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INTRODUCTION

A medical monitoring system is a wearable computing 
device, including a microcontroller and a transceiver to 
record human body activities and statuses.[1] Such systems 
are initially applied in the field of healthcare, especially 
for continuous monitoring and logging patients vital 
parameters. A typical of such devices is the mobile insulin 
(INS) infusion whose task is constant monitoring of diabetic 
statuses. Diabetes is a common condition caused when the 
human pancreas is unable to produce sufficient quantities 
of a hormone called INS. The World Health Organization[2] 
reported that there are nearly 180 million diabetic people, 
and this number is expected to reach 350 million by 2030; 
accordingly, the device plays an important role in diabetes 
treatment. A  diabetic person experiences hyperglycemia 
and hypoglycemia when his/her level of blood glucose 
remains high or low; which may lead to complications 
such as eye, kidney and nerve damage. To avoid these 
complications: (1) Diabetic’s blood sugar  (BS) is sampled 
by an external meter, (2) the glucose level and INS dose are 
calculated by the software device and (3) the INS is injected 
if necessary.

A B S T R A C T

To monitor the patient behavior, data are collected from patient’s body by a medical monitoring device so as to calculate the 
output using embedded software. Incorrect calculations may endanger the patient’s life if the software fails to meet the patient’s 
requirements. Accordingly, the veracity of the software behavior is a matter of concern in the medicine; moreover, the data collected 
from the patient’s body are fuzzy. Some methods have already dealt with monitoring the medical monitoring devices; however, 
model based monitoring fuzzy computations of such devices have been addressed less. The present paper aims to present 
synthesizing a fuzzy Petri‑net (FPN) model to verify behavior of a sample medical monitoring device called continuous infusion 
insulin (INS) because Petri‑net (PN) is one of the formal and visual methods to verify the software’s behavior. The device is worn 
by the diabetic patients and then the software calculates the INS dose and makes a decision for injection. The input and output of 
the infusion INS software are not crisp in the real world; therefore, we present them in fuzzy variables. Afterwards, we use FPN 
instead of clear PN to model the fuzzy variables. The paper follows three steps to synthesize an FPN to deal with verification of 
the infusion INS device: (1) Definition of fuzzy variables, (2) definition of fuzzy rules and (3) design of the FPN model to verify the 
software behavior.
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There are two types of INS doses:  (1) Basal  (small) dose 
which must be injected to the body constantly and (2) bolus 
dose which must be injected before or after meals or when 
the blood glucose level is high. The infusion device injects 
the basal INS continuously; nevertheless, the bolus one is 
calculated by the software device. Sommervile[3] showed a 
typical of continuous infusion device structure.

The infusion device technology helps patients to have 
normal and healthy life, however; at the same time, it could 
endanger the patient’s health as a safety‑critical system, 
if: (1) The device fails to operate properly,  (2) the dosage 
is calculated incorrectly or  (3) the device fails to satisfy 
the normal BS. The manufacture and user Facility Device 
Experience database maintained by the U.S. Food and Drug 
Administration[4] announced that there were over  5000 
adverse events reported for the infusion device in year 2008. 
Therefore, it is imperative to comprehensively identify risks 
and develop some solutions to prevent such events.

One way for reducing risks in such devices is verification of their 
behavior against the patient’s requirements. The high‑level 
requirements need to be satisfied by the device are as follows:
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outputs. Our proposed FPN model will be generated using 
these inputs and output, where fuzzy values will be inputs 
of the FPN model.  (2) The blue lines indicate the paths 
followed whenever the software runs. Each input to the 
model leads to traverse a path in the model and the expected 
output will be the model output. Outputs are defuzzified by 
the defuzzification inference block and finally the infusion 
output is compared with the output of our model for making 
a decision on safety block. If two outputs are the same, the 
software behavior is safe; otherwise, the software suffers 
from some hazard. We used Mathworks MatLAB 2012 to 
generate the rules and Petri‑nets (PNs) to test the rules and 
check system outputs against the safety requirements.

We continue our study as follows: In Section 2, fuzzy 
variables and fuzzy rules are defined to construct a 
rule‑base system for the infusion device. In Section 3, FPNs 
are formally introduced and in Section 4, we map the fuzzy 
rules in to FPNs. In Section 5, we deal with the related 
work and finally in Section 6, the conclusion is drawn and 
directions for the future studies are proposed.

DEFINING FUZZY VARIABLE AND FUZZY 
RULES

Fuzzy logic is a relatively new concept introduced in 1965 
by Zadeh. Fuzzy logic studies vague reasoning, with classical 
logic as special case. The central idea of fuzzy logic is to 
model the human way of reasoning in an environment of 
uncertainty and imprecise concepts. Fuzzy logic introduced 
appropriate fuzzy sets for representing certain types of 
linguistic terms that are employed in human reasoning. For 
example, a fuzzy set of truth‑values is represented as true, 
false, very true, very false, truer and less false.

The difference between crisp and fuzzy sets is established 
by introducing a membership function. A  membership 

•	 Available dose injection when required
•	 Delivering the correct dose
•	 Not delivering the unnecessary INS
•	 The device sensor should not be late/early for sampling
•	 The blood glucose should never move downward/

upwards safe‑min/safe‑max.

This paper aims to deal with verification of the device 
behaviors which are against patient’s safety requirements 
using fuzzy rules and fuzzy Petri‑net (FPN). Using the FPN, 
we propose a visual and a mathematical model through 
which one can formally verify the device behaviors against 
user’s requirements. This is carried out by determining 
hazards and unsafe statuses of the device. Five requirements 
mentioned above include variables that are not crisp in the 
real world because they have uncertain values; therefore, 
we represent them by fuzzy variables and use these 
variables to synthesize the fuzzy rules. These rules are 
used for knowledge representation of the device behavior. 
Afterwards, fuzzy rules, which are used to synthesize the 
FPNs, are applied to analyze the device behavior. The main 
advantage of this study is using a fuzzy rule‑based system 
along with the FPNs. It provides a structured knowledge 
representation in which the relationships between the 
rules in knowledge base are easily understood; moreover, 
a systemic inference capability is also provided. FPNs have 
already been used in software when needed a level of 
expertise and intelligence.[5]

Figure  1 shows our proposed model where the safety 
verification of the dose calculated by the device is carried 
out using a FPN. There are two kinds of paths in this 
figure: (1) The red ones indicate the paths which are used 
just once to build the FPN model. The fuzzification interface 
block converts input parameters to the fuzzy values, which 
are used by the inference engine to select the fired rules 
form the knowledge base. These rules are used to generate 

Figure 1: The proposed system diagram
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each membership function consists of support, core and 
boundary zones. Table 1 shows range values of each zone 
and their overlaps; for instance, the support and hypo‑danger 
values respectively are between 0 and 70 and 50 and 110, 
where the zone of 50‑70 is shared between them. According 
to Figure 3, the membership degree for the value 65 in the 
hypoglycemic and hypo‑danger zones is 0.4 and 0.6 and for 
the value 55 is 0.2 and 0.8 respectively.

Blood INS

The patient’s body produces INS from 0 to 35 units. 
According to the physician, INS is divided into 3 levels: 
(1) Minimum, (2) normal and (3) maximum whose support, 
core, left and right boundary values are given in Table 2. 
The INS membership function for these levels is shown in 
Figure 4.

BMI

The third input fuzzy variable is BMI. According to the 
physician and Jayaraj et al.,[6] it varies from 0 to 35 falling 
into 4 levels:  (1) Light‑weight  (blow),  (2) normal‑weight 
(normal), (3) over‑weight and (4) obese whose support, core, 
left and right boundary values are given in Table 3. The BMI 
membership function for these levels is shown in Figure 5.

Log of Dose Injection

The last input variable is the dose injection log in the last 
day. The log membership function is the same as the output 
variable. It varies from 0 to 8 and is divided into 5 levels: 
(1) Less, (2) average, (3) medium, (4) high and (5) very high 
whose support, core, left and right boundary values are 

Table 1: BS membership function values
Zone name Support 

value
Core 
value

Left boundary 
value

Right boundary 
value

Hypoglycemic 0‑70 0‑50 ‑ 50‑70
Hypo‑danger 50‑110 60‑100 5‑60 100‑110
Normal 100‑190 110‑180 100‑110 180‑190
Hyper‑danger 180‑260 190‑250 180‑190 250‑260
Hyperglycemic 250‑320 260‑320 250‑260 ‑
BS – Blood sugar. Support: The crisp set containing nonzero membership degrees 
for all elements. Core: The crisp set containing membership degree in A for all x 
elements. Boundary: The crisp containing membership degree 0<µA (x)<1 in A for 
all x elements

Table 2: INS membership function values
Zone 
name

Support 
value

Core 
value

Left boundary 
value

Right boundary 
value

Minimum 0‑7 0‑5 ‑ 5‑7
Normal 5‑30 7‑28 5‑7 28‑30
Maximum 28‑35 30‑35 28‑30 ‑
INS – Insulin. Support: The crisp set containing nonzero membership degrees for 
each all x elements. Core: The crisp set containing membership degree in A for all x 
elements. Boundary: The crisp containing membership degree 0<µA (x)<1 in A for 
all x elements

function indicated by µA(x) describes the membership 
of element x of the base set x in the fuzzy set A. Each 
membership function has a set of important properties and 
characteristics of fuzzy sets: (1) The support zone of fuzzy 
set A is the crisp  (definite) set containing all x elements 
having nonzero membership degrees in A,  (2) The core 
zone of the normal fuzzy set A is the crisp set that contains 
all x elements having a membership degree in A,  (3) The 
boundary zone is the crisp set that contains all x elements 
having the membership degree 0< µA(x) <1 in A.

Fuzzy systems  [Figure  2] have usually four major 
components: (1) Fuzzification interface; this component is 
used to define the fuzzy sets used to represent linguistic 
values in the fuzzy rules and translate crisp  (definite) 
values into linguistic values, (2) fuzzy knowledge base; this 
component consists fuzzy rules in form of IF‑THEN, (3) fuzzy 
inference engine; this component is used for reasoning 
fuzzy rules and input values and (4) defuzzification interface, 
which translates fuzzy set output values into crisp values.

Our approach for designing the fuzzy rule‑based system is 
as follows: A fuzzy rule‑based system is synthesized using 
definition of fuzzy variables and fuzzy sets. A  fuzzy set is 
characterized by a membership function associating each 
variable with a membership degree value. In real world, 
the variables of the infusion INS device are fuzzy. The 
membership functions of fuzzy variables are designed by 
MatLAB 2012.

We consider 4 variables as input parameters:  (1) Blood 
glucose level (indicated by BS), (2) produced INS by patient’s 
body (indicated by INS), (3) body mass index (indicated by 
BMI) and (4) the dose log consisting of doses injected in the 
last day. The amount of injected dose indicates the output 
parameter. The membership function of input and output 
variables is explained as mentioned.

BS

The BS ranges from zero to 320  mg/dl. According to 
the physician, BS is divided into 5 levels [Table  1]: 
(1) Hypoglycemic, (2) hypo‑danger, (3) normal, (4) hyper-
danger and (5) hyperglycemic and according to Section 2, 

Figure 2: Fuzzy system components
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Figure 3: Blood sugar membership function

Figure 4: Insulin membership function

Figure 5: Body mass index membership function

shown in Table 4. The membership function for these levels 
is shown in Figure 6.

The Output Variable

The output value of the system is the dose that should 
be injected. It varies from 0 to 8 and falls into 5 levels: 
(1) Less, (2) average, (3) medium, (4) high and (5) very high 

whose support, core, left and right boundary values are 
given in Table 4. The output membership function for these 
levels is shown in Figure 7.

Determining Fuzzy Rules

Fuzzy knowledge base definition is the second step to design 
a fuzzy system. In this section, the relations between the 
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variables which introduced in Sections 2.1‑2.5 are indicated. 
A fuzzy rule is defined as “IF antecedent THEN consequent.” 
According to the physician and requirements in Section 1 
fuzzy rules were synthesized to monitor device’s behavior. 
Some of the rules were shown in Figure 8 and all of them 
are given in the appendix.

These rules are stored in the knowledge base of the 
system and are applied to the fuzzified input. The third 
step is applying the inference engine. It extracts the rules 
that are fired with inputs value. The output of each rule 
is fuzzy and should be converted into a crisp output. 
The process of converting the fuzzy output is called 
defuzzification, which is the fourth step in designing 
a fuzzy system. For defuzzification of output, all fuzzy 
outputs of the system are aggregated with a union 
operator. In fact, aggregation is unification of all rule 
outputs. An example of this process is shown in Figure 9. 
This figure indicates the aggregation of three types of 
fuzzy rules where output of rules C1, C2 and C3 are 0.1, 
0.2 and 0.5, respectively and the aggregated rule has 
been specified by the ∑ notation.

Table 3: BMI membership function values
Zone name Support 

value
Core 
value

Left boundary 
value

Right boundary 
value

Light‑weight (blow) 0‑20 0‑18 ‑ 18‑20
Normal‑weight (normal) 18‑27 20‑25 18‑20 25‑27
Over‑weight 25‑32 27‑30 25‑27 30‑32
Obese 30‑35 32‑35 30‑32 ‑
BMI – Body mass index. Support: The crisp set containing non‑zero membership 
degrees for each all x elements. Core: The crisp set containing membership degree in 
A for all x elements. Boundary: The crisp containing membership degree 0<µA (x)<1 
in A for all x elements

Table 4: The log membership function and output values
Zone 
name

Support 
value

Core 
value

Left boundary 
value

Right boundary 
value

Less 0‑2 0‑1.5 ‑ 1.5‑2
Average 1.5‑3.5 2‑3 1.5‑2 3‑3.5
Medium 3‑5 3.5‑4.5 3‑3.5 4.5‑5
High 4.5‑6.5 5‑6 4.5‑5 6‑6.5
Very high 6‑8 6.5‑8 6‑6.5 ‑
Support: The crisp set containing non‑zero membership degrees for each all x 
elements. Core: The crisp set containing membership degree in A for all x elements. 
Boundary: The crisp containing membership degree 0<µA (x)<1 in A for all x 
elements

Figure 6: Dose injection log membership function

Figure 7: Output dose membership function
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Among other defuzzification techniques, we use the 
centroid defuzzification known as center of gravity or 
center of area defuzzification. This is the most commonly 
used and accurate technique, which is expressed as follows:

X
x xdx

x dx
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Where x* is the defuzzified output, µi(x) is the aggregated 
membership function and x is the output variable. It must 
be noted that the difficulty of computation for complex 
membership functions is the main problem of this method.

A sample output has been shown in Figure 10 consisting of 
5 columns where the first four columns represents the input 
values indicated by BS, INS, BMI and log and the last column 
represents the INS dose. Each row forms a rule, and totally 
there are 110 rules; among them 30 rules are given in Figure 10. 
The yellow/white trapezoids indicate the membership function 
of fired/not fired rules. We defuzzified fired rules and obtained 
crisp  values of outputs using the centroid defuzzification 
technique. The output membership functions were shown in 
the blue trapezoid. For instance, the BS, INS, BMI and log values, 
given in Figure 10, have values of 200, 2, 30 and 1, respectively; 
also, the obtained output dose has the value of 4.54.

Figure 11 illustrates a surface view of rules shown in Figure 10 
where X, Y and Z axes indicate BS, INS and the output values, 
respectively. While the BS value is low (approximately lower 
than 250) the output value is close to zero. When the BS 
value is above 250 and the INS is  <20, the output value 
rises sharply (indicated in yellow). By increasing the amount 
of INS, the output values are reduced (indicated in green).

After defining the rule‑based system, we can model the 
rules as FPNs. We use FPNs, since normal PNs cannot 

deal with vague or fuzzy values such as “very high” or 
“minimum.” FPNs are used for representation of fuzzy 
knowledge and reasoning knowledge‑based systems. In 
fact, by implementing the FPN model, we are able to utilize 
major features of PN models, such as correctness, circular 
rules, consistency, and completeness checking. PNs have an 
inherent quality in expressing logic in an intuitive and visual 
way and also can be implemented to simulate systems 
practically. Therefore, a reasoning path in a complex fuzzy 
expert system can be reduced to a simple tree using a 
FPN based reasoning algorithm as an inference engine. In 
Section 5, we use FPNs to present the rules.

PNs

A PN provides a visual formal modeling method to study the 
dynamic behavior of systems, in terms of the system states 
and states changes. A  PN is formally defined as 5‑tuple, 
PN = (P, T, I, O, M0).

[7] P = {p1, p2,…., pm} is a finite set of 
places, T={t1, t2,…, tm} is a finite set of transitions where 
P ∩ T ≠ Ø and P ∪ T ≠ Ø, I: (P × T)→N is an input function 
that defines directed arcs from places to transitions where 
N is a set of nonnegative integers, O: (P × T)→N is an output 
function that defines directed arcs from transition to places, 
and M0: P→N is the initial marking.

Assume that n and w are respectively the number of tokens in 
a place P and weight of the directed arc from P to transition 
t; we say transition t is enabled if n  ≥  w. An enabled 
transition is a candidate transition to fire. Firing the enabled 
transition t removes w token from input place p. Moreover; 
firing transition t inserts w´ tokens in output place P´ of t 
where w´ is weight of the arc from t to p´.

FPN

A FPN is a combination of a fuzzy set and a PN. A FPN is 
used to represent knowledge and to model the system 
behavior. Basic FPN, fuzzy colored PN[8] and Adaptive FPN[9] 
have been investigated as tools for representing rules of 
knowledge‑based systems. According to Chun and Bien,[10] 
the main advantage of using PNs in a rule‑based system is 
providing a structured knowledge representation; where 

Figure 8: Fuzzy rules to verify behavior of the medical monitoring device

Figure 9: Aggregation of three rules
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relationships between the rules are easily understood and 
a systemic inference capability can also be provided. Gogou 
et al.[11] stated that using a FPN to model fuzzy rule based 
reasoning provides a couple of advantages:
•	 The visual representation of a FPN can help experts to 

construct and modify fuzzy rule bases
•	 A FPN can model the dynamic behavior of fuzzy 

rule‑based reasoning. The token  (marking) evaluation 

is used to simulate the dynamic behavior of the system. 
The conclusion part of each rule is expressed through 
the movements of tokens in FPN

•	 A FPN eliminates the necessity of scanning all the rules. 
Fuzzy rule based reasoning is improved efficiently by 
connecting fuzzy rule as a net‑based structure

•	 A FPN can check properties of a modeled system to gain 
deeper insights into the system.

Figure 10: A sample output

Figure 11: The overall variation of amount of two dose parameters
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A FPN is formally defined as 8‑tuple, FPN = (P, T, D, I, O, f,,).[12] 
P = {p1, p2,…, pm} is a finite set of fuzzy places, T = {t1, t2,…, tm} 
is a finite set of transitions, D = {d1, d2,…, dm} is a finite set 
of properties, I and O are functions of set of where I: P→T is 
an input function for mapping a bags of places to transitions, 
O: T→P is an output function for mapping from transitions 
to a bags of places, f: T→  [0,1] is an association function 
for mapping from a transition to a real value between 
zero and one, : p→  [0,1] is an association function form 
mapping from places to real values between zero and one 
and : p→D is an association function for mapping from 
places to propositions. This definition is used to model the 
INS pump in Section 5.

FPN DESIGN OF THE INFUSION DEVICE

As stated in Section 3, a FPN is defined as 8‑tuple, 
FPN =  (P, T, D, I, O, f, , ). All membership functions 

states of each variable are represented as a place. Figure 12 
represents the INS variable as a FPN. According to the INS 
membership function, shown in Figure 4, it is divided into 
three levels; accordingly, we use a fuzzy place for each level 
where a transition is considered for each rule.

In Figure  12, transition t1 indicates a rule and when it 
fires, each fuzzy place receives a fuzzy token. The token 
consisting of a minimum/maximum fuzzy value is sent to 
the next place. Minimum or maximum fuzzy values depend 
on disjunction/conjunction between fuzzy variables in rules:

	 OR=µ (AUB(x)) =max (µA(x), µB(x))
	 AND=µ (A∩B(x)) =min (µA(x), µB(x))

The maximum/minimum value of tokens is used when a 
disjunction/conjunction (indicated by OR/AND) is appeared 
in a rule. For example, consider the following fuzzy rule.

If BS is hyper‑danger AND INS is low AND BMI is overweight 
AND log is less THEN output is very‑high.

Where the premise  (representing inputs) and conclusion 
(representing output) parts of the rule consists of 4 and 
1 variables respectively. The truth value of tokens  (µi) is 
assigned to places. For example, BS in hyper‑danger has truth 
value of 1 (µi = 1), INS in low has µj = 0.4, BMI in overweight 
has µm = 0.6 and log in less has µn = 0.7 [Figure 13a]. Since 
µi, µj, µm and µn are higher than zero, then transition tn is 
enabled and it fires. Accordingly, tokens are removed from 
I (tn) which are pi, pj, pm, pn and deposited to O (tn), which is 
pk. The truth value of the output variable is the minimum of 
truth ones of the input values. It means that µk = min (µi, 
µj, µm, µn) = 0.4 [Figure 13b].

Figure 13: Firing the fuzzy Petri-net (a) Before firing the tn transition (b) After firing the tn transition

b

a

Figure 12: Fuzzy Petri-net for insulin using the membership function
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Figure 14 shows a FPN design of the infusion device that 
was implemented by PN tools in MatLAB 2012. In this 
Figure, just 16 rules are shown. As an example, the rule 
shown as transition R3 is a rule with three inputs: BS is 
hyper‑danger, INS is the minimum and BMI is the normal 
and the output is the less. All rules were executed and 
the output of the system was checked against the user’s 
requirements. Figure  14 is used as a reference by the 
verifier as showing safe paths. When the software is 
executed, the verifier uses the paths to check if it can find 
a path that is consistent with the software state. If a path 
is not found, the verifier concludes the software leads 
to a hazard and an alarm is raised and the system stops 
proceeding.

For example, consider input variables that are shown 
in Figure  15a. After the software executes, rule 4 fires 
[Figure  15b] and output place has a token  [Figure  15c]. 
All rules are checked and faults and hazards status of the 
software are determined. To this end, the reachability graph 

of the system is considered and the system is checked by 
using the graph. Some advantages of using fuzzy PNs for 
modeling the behavior of the device are:
•	 Their graphical representation can help expert to 

construct and modify fuzzy rule bases
•	 Fuzzy PNs model reasoning of the dynamic behavior of 

fuzzy rules and also explain how to reach the conclusions 
expressed through the movements of tokens

•	 FPNs do not need to scan all the rules
•	 The analytical capability of FPNs can check properties of 

a modeled system in order to gain deeper insights into 
the system

•	 A part of state space of Figure 14 has been shown in 
Figure  16 consisting of 15 states for the BS branch 
and 63 states for all branches. Due to the complexity, 
all states have not been shown. Since the INS pump 
software consists of 110 rules, it is necessary to verify 
434 states in static verification. However, using our 
method at runtime, just one path of the FPN consisting 
of a small‑scale of states is verified

Figure 14: A Petri-net for some rules
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Figure 16: State space of Figure 14

Figure 15: (a) Before firing (b) R4 fired (c) A sample of firing rule

c

b
a
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RELATED WORK

In,[13,14] we used PNs to model non‑fuzzy behavior of 
infusion devices. Similarly Maissa et al.[15] used timed PNs for 
formal verification of medical monitoring devices and in,[16] 
Pantelopoulos proposed a stochastic PN model of a multi‑sensor 
Wearable Health Monitoring System with an implementation 
of corresponding simulation framework in Java.

Pei‑Kuang et  al.[17] proposed a medical monitoring system 
for measuring daily physical activity and detecting falls in 
free‑moving patients and the elderly. They used a multi‑layer 
clustering method to classify physical activity of the user. 
Namayanja et  al.[18] exploited data mining and clustering 
to study the measurements in blood glucose and doses of 
regular INS for a selected number of patients.

Jayaraj et  al.[6] used the fuzzy reasoning to represent 
behavior of a system that involves a feedback mechanism 
and monitors continuous blood glucose and a repository as 
an artificial pancreas. Chun and Bien[10] used a FPN model for 
a rule‑based decision making system. They perform real‑time 
decision making with applications of control systems and 
diagnostic systems. Gogou et al.[11] used the neural network 
for an INS administration system to manage the diabetics. 
Ward and Martin[19] used a fuzzy inference system to propose 
a glucose regulation model.

Chikh et al.[20] used expert systems and artificial intelligence 
techniques  (Artificial Immune Recognition System) in 
diabetes disease diagnosis. They used diabetes disease 
dataset in UCI machine learning repository. Jayaraj et al.[6] 
used the fuzzy logic to set the amount of dosage to be 
delivered to a diabetic and modeled an artificial pancreas by 
monitoring the continuous blood glucose and the infusion 
device. Indeed, they introduced a fuzzy infusion system as 
a controller whose output is fed to the device. However, 
we proposed a fuzzy system to control and monitor the 
behavior of the infusion system.

Grant,[21] Khooban et al.,[22] Hari Kumar et al.,[23] Allam et al.[24] 
and Yasini et al.[25] exploited fuzzy concepts in diabetes system. 
Fuzzy based closed‑loop control is an algorithm used for blood 
glucose regulation using Mamdani fuzzy logic controller. 
Grant[21] and Yasini et  al.[25] used fuzzy logic to develop an 
artificial pancreas for automatic regulation of blood glucose 
levels using closed‑loop feedback mechanism. Bequette[26] 
addressed challenges and progresses in the development of a 
closed‑loop artificial pancreas. Khooban et al.[22] used Particle 
Swarm Optimization to optimize the fuzzy controller. In 
addition to software algorithms, hardware mechanisms also 
have been used to design fuzzy controller for diabetes. Hari 
Kumar et al.[23] used field programmable gate array integrated 
circuit to synthesize fuzzy controller for the infusion process. 
Allam et al.[24] used: (1) Fuzzy logic controller to determine INS 
dosage and  (2) a recurrent neural network that nonlinearly 

predicts the effect of each calculated dose on the future of 
the blood glucose level. They claimed that the prediction 
leads to excluding severe hyper‑  and severe hypo‑glycemic 
events.

There are two types of closed loop strategies to control 
diabetics:  (1) Semi closed‑loop and  (2) closed‑loop. In the 
former, dose delivery rate is adjusted‑based on sporadic 
blood glucose readings; however, the latter plays the role 
of an artificial pancreas. According to,[21] effectiveness of 
closed‑loop feedback controls should be compared with the 
conventional ones such as continuous INS infusion control 
strategies.

SIMULATION RESULTS

To represent the simulation results, we start with calculating 
the system state space depicted in Figure 16. Nodes 2 and 3 
indicating the system inputs and BS states respectively have 
4 branches each one. The 1st BS branch (BS is hypoglycemic) 
has one path and the 2nd one (BS is hypo‑danger) has 2 paths 
after computation of INS for the BMI value. The 3rd  BS 
branch has 3 paths and the 4th one has 6 paths from BMI 
(just 5 paths were shown in the figure). The 5th BS branch 
has 112 paths, among them just 4 paths were shown. 
Similarly, node 4 consists of 3 branches consisting of 2, 6 and 
112 paths, respectively. Similarly, nodes 5 and 6 respectively 
consist of 118 and 112 paths. Totally, the system state space 
consists of 471 paths without constructing an FPN. However, 
there are 110 paths when we used the FPN [Figure 14 and 
its explanation in Section 4] meaning that we have a path 
reduction of 23.4%, which justifies the performance of our 
proposed model.

In addition to the state space reduction, another 
contribution of our proposed model is the enough accuracy, 
according to the experimental results obtained by the 
execution of the model. We executed our model 5 times by 
100 different random values to evaluate the model where 
accuracy ranged between 93% and 98%  (in average, 95%). 
Table 5 shows a sample of the results where BS, INS, BMI 
and LOG values constitute the input values.

Table 5: Some input values and result
BS INS BMI LOG State in petri‑net Expected reality Result

30 4 10 1 Output_medium Between 3 and 5 Correct
200 2 30 1 Output_medium Between 3 and 5 Correct
74 9.8 15 4 Output_medium Between 3 and 5 Correct
4 35 1 0 Output_less Between 1.5 and 2 Incorrect
82 23 14 2.2 Output_medium Between 3 and 5 Correct
203 30 20 5 Output_medium Between 3 and 5 Correct
311 11 7 5 Output_average Between 1.5 and 2 Incorrect
311 35 35 8 Output_less Between 1.5 and 2 Correct
311 28 35 1 Output_high Between 4.5 and 6.5 Correct
311 28 35 8 Output_average Between 1.5 and 2 Correct
254 28 35 8 Output_less Between 1.5 and 2 Correct
BS – Blood sugar; BMI – Body mass index; LOG – Log insulin dose; INS – Insulin
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While other studies such as[27] proposed different techniques 
for verifying the healthcare devices behavior, they did not 
use some FPN. Moreover, they did not use fuzzy inference 
algorithm for calculating INS dose. To reduce these gaps, we 
proposed a FPN model to represent the system knowledge 
and the INS pump behavior. This means that our model 
enjoys the capability of reasoning based on uncertain and 
fuzzy data.

CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a FPN model to verify behavior 
of a sample medical monitoring device called continuous 
infusion INS. We proposed a visual and a mathematical model 
through which one can verify the device behaviors against 
user’s requirements. This is carried out by determining and 
device unsafe and hazards statuses.

Considering importance of medical monitoring systems in 
surveillance of patients, we proposed a model to synthesize 
a fuzzy verifier for the medical monitoring system. Since in 
such systems, the obtained data from the input sensors are 
uncertain, fuzzy values should be supported. This means that 
the model used for such a purpose should have a capability 
of reasoning based on uncertain and fuzzy information. This 
paper introduced a new model for a quintessential sample 
of a care‑working system based on a rule‑based system 
with fuzzy variables. We used FPNs to model the system 
knowledge and rules, and we showed that the system 
hazards could be figured out easily by the FPN model.

In comparison with the previous studies, stated in Section 5, 
we used a visual model to check the INS pump behavior 
instead. We modeled the infusion device as a rule‑based 
system with 4 fuzzy variables as input and output variables 
and then the rules were defined. Afterwards, we used FPNs 
to model the system knowledge and rules.

Our proposed FPN modeled active and deductive rules 
of INS pump system where functionalities, where were 
specified using transitions, were used to carry out required 
computations using input parameters  (such as BS, INS). 
This provided condition‑values and action‑values. Figure 16 
illustrated a part of the system state space where its main 
disadvantage is the hugeness, called the explosion problem. 
The explosion causes a time‑consuming process because a 
huge space should be verified for the verification of some 
property satisfaction by the system. According to[28] such 
cases cause a serious limitation on the use of state space 
methods during the analysis of real‑life systems. Accordingly, 
a space reduction helps to reduce the explosion problem.

Our study can be extended in several ways. Currently, the 
rule base included fuzzy variables and the basic FPN was 
used.  (1) The model can be extended for adaptive FPNs 

and (2) it can be introduced as a hybrid system whose the 
knowledge part is represented as rules with a FPNs and then 
the process model is continued with a Neural network.
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