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A B S T R A C T

This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). 
In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from 
sub‑bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is 
processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation 
is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from 
modified top‑hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidate regions for OD are 
enhanced by removing blood vessels from the FFA image, using multi‑structure elements morphology, and modification of FDCT coefficients. 
Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. 
At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of 
the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on 
the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The 
experimental results show the accuracy more than 93% for vessel segmentation and more than 87% for OD boundary extraction.
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INTRODUCTION

Diabetic retinopathy (DR) is usually a leading cause of blindness 
and vision reductions all over the world. A  vision screening 
can be used to detect retinopathy for people who all are at 
a risk for eye diseases. Detection and localization of main 
structures in the retinal images, like blood vessels and optic 
disk (OD) region, have an important role in diagnosis system 
of DR and some other diseases. Manually extractions of these 
structures are very time consuming in retinal images and its 
accuracy (ACC) depends on the user skill level. For this purpose, 
many methods have been proposed for vessel segmentation 
and OD localization. A  few methods of vessel segmentation 
and OD detections are explained in the following: Retinal vessel 
segmentation and description of characteristics of the blood 
vessels, such as length, width, branching patterns, and angles 
can be used as an important tools for evaluation of the retinal 

disorders, macula and OD detection, diagnosis, and screening 
of various cardiovascular and ophthalmologic diseases, and 
laser surgery.[1-3] According to Fraz,[1] vessel segmentation 
methods can be done in five main categories: (1)  Pattern 
recognition, (2) matched filtering, (3)  vessel tracking/tracing, 
(4) mathematical morphology, and (5) multi‑scale approaches. 
In each category, several methods are reported in the study 
by Fraz.[1] Pattern recognition techniques can be divided in 
two categories: (1) supervised methods, and (2) unsupervised 
methods. An approach based on the back‑propagation neural 
network is described for the segmentation of blood vessels 
in angiography.[4] Two‑dimensional  (2D) Gabor wavelet 
and supervised classification is used for retinal vessel 
segmentation.[5] The feature vectors are formed by the pixels 
intensity and 2D Gabor wavelet coefficients. An algorithm 
based on feeding a seven‑dimensional feature vector composed 
of gray‑level and moment invariant‑based features are given 
to supervised neural network, to extract the vessels.[6] The 
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approach can be considered as matched filter method.[7‑9] A 
2D linear kernel with Gaussian profile is introduced for vessel 
detection.[7] Since, a vessel may have any angle, the kernel is 
rotated in 12 different directions and maximum response in each 
pixel is retained. Amplitude‑modified second order Gaussian 
filter has been proposed for blood vessel segmentation.[8] Also, 
a 2D Gaussian matched filter is used for vessel enhancement, 
and then a neural network is applied to vessel detection.[9] 
A tracking method with Gaussian and Kalman filters for vessel 
segmentation in retinal images is proposed.[10] The second 
order matched filter is used for centerline estimation and then 
tracking process is started. The Kalman filter is applied for the 
estimation of next vessel location. Also, a modular supervised 
method for vessel segmentation is proposed.[11] The image 
background is normalized for nonuniform intensity variations 
using scale space theory and a supervised optimization 
procedure is applied to determine the optimal scale.

OD region localization is an important landmark feature 
in retinal image analysis, and its diameter is usually used 
as a reference for fovea region detection. OD is usually 
characterized as a brighter component than the rest of 
ocular fundus from which the blood vessels and optic nerves 
emerge from it. Recently, many methods are proposed for the 
OD segmentation. Principle component analysis (PCA) is used 
to extract OD even for images with bright lesions.[12] In this 
method, a training set using the brightest pixels are produced 
as OD candidate regions and then, PCA is incorporated to 
project a new image to disk space. Hough transform method 
is proposed to locate OD.[13] In this method, a circular region 
is found by first isolating the brightest area in the image 
using morphological operators and then, a Hough transform 
is implemented to detect the circular area features within 
the gradient image resulting from region of interest  (ROI). 
A geometrical directional pattern of the retinal vascular system 
is used to embed information on the OD location which is the 
point of convergence of the vessels.[14] OD is detected using 
a vessels direction matched filter from normalized digital 
fundus images.[15] At first, the retinal vessels are detected by 
a standard 2D Gaussian matched filter. Then, the detected 
vessels are thinned and filtered using local intensity to 
represent OD center candidates. OD region is detected by the 
combination of fast discrete curvelet transform (FDCT) and 
level set deformable model in color images.[16] In this method, 
OD region candidate is extracted using modified curvelet 
coefficients and canny edge detector and then, the boundary 
of OD is extracted by level set deformable model.

This paper presents an automatic system to detect main 
structures, such as OD and vascular tree, in the fundus 
fluorescein angiogram  (FFA) images. The overview of the 
proposed method is explained in Section II. The proposed 
method for vessel segmentation that is a modified version 
of proposed method whichis described in Section III.[17] 
This method contains three main phases: (1) Preprocessing, 
(2)  centerline extraction using information about the first 

order derivative and eigenvalues obtained from the Hessian 
matrix of FDCT sub‑bands, and (3) tree vessel segmentation 
using region growing algorithm. After the segmentation of 
blood vessels from the FFA images, OD boundary is extracted 
using a four‑phase algorithm. This method is described in 
Section IV and includes: (1) Removing vessels, (2) candidate 
OD regions detection using canny edge detector and Hough 
transform, (3)  detecting actual location of OD, using the 
information of main arc of retinal vessels around the OD 
region, and (4) extracting OD boundary based on the distance 
regularized level set evolution (DRLSE) model. After explaining 
the proposed method in this paper, the experimental results 
on the FFA images of the Isfahan central eye clinic and the 
images of DRIVE database are presented in Section V. Finally, 
Section VI contains the main conclusions of this paper.

OVERVIEW OF THE PROPOSED METHOD

The functional block diagram of the proposed method in 
this paper for vessel detection and OD boundary extraction 
is shown in Figure 1.

Figure  1: Functional block diagram of proposed method. The proposed 
method for extraction of the blood vessels and of the optic disk location is 
shown in the left and right columns respectively
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The left column of Figure 1 shows the proposed algorithm 
for segmentation of the blood vessels, where involves three 
basic processing phases:
1.	 Preprocessing for reduction of background intensity 

variation and contrast enhancement of thin vessels.
2.	 Extraction of vessel centerlines, which this phase 

involves three sub‑steps as follows:
•	 First step: Making a set of directional images and 

extracting initial candidate centerlines based on 
the information of the first order derivative and the 
eigenvalues from the Hessian matrix

•	 Second step: Evaluation of the centerline segments
•	 Third step: Connection of the directional images 

resulting from two previous steps and removal of 
the false‑edges.

3.	 Vascular tree segmentation, for complete segmentation 
of the tree vessels, which combines the vessel centerlines 
with the set of the images resulting from modified 
top‑hat transform followed by bit plane slicing.

The right column of Figure 1 shows the proposed algorithm 
for extraction of OD boundary, which includes four main 
processing phases:
1.	 Contrast enhancement of the OD region through 

removing of the blood vessels by using a sequence of 
dilation and erosion morphological operators.

2.	 Detecting candidate regions for OD, where this phase 
includes two sub‑steps as follows:
•	 First step: Applying FDCT to the image resulting 

from the contrast enhancement of the OD region 
phase and modification of the curvelet coefficients.

•	 Second step: Applying canny edge detector and 
Hough transform on the reconstructed image from 
the modified coefficients curvelet.

3.	 Detecting convergence point of vessels in order to find 
the actual location of OD. According to geometrical 
structure of the blood vessels, main arc of the vessels can 
be approximated by two lines in directions of 75° and 105° 
and the intercept point of these two lines can be defined 
as convergence point of the retinal vessels. The actual 
location of OD region is obtained using evaluation of the 
Euclidean distance between the centers of OD candidate 
regions and the convergence point of the retinal vessels.

4.	 Extracting OD boundary based on the DRLSE model.

The details of each one of these phases are described in the 
next sections.

VESSEL SEGMENTATION

Image Preprocessing

The image‑preprocessing consists of two main phases as 
follows:
1.	 Reduction of the background intensity variation: The 

background intensity variation of the retinal images 
makes some of the characteristic of retinal images (e.g., 
retinal capillaries) to become hardly visible which affects 
the outcome of the vessel segmentation. Therefore, the 
background intensity variations are reduced by applying 
nonlinear diffusion filtering on the original image.[18]

2.	 Contrast enhancement of the thin vessels: To enhance 
contrast of thin and small vessels, the image resulting from 
nonlinear diffusion filtering is processed by a sequence 
of modified top‑hat transform iteratively,[19] using 
multi‑structure elements morphology. In this paper, the 
structuring elements with size 7 × 7 pixels are made in 12 
different directions with resolution 15°. The detail of the 
production of structuring elements is available in Eq. (1), 
which represents the modified top‑hat transform:[19]

Top Hat− = − •I I I S S Imin(( ) ; ) � (1)

Where, I is the output of the nonlinear diffusion filtering 
to be processed, S is represented for the multi‑structuring 
elements morphology ● and ○ are morphological closing 
and opening operators respectively. Then, the set of the 
images obtaining from the modified top‑hat transform by 
12 multi‑structuring elements are combined.[19] Figure  2 
shows the results of this section.

Vessel Centerlines Extraction

Selection of initial candidate centerlines
Since, the retinal blood vessels have a range of different 
sizes and also can occur in different directions, the analysis 
of a set of the directional images (and their combinations) 
in different sizes of the blood vessels’ diameter would be 
informative. So, at first, a set of the directional images 
based on sub‑bands of FDCT is made and then each of these 
directional images is processed in different sizes blood 
vessels’ diameter for extracting initial candidate centerlines 
as following:

Figure 2: (a) Fundus fluorescein angiogram image. (b) Output of nonlinear 
diffusion filtering. (c) Output of modified top‑hat transforms

c
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FDCT is a multi‑scale and multi‑directional decomposition.[20] 
At first, FDCT is applied on preprocessed image (resulting 
from Section IIIA). Then, to reconstruct a set of the directional 
images from the FDCT coefficients, and all coefficients in a 
specific direction in different scales is preserved, and others 
are set to zero. In this paper, FDCT via wrapping is applied 
in 5 scales and 16 directions in the second scales, which 
makes 32 directions in 3rd and 4th scales and 64 directions 
in 5th scale. Figure 3 shows a set of the shaded directional 
wedges in the second to fifth scales which make the first 
directional image. Under this framework, the number of 
directional images would be the half number of directional 
sub‑bands in the second scale. So, directional images with 
frequency contents [3π/4–(i–1)π/8    3π/4–iπ/8] for 1 ≤ i ≤ 8 
are obtained, that is, each one of the directional images is 
averagely directed in the angle defined by:
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( / ( ) / ) ( / / )
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i i

i
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− − + −

≤ ≤
2 8 1 8 2 8 8

2
1 8
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According to Gaussian profile of vessels and reduction of 
intensity values from vessel centerlines to vessel edges in 
the FFA images, a pixel from the directional images belongs 
to vessel centerline, if its intensity value is greater than a 
threshold. So, we would have eight images Ii, for 1 ≤  i ≤ 8, 
which represents the final directional images resulting from 
this step. Figure 4 shows the directional images Ii, for1 ≤ i ≤ 8.

To process the information of the blood vessels at a specific 
direction and different scales of the blood vessels’ diameter, 
each one of the directional images Ii is convolved with a 
Gaussian kernel G (x.y; s(j)) of variance s2(j) according to 
Eq.  (3). Since, the diameter of the blood vessels change 
logarithmically, s(j) can be defined by Eq. (4).[21]
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In Eq. (3) and (4), 1 ≤  i ≤ 8, 1 ≤  i ≤ Ns, s(j) is length of the 
Gaussian kernel, Ns is the number of scales and a, b are 
minimum and maximum radius of the vessels. In this paper 
based on the dataset a, b, and Ns are considered as 0.4, 2, 
and 5 respectively. The Gaussian kernel is defined as:
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So, Ii,s(j) in Eq.  (3), contains structures with characteristic 
length <s(j), which are directed in angle q (i).

Also, derivatives of a directional image can be approximated 
by a linear convolution of the directional image with scale 
normalized derivatives of the Gaussian kernel as following:

∂ = ⊗ ∂n
i s j i

n nI x y I x y s j G x y s j, ( ) ( , ) ( , ) ( ) ( , ; ( )) � (6)

Where, n is the order of the derivative.

In this paper, to extract initial candidate centerlines, each 
pixel of the directional images Ii,s(j) is processed using the 
information of the eigenvalues of Hessian matrix and the 
first order derivative of Ii,s(j). On the other hand, to calculate 
eigenvalues of the Hessian matrix with less sensitivity noise, 
the vessels in each directional image Ii must be aligned 
with the x‑axis.[22] For this purpose, coordinate axis in each 
directional image Ii is rotated with q(i).[22]

Under this framework, the analysis of the first order 
derivative of Ii,s(j) and the eigenvalues of Hessian matrix 
is done. The pixel belongs to centerline if the following 
criteria are satisfied:

Evaluation of the first order derivative of the 
directional images
For this purpose, the first order derivative of the directional 
images Ii,s(j) is calculated along x‑axis as:
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Then, each pixel of resulted images from Eq.  (7) is 
investigated for the change of signs of the two its 
neighboring pixels on perpendicular direction to the 
direction of the corresponding directional image.

Eigenvalue analysis
For this purpose, the Hessian matrix for each pixel of 
directional images Ii,s(j) is defined as:
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In Eq. (8), 1 ≤  i ≤ 8 and 1 1 ≤ j ≤ 5. Also, each one of the 
elements of the Hessian matrix is calculated by Eq. (6).

Figure 3: Directional wedges in specific direction in second to fifth scales for 
making first directional image
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Assuming the eigenvalues, l1 and l2, for each pixel of the 
directional images Ii,s(j), a pixel from the image belongs to 
vessel centerline, if the largest eigenvalue from the Hessian 
matrix is negative. So, each directional image Ii,s(j) is searched 
for the negative eigenvalue with the maximum magnitude. At 
the next step, the histogram of the negative eigenvalues with 
the maximum magnitude is calculated for each directional 
image Ii,s(j). The histogram is automatically divided into two 
parts using Otsu threshold algorithm. Each pixel with the 
eigenvalue greater than Otsu threshold belongs to an initial 
centerline point. For those pixels, which are below the Otsu 
threshold, their means and standard values are calculated 
and each pixel which is greater than the sum of mean and 
standard value is assigned to an initial centerline point.[23]

Evaluation of centerline candidate segments
Evaluation of centerline selected segments is done in three 
steps:
•	 At first step, for each pixel from directional images 

resulting from previous section, the intensity and 

Euclidean norm of eigenvalues are multiplied together. 
Then, the maximum value of this feature is calculated 
for each pixel in a specific direction on all scales of 
Gaussian kernel. Figure  5 illustrates the directional 
images resulting from this step

•	 At second step, the directional images resulting from 
the first step are combined together according to first 
column of Table 1. Therefore according to third column 
of Table 1, there will be just four main directions for 
the images. Figure  6 shows four directional images 
obtained from Table 1

•	 At third step, the intensity feature of each candidate 
segment in four directional images [Table 1] is calculated 
using geometric mean between the mean and maximum 
intensity values of the candidate segment.[23] Then, 
the histogram of all candidate segments’ intensities 
in each directional image is automatically divided 
into two parts using Otsu threshold algorithm. Then, 
for those pixels which are below the Otsu threshold, 
their minimum, maximum and standard deviation are 

Figure 4: (a‑h) The figure shows a set of directional images, Ii for 1 ≤ i ≤ 8, which is averagely directed in the angles 33.75°, 11.25°, 168.75°, 146.25°, 123.75°, 
101.25°, 78.75° and 56.25° respectively

d

h

c

g

b
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e

Figure 5: (a‑h) Set of directional images resulting from evaluation of two features intensity and sum of squares of the eigenvalues on the scales of Gaussian 
kernel
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calculated and two thresholds T1 and T2 are defined as 
geometric mean between the minimum and standard 
value and geometric mean between the maximum and 
standard value, respectively. The candidate segments 
with intensity value greater than T2 are considered 
as vessel centerlines and candidate segments with 
intensity value smaller than T1 are removed from the 
image.

In the next section, the candidate segments with the 
intensity feature greater than T1 and smaller than T2 are 
processed in order to obtaining the actual centerline 
segments.

Connection of directional images and false‑edge 
removal
The directional images resulting from previous section are 
connected together in two phases:
1.	 All the centerline segments with the intensity value 

greater than T2 of the corresponding directional image 
are jointed together as shown in Figure 7. The obtained 
image contains the main and large vessels of the 
original image

2.	 The centerline segments with the intensity value 
greater than T1 and smaller than T2 are jointed together 
as shown in Figure 8. The obtained image contains thin 

and small vessels and also a few nonvessel structures 
of the original image. The nonvessel structures in the 
resulted image are removed in the following main 
steps:

Micro‑aneurysms  (MAs) are the first sign of DR with the 
similar intensities of the vessels in the FFA images. These 
nonvessel structures can be observed as more bright spots 
close to thin and small vessels. To remove these nonvessel 
structures from the image, at first the candidate segments 
with length smaller than an experimentally determined 
threshold are considered. Length of the candidate segment 
is calculated by maximum number of its pixels in vertical 
or horizontal direction. Then, maximum and minimum 
intensities of every candidate segment are considered from 
the resulted image in Section IIIA. The pixel with maximum 
intensity is removed from the image, if difference between 
maximum and minimum intensities is greater than T = 50. 
This procedure is repeated until no more pixels are removed.

In this step, each pixel from candidate segments with length 
value smaller than T = 25 is labeled as a branch, end or 
curve point by the number of 8‑adjanced pixels according 
to the following rule:
•	 n8 = 1  end‑point
•	 n8 = 2  curve‑point
•	 n8 ≥ 3  branch‑point.

Since, MAs can be observed as brighter spots close to thin and 
small vessels, pixels labeled as branch-point are removed from 
the image. This is because, they may be the result of MAs.

Finally, two images resulting from this section are jointed 
together into a binary image and the connected components 
with the area smaller than T  =  9 are removed from the 
image. Figure 9 shows vessel centerlines image.

Vascular Tree Detection

Till now we have obtained the centerline of vessels. In 
order to extract the final vascular tree the following region 
growing algorithm is applied.

Aggregated images generation
In this step, the original image is processed by applying a 
sequence of the modified top‑hat transform by the circular 
structuring elements according to Eq.  (9), where Sc and So 
are respectively represented the structuring elements for 
closing (●) and opening (○) operators.[22]

top hat I I I S S Ic o− = − •( ) min(( ) ; ) � (9)

In Eq.  (9), the morphological close operator, which is a 
dilation followed by erosion, is applied to generate a smooth 
version of the original image and erase the variation of 
background. A circular structuring element of radius 1 pixel 

Figure 6: (a-d) Four directional images resulting from Table 1 (diagonal 45°, 
horizontal, diagonal 135° and vertical)

dc

ba

Table 1: Angels of directional images
Directional 
image of Figure 5

Angle of directional 
image (Ɵi)

Approximated 
angle

(b) 11.25° 0°
(c) 168.75°
(a) 33.75° 45°
(h) 56.25°
(f) 101.25° 90°
(g) 78.75°
(d) 146.25° 135°
(e) 123.75°
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is considered for closing operator. The opening operator, 
which is an erosion followed by a dilation, is applied to 
remove those vessels from the image which are smaller 
in size than the defined structure element. Since retinal 
blood vessels have a range of different sizes, the circular 
structuring elements with various radius, 1, 2, 3, and 4 
pixels are considered for opening operator. Each of the four 
final images resulting from modified top‑hat transform in 
Eq.  (9) represents the objects of image with size smaller 

than the structuring element used for the corresponding 
opening operator.

Then, to reconstruct potential segments of vessel in each 
of four directional images resulting from Eq. (9), each one 
of these images is represented in the form of bit planes, 
ranging from bit plane 1 to bit plane 8. Bit plane slicing can 
be used as a useful tool for separating different parts of an 
image. Table 2 shows bit plans considered for each one of 

Figure 7:  (a‑d) Centerline segments with the intensity feature greater than threshold T2  (diagonal 45°, horizontal, diagonal 135° and vertical).  (e) Image 
resulting from connection of candidate segments in (a‑d)

d

cba

e

Figure 8:  (a‑d) Centerline segments with the intensity feature greater than threshold T1 and smaller than T2  (diagonal 45°, horizontal, diagonal 135° and 
vertical). (e) Image resulting from connection of directional image in (a‑d)
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the four images resulting from Eq. (9). The other bit plans 
result more details of images and can be appeared as noise 
in the final image of vascular tree. Finally, the summation 
of bit plans considered for each one of the resulted images 
from Eq.  (9) is calculated according to Table  2. Figure  10 
shows four images resulting from analysis of bit plans slicing. 
Four images obtained from this section, are considered as 
aggregated images for region growing algorithm.

Vessel filling
The final image of the vascular tree is obtained by combining 
vessel centerlines resulted from Section IIIB with the four 
images resulting from the analysis of bit plans slicing in 
previous phase using the simple region growing algorithm 
as shown in Figure 11.

According to Figure  11, in the first iteration, the vessel 
centerlines image is used as seed points and the 
reconstructed image from top‑hat transform with the 
smallest structuring element for opening operator is used as 
an aggregated image for a simple region growing algorithm. 
In each of the subsequence three iterations, according to 
Figure 11, the reconstructed images from top‑hat transform 
with increasing size of structuring element are used as 
seed points and outputs of the previous region growing 
steps are used as aggregated image. The final vascular 
tree segmentation is obtained after implementation of the 
region growing algorithm in the fourth iteration. Figure 12 
shows vessel centerlines and final vessel segmentation 
using the proposed method.

OPTIC DISK BOUNDARY EXTRACTION

Optic Disk Contrast Enhancement

OD region extraction can be used as a marker to determine 
fovea in retinal image and also, has an important role in DR 
diagnosis. OD in the FFA images is characterized as a bright 
disk with intensity similar vessels. Given that, the vessels 
and OD are both bright structures in the FFA images. So, 
in order to extract OD boundary, at first blood vessels are 
removed from retinal image. Since, the retinal blood vessels 
can occur in different directions; to remove blood vessels, 
the FFA image is processed by a sequence of the dilation 
and erosion operators, defined by Eq.  (10), using the 
multi‑structuring elements. As mentioned in Section IIIA, 
structuring elements with size 7 × 7 pixels are considered 
in 12 different directions with resolution 15°. In Eq.  (10), 
I is the original image, S is multi‑structuring element \oplus 
and \ominus are dilation and erosion operators respectively.

F I S S= ⊕(( ) ) � (10)

Each output image from Eq. (10) shows vessels in the same 
direction of the corresponding structuring element. So, the 
minimum response in each pixel is calculated for 12 images 
resulting from Eq.  (10) for vessels removal. At next step, 
to reduce OD fluctuations, the image resulting from vessel 
removal algorithm is processed by dilation and erosion 
morphological operators using a disk structuring element 
with radius of 5 pixels.[16] Figure 13 shows the results of this 
section for OD contrast enhancement.

Identification of Optic Disk Candidate Regions

In this section, the candidate regions for OD are extracted 
in two main steps:
Step 1: FDCUT is a multi‑directional decomposition approach, 
which its large coefficients correspond to the bright objects 
in the image.[16] OD in the image resulting from Section IVA 

Figure 9: (a) Figure 7e. (b) Figure 8e. (c) Detected vessel centerlines

c

ba

Figure 10: (a‑d) The images resulting from analysis of bit plans slicing

dc

ba

Table 2: Bit plans considered for reconstruction images 
resulting from top-hat transform
Radius of structuring element SO Bit plans used

1 pixel 3,4,5,6 and 7
2 pixel 5,6 and 7
3 pixel 5,6 and 7
4 pixel 6,7 and 8
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appears as a bright object, regardless of the background 
intensity variation. So, OD location can be approximately 
determined by transforming the enhanced image using FDCT 
via wrapping and modifying FDCT coefficients by a function 
Dc with the exponent of P which is defined by Eq. (11).[16]

Dc (x) = xp� (11)

In this paper, P = 15 is experimentally selected for modifying 
FDCT coefficients. Then, the invers FDCT is applied to 
modified coefficients to distinguish OD candidate regions 
from other regions of the image. Figure 14 shows the results of 
reconstruction of the modified FDCT coefficients for Figure 13.

Step 2: In this step, canny edge detector is applied on the 
image resulting from the previous step. The background 
intensity variation around OD region has caused un‑circular 

structures for OD candidate regions. So, Hough transform 
is used for reconstructing OD candidate regions resulting 
from canny edge detector with the un‑circular structures in 
range of radius.[12] Figure 15 shows the results of this step.

Actual Location of Optic Disk Region

Actual location of OD region is determined in three main 
steps:  (1) Extracting the main arc of the retinal vessels 
around OD region, (2) Determining vertex of the main arc 
of the vessels in the retinal images (convergence point for 
retinal blood vessels), (3) Evaluating the Euclidean distance 
between the centers of OD candidate regions and vertex of 
the main arc of the retinal vessels.

Extracting the main arc of the vessels
The main arc of the retinal vessels around OD region is 
extracted according to the phases:
Step 1: According to structure of main arc of the retinal 
vessels around OD region, the image resulting from vessel 
extraction algorithm,  [Figure 12b] is processed by opening 
operator using the multi‑structuring elements with size 7 × 7 
pixels which are directed in angles of 75° and 105°. Then, 
summation of these two images is considered for the next 
processes. The results of this step are shown in Figure 16.

Step 2: In this step, to determine main arc of the retinal 
vessels, the length of vessel candidate segments resulting 
from previous step is calculated by considering the number 
of pixels in vertical direction. Then, mean and standard value 

Figure 11: The proposed method for vessel filling

Figure 13: (a) Original image. (b) Optic disk contrast enhancement

ba
Figure 14:  (a) Optic disk contrast enhancement.  (b) The image resulting 
from reconstruction of the modified fast discrete curvelet transform 
coefficients

ba

Figure 12: (a) Detected vessel centerlines. (b) Final vessel segmentation

ba



Soltanipour, et al.: Automatic analysis of fundus fluorescein angiogram

Journal of Medical Signals & Sensors

150 Vol 5  | Issue 3  |  Jul-Sep 2015

of the distribution of length of vessel candidate segments 
are calculated and the candidate segments with the length 
smaller than total mean and standard value are removed from 
the image. Afterward, the center of mass of each segment 
remaining from previous step is calculated and Euclidean 
distance between its center of mass and center of mass of 
other segments is computed. Then, pair of segments with 
the minimum Euclidean distances is considered and mean of 
the distribution of Euclidean distances of remained pairs is 
calculated. Finally, only pair of segments with the Euclidean 
distances smaller than the mean value is preserved and the 
others are removed from the image. So, the main arc of the 
retinal vessels is extracted by implementation of these two 
steps. Figure 17 shows the main arc of the vessels around 
the OD region.

Convergence point of the blood vessels 
determination
To determine vertex of main arc of the vessels, the image 
resulting from previous section is processed by applying 
opening morphological using two linear structuring 
elements with size 7  ×  7 pixels which are directed in 
angles of 75° and 105°, as shown in Figure 18. Then, each 
one of the two segments resulting from previous step 
can be approximated by a line connecting two endpoints 
of the corresponding segment  [violet color in Figure  18]. 
Finally, intercept point of these two lines can be defined 
as convergence point of the retinal vessels [marked by red 
color in Figure 18].

Evaluation of the optic disk candidate regions
To determine actual location of OD, at first the center of each 
one of the OD candidate regions, resulting from Section IVB, 
is considered. Then, the Euclidean distance between the 
centers of OD candidate regions and the convergence point 
of the retinal vessels is computed. Finally, the candidate 
region with the smallest Euclidean distance is considered 
as the actual location of OD. Figure 19 shows the result of 
this section.

OD Boundary Segmentation

In this section, OD region boundary is detected based on 
the DRLSE model which is defined with a potential function 
such that the derived level set evolution has a unique 
forward‑and‑backward (FAB) diffusion effect.[24] The detailed 
procedure of the DRLSE model is available.[24] In this model, 
initial contour is significantly converged toward the object 
boundary. For this purpose, the image resulted from 

Figure 17: (a) Vessels image. (b) Main arc of the vessels around optic disk 
region

ba

Figure 15:  (a and b) The images resulting from canny edge detector and 
Hough transform, respectively

ba

Figure  16:  (a and b) The images resulting from opening operator by 
multi‑structuring elements with size 7 × 7 pixels in angles of 75° and 105°, 
respectively. (c) Summation of (a) and (b)

c

ba

Figure 18: (a and b) The images resulting from processing main arc by opening 
operator using the two linear structuring elements with size 7 × 7 pixels in 
angle 75° and 105°, respectively. (c) Convergence point of the blood vessels

c

ba
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Section IVC is defined as initial level set contour. The initial 
level set contour is iteratively converged toward boundary 
object by the minimization of the total energy function:

∂
∂

= ∇ ∇ +
∇
∇

+
φ

µ φ φ λδ φ
φ
φ

α δ φε εt
d g gpdiv div( ( ) ) ( ) (

| |
) ( ) � (12)

The first term on the right hand side in Eq. (12) is the level 
set distance regularization, the second term computes 
the line integral of the function g along the zero level set 
contour of f and this term is minimized while the zero level 
set contour of f is converged at the boundary object, and 
the third term is defined for accelerating of displacement of 
zero level set contour toward boundary object in the level 
set evolution process.

The parameters used in Eq. (12) are defined as follows:
•	 ∇ is the Laplacian operator and de(x) is the smooth 

version of Dirac delta function with e  =  1.5 that is 
defined as:

δ ε ε
ε

ε
ε ( )

[ cos( )], | |

, | |
x

x
x

x
=

+ ≤
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0

À
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•	 g is the indicator function and defined by:

g
G I

=
+ ∇

1
1 2| * |σ

� (14)

In Eq.  (14) image I is calculated by the summation of the 
image resulted from Section IVA and the image resulted 
from the modified FDCT coefficients in Section IVB, in order 
to get indicator function with more ACC.

•	 GsI is the image resulting from the convolution with a 
Gaussian kernel with standard deviation s.

•	 l > 0 and a ∈ ℜ are the coefficients of the energy 
functional. Note that, if the initial contour is located 
inside the object, the coefficient a should be negative 
and otherwise should be positive. m > 0 is defined to 
control the effect of penalizing the deviation of f from 
a signed distance function.

Finally, contour f is deformed in each of iteration using 
equation f = f + f / t in order to move toward boundary 

of corresponding object. Figure 20 shows the result of this 
step for a = ‑ 2, l = 10, m = 0.2,s = 1 after 200 iterations.

EXPERIMENTAL RESULTS

Vessel Segmentation Method

Our proposed algorithm for vessel segmentation was tested 
on the FFA images of size 576 × 720 pixels from angiography 
unit of Isfahan Feiz Hospital which consist 30 images for 
normal retinas and 40 images of abnormal retinas. These 
images can be downloaded from https://sites.google.com/
site/hosseinrabbanikhorasgani/datasets‑1/fundus‑fluore 
scein‑angiogram‑photographs‑of‑diabetic‑patients 
or http://misp.mui.ac.ir/en/Fundus%20Fluorescent%20
Angiography%20Images. Since, our proposed algorithm for 
vessel segmentation was tested on the FFA images from 
several patients in different types of diabetic retinopathy 
in Isfahan Feiz hospital; in order to compare the proposed 
algorithm with other methods, our vessel extraction 
algorithm was tested on the green channel of DRIVE database 
to evaluate the performance of proposed algorithm. The 
experiments show that the proposed algorithm is more 
robust for detecting thin and low contrast vessels. The 
results of the proposed algorithm for vessel segmentation 
are shown in Figures 21 and 22, for a few samples of the 
fundus and FFA images of above mentioned databases, 
respectively. The proposed curvelet‑based vessel extraction 
algorithm according to left column of the functional block 
diagram in Figure 1 is performed by MATLAB version 8 and 
the computational time is  <2  min on 4.4 GHz processor 
CORE i5. In this paper, FDCT via wrapping is applied in 5 
scales and 16 directions is defined in the second scales, which 
makes 32 directions in 3rd and 4th scales and 64 directions in 
5th scale to produce directional images.

Figure 19: (a) Optic disk candidate regions. (b) Actual location of optic disk

ba

Figure 20: (a) Original image. (b) Summation of the image resulting from 
Section IVA and the image resulting from the modified fast discrete curvelet 
transform coefficients, in Section IVB. (c) Automated extracted optic disk 
region

c

ba
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After obtaining final vascular tree segmentation by 
iteratively combining vessel centerlines image with the set 
of images resulting from the aggregated images generation 
phase, true positive rate  (TPR), false positive rate  (FPR) 
and ACC are used to evaluate the results of the proposed 
algorithm. TPR, FPR and ACC are defined as follows:

TPR
TP

TP FN
=

+
� (15)

FPR
FP

FP TN
=

+
� (16)

accuracy
TP TN

TP FP TN FN
=

+
+ + +
( )

� (17)

Where, TP and TN are the blood vessels pixels and background 
pixels which correctly detected, respectively, FP shows pixels 
which do not belong to the vessels in the ground truth image 
but are detected as the blood vessels, and FN shows pixels 
which belong to vessels in the ground proof image but are 

detected as the background. Table 3 shows the performance 
of proposed method and other previous approaches in 
terms of TPR, FPR and ACC for DRIVE database. Also, Table 4 
shows the performance of proposed algorithm for vessel 
segmentation in terms of TPR, FPR and ACC for FFA images 
from angiography unit of Isfahan Feiz Hospital.

Optic disk extraction method

Our proposed algorithm for OD extraction has been 
evaluated on the FFA images of size 576 × 720 pixels from 

Figure 21: (a‑c) are related to images 01, 03 and 39 from DRIVE dataset, 
respectively. From top to bottom, they are the original image, green 
channel, vessel centerlines, final vessel segmentation and ground truth 
image, respectively

cba

Figure  22:  (a‑c) Related to fundus fluorescein angiogram images from 
angiography unit of Isfahan Fiez Hospital. From top to bottom, they are the 
original image, vessel centerlines, final vessel segmentation and ground truth 
image, respectively

cba

Table 3: Comparison of performance between our proposed 
method for vessel segmentation and others method on 
DRIVE database
Method TPR FPR Average accuracy

A. M. Mendonca et al.[23] 0.7344 0.0236 0.9463
J. Staal et al.[2] 0.6780 0.0170 0.9441
M. E. Martinez‑Perez et al.[3] 0.7246 0.0345 0.9344
D. Marin et al.[6] 0.7068 0.0305 0.9452
Our method 0.7068 0.0068 0.9423
TPR – True positive rate; FPR – False positive rate; FFA – Fundus fluorescein angiogram
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available dataset. The proposed method for OD extraction  
according to right column of the functional block diagram 
in Figure 1 is applied by MATLAB version 8 and the 
computational time is less than 1 minutes on 4.4 GHz 
processor CORE i5. Figure  23 shows the results of the 
proposed method for a few samples of the FFA images. 
To evaluate the results of OD extraction, a simple overlap 
measure is used, that is defined as follows:

M
n R R

n R R
a g

a g

=
∩

∪

( )

( )
� (18)

In Eq.  (18), Ra and Rg stand for the detected OD region 
automatically and manually labeled OD region by expert, 
respectively, n(Ra∩Rg) shows the number of pixels in the 
intersection of Ra and Rg and n(Ra∩Rg) shows the number 
of pixels in the union of Ra and Rg. Manual detection of the 

OD is delineated by two experts, independently. Table  5 
shows the average performance of proposed method for 
OD extraction on the defined dataset. In this table, the 
mean of the overlapping ratio for manually detected OD 
regions and the mean of the overlapping ratio between OD 
regions detected automatically and manually are calculated. 
Also, TPR and FPR of the proposed method are computed 
using (15) and (16), where TP shows the number of pixels 
that belonging to OD and are detected by our proposed 
method correctly, TN shows the number of pixels that do 
not belonging to OD and our proposed algorithm is not 
detected them as OD region, FP shows number of pixels 
that not belonging to OD but our method is detected them 
as OD region and FN shows number of pixels that belong 
to OD but our method does not detect them as OD region.

The experimental results show that our proposed method 
for OD location and boundary extraction are successful in 
both normal and abnormal images.

CONCLUSION AND FURTHER WORK

In this paper, a novel algorithm in curvelet domain is 
introduced for main bright objects in the FFA images. 
The proposed method starts with the extraction of vessel 
centerlines. For this purpose, a set of the directional images 
is made based on the sub‑bands curvelet transform. Due 
to high sensitivity of curvelet transform to the direction in 
the different scales, curvelet transform is capable of making 
directional images successfully. Then, each directional 
image is processed in different sizes blood vessels’ diameter 
based on the information of the first order derivative and 
the eigenvalues of Hessian matrix for extracting vessel 
centerlines. The final segmentation of the tree vessel is 
obtained by combining vessel centerlines with set of images 
resulting from the top‑hat transform followed by bit plane 
slicing. Since, the retinal blood vessels have a range of 
different sizes and also can occur in different directions, 

Figure  23:  (a‑c) are related to fundus fluorescein angiogram images of 
available dataset. From top to bottom, they are input image, image resulting 
from optic disk contrast enhancement phase, optic disk boundary extraction 
and manually labeled optic disk region, respectively

cba

Table 4: The performance measure of vessel segmentation 
algorithm for FFA images
Method TPR FPR Average accuracy

Our algorithm 0.7362 0.0251 0.9354
TPR – True positive rate; FPR – False positive rate; FFA – Fundus fluorescein angiogram

Table 5: The performance measure of OD extraction 
algorithm for FFA images
Method TPR

Ra, Rg1
Ra, Rg2

FPR
Ra, Rg1
Ra, Rg2

Overlapping 
ratio 

between
Rg1, Rg2

Overlapping 
ratio 

between
Ra, Rg1

Overlapping 
ratio 

between
Ra, Rg2

Our algorithm 0.8815
0.8907

0.0002
0.0001

0.8563 0.8005 0.7903

Ra  –  Detected OD region automatically, and Rg1 and Rg2 are manually labeled OD 
regions by first and second experts respectively. TPR – True positive rate; FFA – Fundus 
fluorescein angiogram; OD – Optic disk
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the analysis of a set of the directional images in different 
sizes of blood vessels’ diameter  (and their combinations) 
was suitable for extracting thin and small vessels that 
may be missed in final segmentation. Moreover, there is a 
trade‑off between extracting thin vessels and removing the 
false‑edges and background noise.

Specific characteristics of FFA images make the OD boundary 
extraction more difficult comparing to color fundus images. 
Since blood vessels and OD are both bright structures in the 
FFA images; at first blood vessels are removed from retinal 
image. Since the bright objects in images are assigned to large 
curvelet coefficients, FDCT is applied on the image resulting 
from vessel removal algorithm to determine OD candidate 
region. Regarding the structure of main arc of the vessel around 
OD region, actual location of OD is extracted using evaluation 
the Euclidean distance between the centers of OD candidate 
regions and convergence point of the retinal vessels. Finally, 
the boundary OD is extracted based on the DRLSE model, 
which has a unique FAB diffusion effect. So, the initial contour 
is iteratively converged toward OD boundary by more ACC. 
The experimental results show that the proposed method is 
valid and robust to extract OD boundary in the FFA images.

In this paper we only discussed about the use of curvelet 
transform for accurate detection of vessels and OD. The 
segmentation of other important objects in retinal images 
such as MAs, exudates and fovea region can also be done 
using the information of vessels and OD. For example, 
a simple macula detection algorithm can be used by 
connecting the vessels’ end points in a predefined ROI based 
on OD position. Or MAs and exudates could be extracted 
after removing bright objects from FFA images and using 
simple morphological operators.
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