in wavelet method 
is higher than of fractal.

Method indicating the superiority of wavelet approach 
for detection of microcalcification in malignant cancers. 
This is for the reason that in fractal method distribution 
of malignant tissues are defined using probabilistic 
density function, whereas in wavelet method, we 
analyze mammograms in several scales that do not 
need to measure statistical distribution for detection of 
microcalcification. In fractal‑based method study of the 
texture of mammograms, shape indicates benign cancers 
have certain shapes that are very small, and they appear 
as negative predictive value (NPV), and as such it is better 
than wavelet approach. Therefore in the nomination of 
PPN by fractal and wavelet parameters, we suggest to 
use fractal parameters with higher weight for detection 
of benign cancers and wavelet parameters with higher 
weight for detection of malignant cancers. From this 
table, it’s clear that the combination of these methods 
leads to better results than using either of fractal‑based 
or wavelet‑based methods alone. This may be explained 
by noting the fact that fractal method is sensitive to tissue 

Figure 5: The general structure of probabilistic neural network
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texture while wavelet transform is sensitive to edges of 
cancerous regions. As such combination of the fractal base 
method and wavelet transform results in a high success 
rate to differentiate the malignant lesion from benign 
ones.

RESULTS

Detection of Cancerous Zones

In this study, 127 mammograms, which were used for 
the detection of tumor lesions and microcalcifications, 
are selected for this study. The cancerous zones were 
marked by radiologist by a circle. Figure 6 shows sample 
malignant and benign images which to determine the 
fractal dimension, it is first divided into equal segments 
of size 3 × 3. Each of these images was of N1 × N2 pixels 
and N3 grayscale area. r and n are a collection of segments 
obtained from N1 × N2 pixels of the original image where 
r is a collection of disjoint cells and set n is a collection of 
cells not contained in r. The fractal dimension of different 
regions is then calculated using Eq. 2 and after applying a 
threshold, they are segmented from the original image and 
placed on the original image. Note that based on choosing 
the threshold value we were able to obtain both cancerous 
zones and microcalcifications. Figure  7 shows results of 
applying the F1W2 method as discussed in section II. C, 

for extracting microcalcifications and cancerous zones in 
sample images. The results shown in the circle are defined 
by radiologists who marked them as microcalcification and 
cancerous zones.

Thresholding of Intensity Levels

In this section, we examine the effect of the threshold of 
intensity levels on the detection results by using wavelet 
sub‑bands as applied on fractal boxes images derived from 
fractal modeling algorithm. The main reason to apply the 
maximum level threshold on fractal dimension of matrix, 
which is related to 3 × 3 blocks of original images, comes 
back to box‑counting algorithm that we have used for the 
detection and segmentation of cancerous zones. According 
to the fractal theory, we have to consider the truth that 
the complexity of the boundaries is exactly related to 
the fractal dimension of images, and hence it is rather 
rational to accept this concept that some regions with 
regular shapes and smooth boundaries have the lower 
fractal dimension means than others. On the other hand, 
in contrast to breast tissues, the cancerous regions that 
involve cancerous regions have irregular boundaries with 
high‑level gray scales in mammograms. Thus according 
to the formula 3, these regions have a greater fractal 
dimension than none cancerous regions as such grounds 
cause us to choose the maximum level of the threshold 
for the segmentation of the cancerous regions candidates. 
After the separation of cancerous blocks with the fractal 
algorithm and the application of wavelet transform, we 
apply Otsu’s threshold to detect cancerous zones and 
determine the quantity of their variance. We consider that 
the cancerous zones have higher gray scale level than other 
regions; therefore, we nullify regions, which have lower 
gray scales in contrast to Otsu’s threshold level. Table  2 
shows that three characteristics of features of sensitivity, 
specificity and accuracy for all cases which examined in 
light of the change in the threshold level for detection 
of cancerous zones. In this table, detection of cancerous 
regions are evaluated based on FN  (false diagnosis of 
noncancerous zones), TN (true diagnosis of noncancerous 
zones), TP (true diagnosis of cancerous zones) and FP (false 
diagnostic of cancerous zones) evaluation results. From 
these measures set of secondary parameters such as 
accuracy, sensitivity and specificity of the detection results 
are extracted. Measurements results in Table  1 indicate 
the extent to which detected regions by the radiologist 
are compatible with those of selected by the algorithm. 
In fractal detection and segmentation, we note that Max 
threshold is not selected manually, where it is determined 
based the algorithm in which the mean of fractal dimension 
of each of the blocks of original image is determined and 
compared with other blocks means. If the integer values 
of the mean are more than or equal to those belonging to 
neighboring blocks, this block is selected as a candidate 
block.

Figure 6: Detection of microcalcifications and cancerous zones by F1W2 
method in sample images from MIAS database, original images (left column, 
from top to bottom: mdb001, mdb209, mdb213, mdb214, mdb231), 
Segmented regions using Fractal method,  (middle column), Detected 
microcalcifications and cancerous zones by F1W2 approach (right column)
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Figure 7: Segmentation of cancerous regions by fractal modeling for a malignant (top row) and benign images (bottom row), (a and e) original images (mdb209, 
mdb212), (b and f) detected region using fractal‑based method, (c and g) cancerous region boundary, (d and h) locating cancerous regions on the original 
images

dcba

hgfe

CONCLUSION

The use of the F1W2 seems to be a rather sophisticated 
approach for the detection of microcalcifications and 
cancerous zones since by applying F1W2 in mammograms; we 
can benefit from both fractal modeling and multi‑resolution 
wavelet transform techniques. Basically, fractal modeling 
of images and the extraction of the sub‑images with 
higher fractal dimension rather than other sub‑images are 
important by focusing on the texture of original images 

and searching between depths of pixels with various gray 
scale levels to detect the complex textures. This method 
is efficient, considering that we could select the regions 
with a high probability of details and some information 
about cancerous zones in contrast to breast tissues which 
are normal. By reviewing the detection and segmentation 
fractal modeling results  [Figure 6], we can recognize that 
the fractal modeling of images are not related to the 
arrangement of microcalcifications or their structures 
as this method only detects the boundary of sub‑images 
that are candidates for cancerous regions. But details are 
important, and we should detect the concentration of 
cancerous zones that fractal modeling did not give us an 
overview about their structures or variances. At this stage, 
decomposition of fractal sub images with wavelet transform 
to subband images in different resolutions can be significant 
approaches that we have represented in this article (F1W2). 
By using these techniques, we can explore the cancerous 
zones’ structures and arrangements to be able to use the 
results of such benefits to classify these cancerous regions 
to benign and normal or malignant cases in the next 
article. However, the F1W2 is a powerful approach since via 
wavelet transform on fractal segmented sub‑images, we can 
reduce noises by nullifying the coefficient of high‑frequency 
scales at the first level of decomposition; likewise, we can 
remove the background by nullifying the coefficient which 
is related to the sub‑images of low‑frequency scales at the 
third level decomposition. Hence, we can reconstruct a new 
image according to our changes to detect the arrangement 
of cancerous zones’ structures and increase the efficiency 
of our algorithm. The results which are related to the F1W2 
detection approach are shown in Figure 7.
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Table 1: Performance of three different methods and 
classification results using the output of probabilistic neural 
network

Method

Fractal‑based Wavelet‑based F1W2

Accuracy 76 80 92
Sensitivity 81.81 83.34 92.31
Specificity 71.34 76.93 91.67
Malignancy prediction evaluation 69.23 76.93 92.31
Benignancy prediction evaluation 83.34 83.34 91.67

TP +TN TP TN
Accuracy = , Sensitivity = , Specificity = ,

TP +TN+FP +FN TP +FN TN+FP
TP TN

PEM= , PEB=
TN+FP TN+FN

Table 2: Illustration of characteristic features of sensitivity, 
specificity and accuracy as influenced by selection of 
Otsu’s method and maximum level threshold under F1W2 
approach
Case Specificity Sensitivity Accuracy

Masses 0.3218 0.9614 0.8911
Microcalcifications 0.3189 0.8917 0.8899

TP +TN TP TN
Accuracy = , Sensitivity = , Specificity =

TP +TN+FP +FN TP +FN TN+FP
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