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INTRODUCTION

Despite recent advances in cross‑sectional imaging of the 
thorax, conventional chest radiography remains as the 
main test in primary diagnosis of many diseases. In most 
cases, it is the first and only diagnostic imaging test done 
for patients to approve or reject having abnormal chest. 
An enormous amount of information about the condition 
of the patient can be extracted from a chest radiograph.[1] 
However, its interpretation is immensely challenging.

The chest’s large field of view imposes challenging constraints 
including the wide latitude of X‑ray transmission through 
the anatomical structures that results in poor dynamic 
range and limitation in depiction of minute differences 
associated with subtle low‑contrast features in the image. It 
also increases the contribution of scattered radiation to the 
image and so has the deleterious effects of increasing image 
noise and reduced inherent contrast.[1,2]

The accuracy of the diagnostic process is greatly influenced 
by image processing algorithms.[3] Image processing allows 
for significant enhancement of the visibility of the details. 
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Hence, image enhancement is indispensable in order 
to improve the perception of chest image information. 
A  wide variety of procedures are existing for enhancing 
the digital radiographic images which vary from the simple 
classic contrast enhancement techniques like histogram 
equalization  (HE) to mathematical signal processing 
techniques.[4,5] The clinical importance of chest radiograph, 
accompanied by its complicated nature, has been the prime 
motivation in most of the computer algorithms for assisting 
radiologists in investigating chest images. Nowadays, 
almost all digital X‑ray machines have been introduced 
through additional processing in order to have a larger 
dynamic range and contrast enhancements.[1]

In this study, an attempt has been made to develop a 
technique for improving the radiograph parameters 
such as contrast, sharpness, noise level, and brightness 
simultaneously. The main goals of our research are 
to provide better representation of lung details while 
improving the contrast. To this end, novel simultaneous 
adaptive local contrast equalization and noise suppression 
in digital wavelet domain is proposed. A mixed top‑hat and 
bottom‑hat morphological postprocessing accomplishes 
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the process. The method discussed here may act as the 
preprocessing stage to supply improved input data for 
further processing applications in computer‑aided diagnosis 
systems in order to enhance the diagnosis performance.[6]

The remainder of this paper is organized as follows. The 
next section describes some related works. In section 3, 
the proposed hybrid enhancement method is presented. 
A  brief description of wavelet transformation is given in 
section 3.1. Noise reduction by nonlinear thresholding and 
contrast limited adaptive histogram equalization  (CLAHE) 
are described in sections 3.2 and 3.3. Final processing 
steps, including the implementation of a combination of 
morphological filters are given in sections 3.4 and 3.5. 
Section 4 presents the results. Finally, conclusions are 
drawn in section 5.

LITERATURE REVIEW

The enhancement techniques can be generally classified into 
two types: Intensity‑based processing and feature‑based 
processing. The most common intensity based techniques 
are contrasted stretching[7] and HE.[8,9] Some HE modification 
approaches are bi‑histogram equalization,[10] multi‑peak 
HE,[11] multi‑histogram equalization,[12] adaptive histogram 
equalization  (AHE),[13] and CLAHE.[14] Pizer et al. intended to 
evaluate the clinical application of CLAHE to chest computer 
tomography (CT) images by demonstrating fast implementation 
ability.[15] Furthermore, a statistically significant improvement 
in detection performance for simulated speculations in 
dense mammograms with CLAHE was reported.[16] CLAHE is 
applied to digital chest radiographs to enhance contrast and 
the boundary artifact is reduced by means of background 
subtraction prior to applying the CLAHE algorithm.[17]

Sherrier and Johnson proposed a regionally AHE method 
to enhance chest radiographs, which perform only at the 
grid points over the mediastinum and subdiaphragm, but 
the grid points over the lung field are not processed.[4] 
Chest radiograph image is divided into three subregions 
according to the gray‑level properties, and a piecewise linear 
transformation model is applied to enhance the contrast.[18] 
The performance of HE, AHE, and CLAHE is compared.[19]

In feature‑based enhancement category the classic unsharp 
masking technique is commonly used.[20‑23] Three steps 
consist of the median filter for removing noise, followed 
by unsharp mask filter for sharpening and CLAHE are 
implemented.[23] Mean and median filtering are proposed 
for noise removal.[24] A linear phase, high‑frequency 
emphasis finite impulse response filter is offered to amplify 
high‑frequency features. Then, HE is applied on chest 
radiographs.[25] Temporal subtraction aims to suppress normal 
structures in chest radiographs resulting in the visibility 
of abnormalities.[26] A parameterized logarithmic image 
processing method based on Laplacian of Gaussian  (LoG) 

filtering is introduced to enhance lung nodules.[27] 
Hessian‑LoG filter is developed to enhance dot‑like objects.[28] 
Shuyue and Ling proposed two‑scale Retinex method. In 
wavelet domain, wavelet coefficients are manipulated for 
enhancement.[5,30‑35] A sigmoid‑type transference is proposed 
to adjust wavelet detail coefficients (for contrast improving 
chest radiographs, mammograms, and chest CT images).[34] 
In this paper, Retinex method, unsharp masking technique[23] 
and sigmoid‑transfer are implemented in order to compare 
results. The multi‑scale contrast amplification algorithm 
based on the concept of the Laplacian pyramid is presented 
to the problem of detail contrast enhancement.[36] A review 
of twelve different techniques based on local equalization, 
sharpening, fuzzy set, neural network was shortly 
discussed.[37] In order to avoid anatomical division error, 
we are looking for an approach which does not require any 
priori anatomy information and is able to be applied to most 
digital radiographic images.[4,18,20,35]

METHODS

The method starts by decomposing images using discrete 
wavelet transform  (DWT). Image denoising is done by 
processing the details coefficients using BayesShrink 
thresholding. Eliminating as much noise as possible is 
followed by image linearly sharpening based on an appropriate 
amplification of the high‑frequency details coefficients.

The low‑frequency components form the background or 
base of the image that is generally smooth and low contrast. 
However, they are usually kept unaltered due to the risk 
of image deterioration; although containing much of the 
energy distribution. In our scheme, CLAHE is applied to 
normalized low‑frequency components of chest image. Less 
potential to produce noise and visual artifacts are among 
the benefits of this method.

After applying inverse DWT, some of the highest and 
lowest intensities of normalized images are clipped to 
reduce the overall opaque. Finally, a linear combination of 
normalized input image and the morphologically filtered 
ones are employed to achieve better appearance for bright 
and dark features. Top‑hat and bottom‑hat filtering are 
generally used together to enhance contrast using a small 
and equal structuring element  (SE). Here, in a different 
manner, the size of disk‑shaped SE was selected large and 
unequal; greater SE for the bottom‑hat filters. This made us 
possible to adjust the image brightness and contrast more 
uniformly. Indeed, in this method the dark features were 
almost strengthened twice the bright ones. Figure 1 shows 
the block diagram of the proposed enhancement process.

Multi‑scale Processing

Multi‑resolution image representations facilitate analysis of 
images like a mathematical microscope. Various anatomic 
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structures of chest radiograph have very different texture 
patterns and optical densities. Multi‑resolution WT seems to 
be appropriate to analyze such images. Fast implementation 
of DWT enables real‑time processing capability.

Wavelet transform can be classified based on the 
orthogonality. Decomposing the signal on a wavelet 
orthogonal basis gives a compact, efficient representation of 
the signal, which its information is not redundant. The 2‑level 
orthogonal wavelet decomposition of chest radiographs is 
shown in Figure  2. The isolation of noise from the signal 
might be achieved more effectively by orthogonal WT. The 
use of an orthogonal basis implies the use of DWT due to the 
existence of a countable orthogonal basis set in the separable 
Hilbert space. The most known family of orthogonal wavelets 
is the Daubechies family. In this study, wavelet transform 
employs Daubechies’ least asymmetric compactly‑supported 
wavelet with eight vanishing moments.[38] Daubechies has 
proposed it as the modifications of Daubechies orthogonal 
wavelets with increased symmetry. The symmetry is useful in 
avoiding dephasing in image processing. It should be noted 
that linear‑phase implies nonorthogonality.

Denoising and Sharpening

In order to avoid noise increasing during features 
enhancement in image, the three wavelet detail bands 

coefficients  (horizontal, vertical, diagonal) are firstly 
processed by BayesShrink thresholding[39] in the four scales 
of decomposition. BayesShrink is an adaptive data‑driven 
threshold in a Bayesian framework. It is appropriate to 
improve useful high‑frequency information using a simple 
linear remapping function. The amplitude of details 
coefficients in the first scale is amplified through multiplying 
it by a constant amplification factor in order to visualize the 
fine details as:

D i j D i j( , ) ( , ),= ≥α α 1.� (1)

The constant amplification factor (α) should not be chosen 
such that it makes a too sharp image. The constant 
amplification factor was set here to 1.68. Furthermore, 
in order to preserve the order of contrasts of structures, 
the amplification factor has been selected to be constant. 
Whereas in some articles,[33,34] a nonlinear transfer function 
was employed to modify the details coefficients that seem 
to create a false image harmonic impression slightly.

Contrast Limited Adaptive Histogram 
Equalization

Histogram equalization improves contrast by flattening 
the histogram. Since HE operates uniformly on the entire 
images, it isn’t able to achieve the local contrast. To 

Figure 1: Block diagram of the proposed enhancement process
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overcome such drawbacks, generalization of HE technique 
has been proposed, beginning with AHE. AHE partition 
the image into the multiple contextual regions. There is a 
major drawback that is noise amplification in homogeneous 
regions. In order to surmount this well‑known problem, 
AHE was refined to CLAHE; described[14] and summarized.[40] 
Complete formulation of this approach is reviewed.[41] Due 
to CLAHE’s well performance, it[41] seeks to efficiently 
implement this algorithm for the enhancement of 
real‑time image sequences in order to reduce the 
processing time, although Pizer et al. accomplished some 
effort.[15] In our scheme, CLAHE transform exclusively 
applied to normalized approximation coefficients on the 
first scale of decomposition to locally enhance contrast. 
This process causes limitation in creation of visual artifacts, 
lessens being sensitive to noise and protects the important 
high‑frequency components from undesired variation. 
Moreover, fixed contextual regions cannot be adapted to 
features of different size.

In addition, although histogram techniques are attractive 
due to their simplicity, effectiveness and speed, they are 
not perfect enhancement techniques. In an attempt to 
achieve excellent results, CLAHE transform was utilized in 
combination with WT for making chest images more visual 
and noise robust.

For CLAHE implementation, the normalized approximation 
signal of chest image is divided into regions of equal 
sizes (8 × 8). The clip limit was set to 0.01 as default. The 
histogram type is specified here to Gaussian distribution. 
By applying uniform distribution, the images were almost 
opaque and soft tissue was less visible.

Normalizing and Clipping

Since the enhanced images are reconstructed from the 
modified approximation and details coefficients, they are 
processed in 3 steps [Figure 3]. The reconstructed images 
are normalized to be at its best in terms of dynamic range, 
whereas the distribution of intensities does not change. 
This is done using:

Y
X X

X Xij
ij=
−
−

min( )

max ( ) min( )
.� (2)

Where X is the input gray scale image matrix, and Y is the 
normalized output.

The output images of this step are opaque and foggy in 
way that the rectangular above the chest radiographs are 
gray while expected to be black [Figure 4]. Looking at the 
histogram of images, we can figure out that almost all pixels 
settled in the range of 100–200 gray scales and a few pixels 
exist out of this range as illustrated in Figure 5a. Clipping 
some of the highest and lowest intensities will help to 

handle this problem. In this paper, 0.1% of the highest 
and lowest intensities were clipped. The new values of 
intensities are found by linear interpolation between data 
points. After mapping the new values [Figure 5b], the image 
is normalized. The chest images in this phase are shown as 
prefinal image [Figure 6]. Histogram of the prefinal image 
is plotted in Figure 5c. Finally, the image is processed by 
morphological filters.

Morphological Filtering

Mathematical morphology is a powerful tool for processing 
of geometrical structures, which operates by probing the 
image at each pixel with an appropriate SE. Top‑Hat and its 

Figure 2: 2-level orthogonal wavelet decomposition of chest radiographs

Figure 3: 3 step dynamic range enhancement block diagram

Figure 4: Normalized reconstructed image
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dual, bottom‑hat filters extract features brighter and darker 
than the surrounding background respectively. Indeed, a 
top‑hat with a large isotropic SE acts as a high‑pass filter.[42] 
It should be noted that it is done based on intensity in the 
spatial domain.

The procedure is adding the input chest image to the 
top‑hat filtered image (in order to enhance bright features), 
then subtracting the bottom‑hat filtered image (to enhance 
dark features) using a large disk‑shaped SE. Top‑Hat and 
bottom‑hat filtering are often used together to enhance 
contrast using a small and equal SE. In this paper, we propose 
the size of SE used for bottom‑hat filter to be much greater 
than the one used in top‑hat filter. Using this method, we 
could adjust the image brightness and enhance the contrast 
notably. The SE radius is determined as 100 and 200 for 

top‑hat and bottom‑hat filter, respectively. The top‑hat and 
bottom‑hat filtered images are shown in Figure 7. Indeed, 
the dark features are almost strengthened twice the bright 
ones; considering that radiographic images are usually too 
bright, and lung fields are dark. At this stage, histogram 
of the image is almost uniform. The signal profile of the 
middle image line at each stage is plotted in Figure 8. The 
profile of the original image exhibits a gradual [Figure 8a]. 
The profile of the prefinal image exhibits a steep slope 
with a serrated edge [Figure 8b]. A serrated edge presents 
detail contrast which is low yet. Brighter and darker points 
are exhibited in the profiles of the top‑hat and bottom‑hat 
filtered images in Figure 8c and d respectively. The profile 
of the final enhanced image displays a steeper slope with a 
larger serrated edge [Figure 8e]. All the range of 0–255 gray 
scales are existed in this profile.

It should be cited that using large and equal SE and applying 
morphological filtering on the original images without the 
previous steps are not effective enough. Applying this step 
on the CLAHE transform of the original images, results 
in washed‑out lung tissues. Using a small and equal SE 
(as usual) results in noisy and unsatisfactory images.

EXPERIMENTAL RESULTS AND 
DISCUSSION

The publicly available Japanese Society of Radiological 
Technology  (JSRT) digital image database is used in this 
study. The JSRT database includes 154 conventional chest 
radiographs with a proven lung nodule and 93 normal 
cases.[43] The image size is 2048 × 2048 pixels with a spatial 
resolution of 0.175 mm pixel size, and 12 bits of gray scale.

Figure 6: Prefinal image (normalized image after clipping)

Figure 5: (a) Histogram of the normalized reconstructed image, (b) intensity remapping diagram, (c) histogram of the prefinal image

c

ba
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In order to validate the superiority and effectiveness of the 
proposed method, the subjective evaluation (the visual quality 
of chest radiographs) were made use of as well as the objective 
criteria. The objective criteria include standard deviation 
(Std), mean, local Std, local entropy, peak signal to noise ratio 
(PSNR), mean square error (MSE), and contrast, derived from 
the gray‑level co‑occurrence matrix (GLCM)[44] by:

Contrast = −
=

−

=

−

∑∑ ( ) ( , )i j C i j
j

N

i

N
2

0

1

0

1

.� (3)

Where N is the size of the GLCM; equal to the number of 
gray scales. GLCMs were computed in 8 directions and up 
to 4 distances. Local measures were calculated according 
to  MATLAB software (R2011a, MathWorks Inc. USA) defaults. 
The final values were obtained by taking the average.

Standard deviation serves as a measure of image clarity and 
contrast. Local Std and entropy provide information about 
the variability of the intensity values of pixels for texture 
analysis. These features play a notable role in visibility of 
the images details. Mean represents the average brightness 
of images.

PSNR is defined by:

PSNR= 10 log
MSE10

2255
.� (4)

Where MSE represents the Mean Square Error between the 
original and the final images and is given by:

MSE( ) [ ( , ) ( , )]X
I J

X i j X i jf f
j

J

i

I

=
×

−
==
∑∑1

0
2

11

.� (5)

For an I ×  J image. PSNR can be viewed as a measure of 
quality of one of the images being compared, if the other 
image is considered to have perfect quality. Here, there is 
no image with perfect quality, so it merely indicates the 
degree of the similarity between original and final images.

The quantitative results for 12 typical samples of original 
and final chest radiographs are shown in Tables  1 and 2. 
Final images Std is almost twice the original one. Final 
images local Std is about 8  times the original one and 
the final images contrast is almost 7  times the original. 

Figure 7: Top-hat and Bottom-hat filtered images: (a) top-hat filtered image, 
(b) bottom-hat filtered image

ba

Figure 8: Signal profile of the middle image line: (a) profile of the original image. (b) Profile of the prefinal image. (c) Profiles of the top-hat filtered image. 
(d) Profile of the bottom-hat filtered image. (e) Profile of the final enhanced image

d

cba

e
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To demonstrate superiority of the proposed method, the 
performance of applying HE and CLAHE transform on the 
original images, our algorithm with using equal SE sizes, 
and the proposed methods[23,29,34] are quantified and shown 
in Table 3, for a typical chest radiograph of the database. 
The proposed method Std is the second highest value; the 
value for our algorithm using equal SEs being the first. 

The proposed method Local Std is more than 3 times the 
CLAHE transform one. Also, it is more than the result of our 
algorithm if equal SE sizes are used. The proposed method 
Local Entropy is also more than the algorithm using equal 
SEs, which may justify our choice of SEs. The proposed 
method contrast is also more than 3  times the CLAHE 
transform one.

A computer with  Microsoft Windows 7 × 64 (2009 edition), 
Intel Core i7 CPU at 2GHz, 6 GB RAM was used for the 
processing. The computation time of the proposed 
method was 14.08 s. This time is a little more than the 
sigmoid‑transfer one and a significant amount less than the 
retinex one. The least amounts belong to the HE, CLAHE and 
the unsharp masking technique.[23] Since precision is more 
important than speed in this special medical application, 
the proposed method may outperform the compared one 
based on its generally better performance.

Visual evaluations were also performed by specialist 
radiologists in Gharazi Hospital, Isfahan, Iran. They believed 
that the view of the images was truly improved. It should 
be mentioned that among all, the soft tissue was shown 
specifically more distinguishable than before. Figures 9‑11 
illustrate three samples of original and final chest 
radiographs. Histogram of the images was also plotted in 

Table 2: Quantitative results for chest radiographs images of JSRT database
Filenames Measures

Contrast original Contrast final Local entropy original Local entropy final PSNR (db) MSE

JPCLN001 0.0396 0.2649 1.9640 2.1499 8.7736 8.6242e+003
JPCLN002 0.0413 0.2466 2.0566 1.9683 9.3520 7.5488e+003
JPCLN003 0.0306 0.2226 1.6599 2.2299 9.5075 7.2834e+003
JPCLN004 0.0384 0.2781 2.1097 2.5811 10.6893 5.5482e+003
JPCLN005 0.0321 0.2372 1.5351 1.8614 9.5955 7.1372e+003
JPCLN006 0.0431 0.2359 1.9890 2.2246 9.9266 6.6134e+003
JPCLN007 0.0371 0.2403 1.9423 1.9329 8.3426 9.5240e+003
JPCLN008 0.0434 0.2830 2.1665 2.4409 10.0483 6.4306e+003
JPCLN009 0.0345 0.2797 1.7495 2.5136 9.9610 6.5611e+003
JPCLN0010 0.0354 0.2337 1.6865 2.6211 9.9698 6.5479e+003
JPCLN0011 0.0425 0.3009 2.1525 2.5852 10.4108 5.9157e+003
JPCLN0012 0.0343 0.2605 1.6500 2.3496 10.5279 5.7582e+003
Average 0.0377 0.2569 1.8885 2.2882 9.7587 6.9577e+003
PSNR – Peak signal to noise ratio; MSE – Mean square error; JSRT – Japanese Society of Radiological Technology

Table 3: Quantitative comparison of results
Methods Measures

Std Mean Local std Local entropy Contrast PSNR Computation time (s)

MSR[29] 11.0976 214.4569 0.1533 0.3799 0.0052 16.3187 46.120409
Sigmoid‑transfer[34] 32.4652 203.0529 0.5158 1.4935 0.0210 27.6482 10.612113
Unsharp masking[23] 56.0808 180.8753 1.8598 1.5116 0.0852 17.1405 0.978574
HE 74.7224 127.4340 1.2838 1.0154 0.0586 8.9482 0.381415
CLAHE 60.3117 184.1852 1.5122 2.0955 0.0728 17.5609 0.566596
Our algorithm with equal SE 91.3730 157.1996 4.4282 1.9090 0.2014 10.0412 17.021390
Proposed method 87.0031 144.7205 5.0051 2.2299 0.2226 9.5075 14.080369
MSR – Multi‑scale retinex; CLAHE – Contrast limited adaptive histogram equalization; Std – Standard deviation; PSNR – Peak signal to noise ratio; HE – Histogram equalization; 
SE – Structuring element

Table 1: Quantitative results for chest radiographs images of 
JSRT database
Filenames Measures

Std 
original

Std 
final

Mean 
original

Mean 
final

Local std 
original

Local 
std final

JPCLN001 43.9652 86.3230 197.8401 127.2516 0.7333 5.7929
JPCLN002 51.8418 86.7640 178.2612 110.7960 0.7275 5.3792
JPCLN003 41.8425 87.0031 207.6983 144.7205 0.5981 5.0051
JPCLN004 53.8779 89.2320 184.8613 136.4335 0.8200 6.2811
JPCLN005 41.5229 87.1001 211.9886 150.7277 0.5823 5.1169
JPCLN006 54.4694 86.9565 186.1226 124.8933 0.7706 5.0585
JPCLN007 44.8364 89.3721 195.3311 118.6770 0.7109 5.4464
JPCLN008 49.7670 88.2753 180.6004 124.9202 0.8272 6.3018
JPCLN009 42.7722 84.1776 206.9167 148.8956 0.6650 5.9402
JPCLN0010 47.9404 85.2392 201.0975 140.2300 0.6113 5.1852
JPCLN0011 45.2746 89.9119 177.0733 127.3190 0.7930 6.2453
JPCLN0012 33.1737 87.9812 189.4274 147.6133 0.6018 5.3406
Average 45.9403 87.3613 193.1015 133.5398 0.7034 5.5911
Std – Standard deviation; JSRT – Japanese Society of Radiological Technology
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Figure 9: 67-year-old man with tuberculoma nodule: (a) Original chest radiograph image, (b) histogram of the original image, (c) the final enhanced chest 
radiograph image, (d) histogram of the final image

dc

ba

Figure 10: 56-year-old man with susp. hamartoma nodule: (a) Original chest radiograph image, (b) histogram of the original image, (c) the final enhanced chest 
radiograph image, (d) histogram of the final image

dc

ba
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Figures 9 and 10. As the figures show, the overall visibility, 
clarity and contrast is improved remarkably and more 
information is available. Even the almost hidden different 
nodules in the original images are now extracted to an 
extent that is expected to help the experts in detecting 
them.

CONCLUSIONS

Researchers have suggested various algorithms for general 
and/or specific parts of chest radiographs enhancement. 
In order to avoid anatomical division error, in the present 
study, we looked for an approach which does not require 
any priori information, so it can be applicable to other 
digital radiographic images. Furthermore, the proposed 
method is able to appropriately enhance the entire image 
in a way that the initial information and natural look is 
preserved. We obtained satisfactory results evaluated with 
objective and subjective criteria. According to quantitative 
results, the image parameters, especially the contrast, 
are significantly improved. The proposed method has the 
capacity to be performed effectively and efficiently since the 
implementation of algorithm is simple and global. Although, 
the proposed method is not the fastest, it outperforms 
the compared ones, based on its better performance and 
relatively acceptable complexity and speed.
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