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INTRODUCTION

Arrhythmogenic right ventricular cardiomyopathy/
arrhythmogenic right ventricular dysplasia  (ARVC/ARVD) 
is an inherited disease that presents with sustained 
ventricular tachycardia. ARVD characterized by a total 
or partial replacement of myocardium, especially the 
right‑ventricle myocardium, by fibro‑adipose tissue, 
which may be diffuse. This kind of cardiomyopathy shows 
a marked dilatation with an alteration of the regional 
kinetic.[1,2] Although incidence and prevalence of ARVD 
are unknown, ARVD is recognized as a major cause of 
sudden death in young adolescents, and in one series 
it accounted for 20% of sudden deaths in all individuals 
younger than 35 years and 22% of sudden deaths in young 

A B S T R A C T

Assessment of cardiac right‑ventricle functions plays an essential role in diagnosis of arrhythmogenic right ventricular dysplasia (ARVD). 
Among clinical tests, cardiac magnetic resonance imaging  (MRI) is now becoming the most valid imaging technique to diagnose 
ARVD. Fatty infiltration of the right ventricular free wall can be visible on cardiac MRI. Finding right‑ventricle functional parameters 
from cardiac MRI images contains segmentation of right‑ventricle in each slice of end diastole and end systole phases of cardiac cycle 
and calculation of end diastolic and end systolic volume and furthermore other functional parameters. The main problem of this task 
is the segmentation part. We used a robust method based on deformable model that uses shape information for segmentation of 
right‑ventricle in short axis MRI images. After segmentation of right‑ventricle from base to apex in end diastole and end systole phases 
of cardiac cycle, volume of right‑ventricle in these phases calculated and then, ejection fraction calculated. We performed a quantitative 
evaluation of clinical cardiac parameters derived from the automatic segmentation by comparison against a manual delineation of the 
ventricles. The manually and automatically determined quantitative clinical parameters were statistically compared by means of linear 
regression. This fits a line to the data such that the root‑mean‑square error (RMSE) of the residuals is minimized. The results show 
low RMSE for Right Ventricle Ejection Fraction and Volume ( 0.06≤ for RV EF, and 10≤ mL for RV volume). Evaluation of segmentation 
results is also done by means of four statistical measures including sensitivity, specificity, similarity index and Jaccard index. The 
average value of similarity index is 86.87%. The Jaccard index mean value is 83.85% which shows a good accuracy of segmentation. 
The average of sensitivity is 93.9% and mean value of the specificity is 89.45%. These results show the reliability of proposed method 
in these cases that manual segmentation is inapplicable. Huge shape variety of right-ventricle led us to use a shape prior based 
method and this work can develop by four-dimensional processing for determining the first ventricular slices.

Key words: Arrhythmogenic right ventricular dysplasia, deformable model, functional parameters, segmentation, shape prior

Right Ventricle Functional Parameters Estimation in 
Arrhythmogenic Right Ventricular Dysplasia Using a Robust 
Shape Based Deformable Model
Mostafa Ghelich Oghli, Vahab Dehlaghi, Ali Mohammad Zadeh1, Alireza Fallahi2, Mohammad Pooyan3

Department of Biomedical Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran, 1Department of Radiology, Shaheed 
Rajaei Cardiovascular, Medical and Research Center, Tehran, Iran, 2Department of Biomedical Engineering, Hamedan University of Technology, 
Hamedan, Iran, 3Department of Biomedical Engineering, Shahed University, Tehran, Iran

Submission: 01-07-2013	 Accepted: 04-05-2014

athletes.[1] In early stages, the dysfunctions may be subtle 
and the diagnosis is quite difficult. On the contrary, in 
advanced stages, right ventricular  (RV) enlargement may 
be evident as well as various clear clinical signs.[3] It is 
important to suspect any disorder in the early stages 
since sudden death can occur, especially in the subjects 
who present premature ventricular complexes or 
ventricular tachycardia originating from the RV. Diagnosis 
of ARVD needs a number of clinical tests, including 
the electrocardiogram (ECG), echocardiography, cardiac 
magnetic resonance imaging  (MRI), and genetic testing. 
Like other kind of cardiac disorders, these tests are not 
perfect individually and their findings should be gathered 
to make a reliable diagnosis. Here, are some of clinical 
tests of ARVD description.
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Electrocardiogram

About 90% of individuals with ARVD have some ECG 
abnormality. The most common ECG abnormality seen in 
ARVD is T wave inversion in leads V1-V3. However, this is 
a nonspecific finding,[4,5] and may be considered a normal 
variant in right bundle branch block.[6]

Echocardiography

Echocardiography may reveal an enlarged, hypo kinetic 
right‑ventricle with a paper‑thin RV free wall. The dilatation 
of the RV will cause dilatation of the tricuspid valve annulus, 
with subsequent tricuspid regurgitation. Paradoxical septal 
motion may also be present. However the echocardiography 
is cheaper and more access able, diagnosis of ARVD in 
echocardiography in early stages is a challenging task and 
almost impossible in many cases.[7]

Cardiac Magnetic Resonance Imaging

Cardiac MRI is a noninvasive imaging modality, which can be 
perfectly customized for each patient; furthermore, with the 
increased time and spatial resolutions, it provides perfect 
images for a complete overview of the  right‑ventricle (RV).[8] 
In facts, it allows an anatomic, functional and morphologic 
approach, so that it is possible to suspect several disorders 
despite the complex crescent shape of the RV. Cardiac MRI 
is now becoming the most valid imaging technique to 
diagnose ARVD.[9] Cardiac MRI can visualize the extreme 
thinning and akinesis of the RV free wall. However, the 
normal RV free wall may be about 3 mm thick, making the 
test less sensitive. One of the most advantages of cardiac 
MRI is its capability to show more details on a single image; 
therefore, it is possible to detect both papillary muscles 
and trabeculae. Those little parts are suspected to become 
hypertrophied in case of ARVD.[10]

Researches show that among these techniques, MRI allows the 
clearest visualization of the heart.[11] Because, as mentioned, 
MRI depicts both functional and structural abnormalities, 
positive MR imaging findings should be used as important 
additional criteria in the clinical diagnosis of ARVD. 
This fact can be inferred and is mentioned in texts that 
nowadays Cardiac MRI is the gold standard for assessing 
RV volume.[9] The wall motion analysis, which is very 
important in the early stages of ARVD, is still assessed 
visually so that even experienced operators can miss subtle 
abnormalities.[12] One of the most important and valuable 
findings in clinical tests of a patient with ARVD is cardiac 
functional parameters including right‑ventricle end diastolic 
volume (RVEDV), right‑ventricle end systolic volume (RVESV), 
ejection fraction  (EF) and cardiac output  (CO). Assessment 
of these parameters is now done by means of cardiac MRI 
and echocardiography. However, echocardiography due to 
its disability to visualize right‑ventricle borders, especially in 

case of arrhythmic beating and dilated RV (present in ARVD) 
is not a suitable choice for assessment of cardiac functional 
parameters. To estimate these parameters, it is necessary to 
apply segmentation methods at each slice. The segmentation 
of end‑diastolic (ED) and end‑systolic (ES) images of the RV 
is currently performed manually in clinical routine. This long 
and tedious task, prone to intra‑ and inter‑expert variability, 
requires about 20  min/ventricle by an expert clinician. In 
addition, in case of ARVD the wall motion abnormality 
makes the border of right‑ventricle unclear and this makes 
the segmentation procedure more complicated. The great 
need for automated methods has led to the development 
of a wide variety of segmentation methods.[13] Most of these 
methods compute a pixel wise correspondence between 
the current image  (or frame) and model distributions of 
photometric (intensity based) and geometric properties of the 
target objects. In a general view, methods can be categorized 
in thresholding,[14‑16] pixel classification,[17‑20] deformable 
models, Active Shape and Appearance models[21,23] and atlas 
based segmentation. Among these methods, deformable 
models have been greatly used as their flexibility, especially 
for this application,[24‑28] either on the form of two‑dimensional 
active contours or three‑dimensional deformable surfaces. 
A review of papers on deformable models can be found in.[29] 
Despite of great advantages and wide range of researches use 
gradient based active contours; these types of deformable 
model methods are highly sensitive to the presence of noise 
and poor image contrast, which can lead to bad segmentation 
results. To overcome this drawback, some authors have 
incorporated robust region‑based evolution criteria into 
active contour energy functional built from intensity 
statistics and homogeneity requirements.[30] Chan and Vese 
method[31] is one of the most important of such methods 
that is based on techniques of curve evolution, Mumford-
Shah (MS) functional. These methods can deal with problems 
that mentioned in the primary deformable model methods, 
but they are not able to deal with occlusion problems or 
presence of strongly cluttered background.[30] Therefore, 
the integration of prior shape knowledge about the objects 
in the segmentation task represents a natural way to solve 
occlusion problems. Right‑ventricle segmentation methods 
that are gathered in review papers,[11,32] mostly use strong 
prior information like atlas based methods, active shape 
and appearance models, electromechanical models, etc., 
However, using shape prior information in curve evolution 
equation, however a classic method is now, is not considered 
for segmentation of right‑ventricle in cardiac MRI images. 
The aim of this study is performing a robust shape‑based 
deformable model, described in[30] on cardiac MRI images 
of a patient with ARVD to estimate functional parameters 
of right‑ventricle. To achieve this aim, first, right‑ventricle 
should be segmented from cardiac MRI images. Second, 
volume estimation procedure should be applied to estimate 
right‑ventricle volume in ED and ES phases. And finally, 
other right‑ventricle functional parameters like EF and CO 
should be obtained by means of their formula. The following 



Figure  1: Various shapes of RV in cardiac MRI images (a and b) Mid-
ventricular slices, (c) Apical slice, (d) Basal slice
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sections of this paper describe the shape‑based deformable 
model method, application of this method for segmentation 
of cardiac right‑ventricle and calculation of RVEDV, RVESV 
and EF based on segmented areas. The validation of results is 
performed in final section.

METHODS

Principal Components Analysis as Shape Prior

Principal component analysis  (PCA) aims at capturing the 
main variations of a training set while removing redundant 
information.[30,33] The idea is to apply the PCA not on the 
parametric geometric contours, but on the signed distance 
functions (SDFs) of these contours, which are implicit and 
parameter free representations. They justified this choice in 
two ways. First, SDFs provide a stronger tolerance than the 
parametric curves to slight misalignments during the 
alignment process of the training data since the values of 
neighboring pixels are highly correlated in a SDF. Second, 
this intrinsic contour representation also improves the 
shape registration process in terms of robustness, accuracy 
and speed. Indeed, the problem of the point‑wise 
correspondence of contours (landmarks correspondence) is 
replaced by a problem of intensity correspondence on grid 
points which is easier to solve. For construction of this 
shape model binary shapes of the RV are needed. From a 
geometric point of view, the PCA analysis determines the 
best orthonormal basis {e1 … em} of Rm to represent a set 
of n points  {φ1 … φm} in the sense of the least squares 
fitting vectors  {ei} are given by the eigenvectors of the 

covariance matrix =∑ 1
n
MMT where M is a matrix whose 

column vectors are the n aligned training SDFs  {φj}. 
Vectors {ei} correspond to the principal variation directions 
of the set of n points. They are called the principal 
components. Moreover, the first P principal axes define a 
reduced p‑dimensional vector space in Rm equivalent to a 
hyper‑plane minimizing the sum of squared distances 
between this hyper‑plane and the set of n points. It is 
important to note that the accuracy of the fitting of this 
p‑dimensional hyper‑plane in relation to the set of points 
can be measured in percentage by the formula 
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 where k are the eigenvalues of ∑ . 

Thus, it is possible to arbitrarily fix the fitting percentage  
and represent the data in a sub‑vector space of dimension p. 
In practice, only the first principal modes are necessary to 
model the biggest variations present in our training set. 
These P principal components are sorted in a matrix Wp.

Finally, the PCA can produce a new data based on the 
training set {φj}:

p PCAˆ W x = + � (1)

where xPCA is called the vector of Eigen coefficients, the 
shape vector or the Eigen modes of variation. One of the 
most important issues in construction of PCA for cardiac 
right‑ventricle in comparison with other data  (like ellipses 
and brain left ventricles in[30]) is the huge shape variety in 
right‑ventricle in terms of gray levels or structure shapes 
as “Figure  1” shows. Gray level intensities can also differ 
due to the use of different MRI scans. Fuzziness of images 
is another issue that can be observed on some parts of the 
images, mostly due to blood flow and partial volume effects, 
aggravated by respiration motion artifacts. This former effect 
is a consequence of nonzero thickness of MRI slices: In 
some areas, a voxel can be a mixture of several tissue types. 
In terms of shape, the ventricle varies over patients, over 
time (phase of cardiac cycle) and over the long axis.[32] Among 
these variations, shape variation over the position along 
the apex‑base axis has a critical role in construction of PCA 
model. Because there is a large difference between apical slice 
images, basal slice images and mid‑ventricular slice images 
as it can be seen in “Figure  1”. Considering this fact, for 
construction of this shape model for cardiac right‑ventricle, 
30 binary shapes of the RV, containing mid‑ventricular slices 
and 30 binary shapes of the RV, containing apical and basal 
slices, obtained by manually segmenting the RV on N cardiac 
MRI, are used. Hence, we have two PCA models that are apical 
and basal principal components and mid‑ventricular principal 
components as it can be seen in “Figure 2”.

Segmentation Model

Energy Function
Three force terms is used for curve evolution in the shape 
prior based segmentation method described in[30] containing 
shape term, region term, and boundary term. These terms 
are put together with this formula:
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Figure 2: Representing principal component analysis for (a) Mid-ventricular slices of cardiac right-ventricle, (b) Apical and basal slices of cardiac right-ventricle 
(c-f) Sample binary mid-ventricular right ventricular (RV) contours (g-j) Sample apical and basal binary RV contours
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where,
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where
•	 C and C (q) is the active contour,
•	 I is the original image,
•	 ∇ stands for gradient,
•	 ̂  is the shape function of the object of interest by the 

PCA,
•	 xPCA is the vector of PCA Eigen coefficients,
•	 h

xT
is an element of a group of geometric 

transformations parameterized by xT  (the vector of 
parameters),

•	 g is an edge detection function,
•	 inΩ  and outΩ  are the inside and outside regions of the 

zero level set of ̂ ,
•	 u

in
 and u

out
 are smooth approximations of the original 

image and,
•	 β β β µ

b s r
, , ,  are arbitrary positive constants that 

balance the contributions of the boundary, shape and 
region terms. The proposed functional F is an extension 
of the work of[34] where the shape model of Leventon 
et al.[33] and the MS functional[35] are integrated.

The Shape Term
F
shape

 depends on the active contour C, the vector xPCA of 
PCA Eigen coefficients and the vector xT of geometric 
transformations. This function evaluates the shape 

difference between the contour C and the zero level set of 
the shape function ̂  provided by the PCA. To give an 
interpretation of F

shape
authors assumed that:

TPCA q PCA q

2
2 2

min
ˆˆ ˆ( ( )) ( , ( )) ( ) ( )xx h C x C C p C q + = ≈ − � (6)

where . stands for Euclidean norm. “Figure  3” illustrates 

the function ̂  and 
PCA min

ˆ ( )XC p .

In practice, the point min
ˆ ( )C p  is not computed. It 

corresponds to the closest point of C (q) on the zero level 
set of ̂ and we used it to illustrate the shape function at 
point C (q). Indeed, the shape function TPCA

2ˆ ( ( ))x qx h C +  is 

equal to the distance
2

min
ˆ ( ) ( )C p C q− , that is, the value of 

the level set‑based function 2̂  at the point C  (q). Finally, 
F
shape

 is obtained by integrating 2̂  along the active contour, 

which defines the shape similarity measure equivalent to 
the sum of square differences. The minimization of F

shape
 

allows us to increase the similarity between the active 
contour and the shape model. The functional is minimized 
using the calculus of variations and the gradient descent 
method which provide three flows acting on the curve C, 
the vector of Eigen coefficients xPCA and the vector of 
geometric transformations xT. Each of three flows can be 
analyzed by fixing the two others. F

shape
 w.r.t the curve 

C  (classical geodesic flow), Fshape  w.r.t vector of Eigen 
coefficients xPCA and F

shape
 w.r.t vector of geometric 

transformation xT. Analysis of F
shape

 by means of these three 
flows can be expressed in a variational level set formulation 
as presented in[34,36] because the level set approach of these 
methods can be used to prove the existence of solution 
minimizing our energy functional in the space of functions 
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Figure 3: Illustration of the function ̂ (XPCA, (Cq)): the square shape function 
is approximately equal to the square Euclidean distance between the point 
C (q) and the closest point Ĉ XPCA (Pmin) on the zero level set Ĉ XPCA of ̂ (XPCA)
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with bounded variation. The level set formulation of the 
shape functional from Eq. 3 is:

Tshape PCA
2ˆ ( , ( )) ( ) ,xF x h x d   

Ω
= ∇ Ω∫ � (7)

where  is a level set function embedding the active contour 
C, δ (.) is the Dirac function and  () is the contour measure 
on { =0}. Coarea formulation[37] proves that the level set 
formulation of F

shape
 is equivalent to the geometric 

formulation  (Eq. 3). The level set formulations of 
prementioned flows are:
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In segmentation model described in,[30] the flows given 
by the Eq. 8-10 are simultaneously used to constraint the 
active contour to get a shape of interest whatever the 
position of the active contour in the image. There is a 
solution for solving these equations that will be discussed 
in section 2-3.

The region term
The authors of[30] have defined a functional to drive the 
shape model toward a homogeneous intensity region with 
the shape of interest. It has been proved in[30] that if our 
objects of interest are supposed to have a smooth intensity 
surface then the MS model is the most adapted model to 
segment these objects. Since the MS method applied on the 
active contour will extract globally homogeneous regions[30] 
and our objective is to capture an object belonging to a 
given shape space then the best solution is to apply the 
MS‑based force on the shape prior. Indeed, this new force 
will globally drive the shape prior towards a homogeneous 
intensity region with the shape of interest. Because of using 
PCA as shape prior, the MS method is modified:
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where the curve Ĉ  is the zero level set of the shape function 
̂  extracted from the PCA process. The function ̂  defines 
an image partitioned into two regions inΩ  and outΩ , 
representing respectively the object and the background, 
whose common boundary is Ĉ :

{ }
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As it mentioned in Eq.  5, we have not considered the 
smoothing term, 

Ĉ
ds∫ , since shapes generated by the PCA 

are smooth enough. The functional F
region

 can be re‑written 

with the shape function ̂ :

region in PCA T

out PCA T

ˆ( ( , ))

ˆ( ( , ))

F H x x d

H x x d




Ω

Ω

= Θ Ω

+ Θ − Ω

∫
∫ � (13)

where H (.) is the Heaviside function, r r r
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and r  =  in or out. For minimization of MS function the 
gradient descent method for x x
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Figure  4: Examples of not perfect segmentation results of using active 
contour in absence of boundary force and under region and shape force
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As it mentioned in pervious section, there is a solution 
for solving these equations that will be discussed in 
section 2-3.

The Boundary Term
As it can be seen in “Figure 4,” using shape and region force 
leads the curve to a predefined shape and homogeneous 
region and these forces cannot handle local structure 
variations.

The model has not captured the local edge variations since 
it only deals with global shape variations provided by the 
PCA model. The model should be able to capture the local 
variations around the global shape; hence, adding local 
criteria to our energy functional is needed. We will consider 
for this purpose the classic geodesic active contour given by
F
boundary

. The formulation of F
boundary

 is mentioned in Eq. 4 
and propose an energy function that leads our curve to the 
boundaries of RV.

A Numerical Solution

The authors in[30] obtained a system of coupled evolution 
equations whose steady‑state solution gives the minimum 
of F, which means the solution of the segmentation 
problem. The functional F is expressed in the Eulerian/level 
set framework as follows:
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These evolution equations are numerically solved by an 
iterative procedure until convergence is reached. This 
procedure stages are as follows:
•	 Computation of the shape function PCA Tˆ ( , )x x  using 

Eq. 1 and performing the rigid and affine transformations 
(scaling, rotation, translations and shearing) with the 
B‑spline interpolation method[38]

•	 Calculation of the gradient ̂∇  using a central 
difference scheme. The term 

PCA
ˆ

x ∇  is given by the 
eigenvectors of the PCA model

•	 Discretization of terms ∇  and ∇
∇
∇

f ,



 with the 

Osher–Sethian numerical scheme.[39] Computation of 
the curvature with central difference schemes

•	 Functions u
in

 and u
out

 are computed in { }ˆ 0 >  and 

{ }ˆ 0 <  with the method proposed in[30]

•	 Computation of Eq. 19‑22



Figure 5: Segmentation of right ventricular from (a) base to (l) apex for a 34-year-old patient with arrhythmogenic right ventricular dysplasia. Red contour: 
Initial contour; green contour: Segmentation result
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•	 Level set function evolution at each iteration by means 
of the fast marching method that is presented in.[40]

This method robustly segments right‑ventricle in cardiac 
short axis MRI images for patients with ARVD from base to 
apex. This can be seen in “Figure 5.” The result of using two 
groups of principal components for basal and apical slices 
and mid‑ventricular slices in implementation of this method 
can be seen in first and second row of “Figure 6.”

Calculation of Functional Parameters

A number of parameters are used to evaluate ventricular 
(LV and RV) function. Volumetric measurements of the 
ventricles are performed on images obtained at ED and ES. 
ED and ES are determined visually as the cardiac phases 
that yield the maximum  (end‑diastolic volume  [EDV]) and 
minimum  (end‑systolic volume  [ESV]) RV volumes. These 
two volumes can then be used to determine the EF. The 
EF, defined as the proportion of blood ejected with each 
right ventricular  (RV) contraction and mathematically is 
calculated by dividing subtraction of ESV from the EDV by 
the EDV. The advent of advanced tomographic techniques, 
such as cardiovascular magnetic resonance  (CMR), has 
allowed for the accurate quantification of ventricular 
volumes. This method relies on Simpson’s rule, which 
simply divides a large volume into smaller, more accurately 
measurable segments that are then summed. Compared 
with the geometric assumptions that are made with the 
modified Simpson’s rule, a technique generally used with 
modalities such as echocardiography and radioscintigraphy, 
volumetric measurements using Simpson’s rule in CMR are 
more accurate and have superior intra‑ and inter‑observer 
reproducibility. On the basis of Simpson’s rule, the segmented 

pixels of all images are counted and multiplied by their 
voxel size and the voxel size is defined as pixel_spacing_x 
* pixel_spacing_y * slice_thickness. Hence, volume of the 
right‑ventricle is determined through contiguous short axis 
slice models by:

V T A
i

n

=
=
∑ i

1

� (23)

In this equation V denotes the RV volume, T denotes the 
slice thickness and Ai  denotes the area of the RV cavity for 
the ith  slice. After applying segmentation method to the ED 
and ES phases of cardiac cycle, and measuring right‑ventricle 
volume, EF is calculated by prementioned formula:

EF =
−

×
EDV ESV

EDV
100 � (24)

RESULT

This algorithm is tested on 30 cardiac short axis MRI images 
for patients with ARVD in size of 347 × 510 and obtained 
acceptable results. The implementation of this method 
is done using  MATLAB 7.12.0.635 (R2011a) with License 
Number: 161052. Natick, Massachusetts, U.S.A.. Figure  7 
shows a visual comparison between our method and 
manual segmentation. Anterior wall and lateral‑basal wall 
mis‑segmentation in manual segmentation of some slices is 
observable in this “figure 7”.

To validate the segmentation results and qualitative 
comparison, we compared obtained results with manual 
segmentation performed by a senior radiologist. Table 1 
shows cardiac functional parameters of 10 numbers of 



Figure  7: Comparison of proposed algorithm segmentation results with manual segmentation. Top row: Manual segmentation by an expert radiologist 
(mis-segmentation of anterior wall and lateral-basal wall in some slices is obvious). Bottom row: Proposed algorithm segmentation results
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tested  data that are obtained by segmentation of RV by 
introduced method. We performed a quantitative 
evaluation of clinical cardiac parameters derived from the 
automatic segmentation by comparison against a manual 
delineation of the ventricles performed on two‑dimensional 
short‑axis slices by a radiologist with experience in cardiac 
MR imaging. The manual delineation was a regular clinical 
quantification performed at the Shahid Rajaie Hospital a 
Philips EasyVision workstation, on patients with suspected 
ARVD. The manually and automatically determined 
quantitative clinical parameters were statistically 
compared by means of linear regression. This fits a line to 
the data such that the root‑mean‑square error  (RMSE) of 

the residuals is minimized RMSE SSR
n= −( )2 , where 

SSR is the sum of squared residuals, and n is the number of 

data points. The comparative quantitative results for RV 
EF, and right‑ventricle volume are shown in “Figure  7.” 
These plots indicate how well the automatic 
segmentation  (X axis) can predict the volumes and EFs 
obtained using the manual expert segmentation  (Y axis). 
The linear regression has a low RMSE  (≤0.06 for RV EF, 
and ≤10 mL for RV volume). Evaluation of segmentation 
results is also done by means of four statistical measures 
contain sensitivity, specificity, similarity index  (SI) and 
Jaccard index  (JI). If M denote segmented region by an 
expert radiologist and A denote segmented region by 
means of our proposed algorithm, then these four 
statistical measures will define simply.

•	 Sensitivity relates to the test’s ability to identify a 
condition correctly and it is defined by formula:

Figure  6: Result of segmentation of right-ventricle in cine magnetic resonance imaging for patients with arrhythmogenic right ventricular dysplasia in 
(a-d) Mid-ventricular slices and (e-h) Apical and basal slices. These two groups used two principal components. Red contour: Initial contour; green contour: 
Segmentation result
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T
N

N
T

p

M

p= ×100% � (25)

Where NTp
is the number of true positive and NM  is the 

cardinality of M.

•	 Specificity relates to the test’s ability to exclude a 
condition correctly and it is defined by formula:

S F F
N

N
F

E P p

A

P= − = ×100 100; % � (26)

Where NA  is the cardinality of A and NFp
 is the number of 

false positive;

•	 SI:	 S
N

N N
T

i

M A

p=
+

×
2

100% � (27)

•	 JI:	 S
N

N N
T

i

M A

p=
+

×
2

100% � (28)

Table  2 shows evaluation of the segmentation of RV on 
30 datasets. Results show that this algorithm can robustly 
segments RV on MR cardiac images.

DISCUSSION

Cardiac MRI due to its capabilities in imaging a complete 
overview of the right‑ventricle is becoming a more and 
more important helpful means in diagnosing ARVC/ARVD. 
ARVD is a progressive disease leading to RV failure and 
several dysfunctions. Right‑ventricle functional parameters 
play an essential role in diagnosis of ARVD. Assessment of 
these parameters needs segmentation of right‑ventricle 
at each slice of cardiac MRI images. Unclear border of 
right‑ventricle in Cardiac MRI images of patients with ARVD 
is a huge difficulty in the way of segmentation methods and 
that is because of existence of cardiac arrhythmic beating in 
these patients. Level set techniques are by now well‑known 
and used in many tools, in fact it is impossible to segment 
complex shapes as RV without making geometrical 
assumptions. But using only contour information leads the 
curve to undesired results. So regards to complexities of 
right‑ventricle segmentation, region and shape information 
of right‑ventricle is added to the equation assumptions in 
this paper. Right‑ventricle segmentation methods mostly 
use strong prior information such as atlas based methods, 
active shape and appearance models, electromechanical 
models etc., However using shape prior information in 
curve evolution equation; however, is now a classic method, 
is not considered for segmentation of right‑ventricle in 
cardiac MRI images. Our aim was using a shape based 
deformable model for segmentation of right‑ventricle in 
cardiac short axis MRI images for patients with ARVD. Shape 
prior information was added to the equations by means of 
PCA. PCA aims at capturing the main variations of a training 

set while removing redundant information. However, there 
was a problem in preparing shape prior information by 
PCA and that was the huge shape variety of right‑ventricle 
that comes from position of MRI slices along the apex‑base 
axis. For fixing this problem, principal components 

Table 2: Evaluation of segmentation results by means of 
four measures contain SI, JI, SE and SP for which an expert 
radiologist segmentation was available
Patient number Volume metric (%)

SI JI SE SP

1 85.5978 80.3763 89.1969 85.2435
2 87.2959 88.4740 97.0071 91.5367
3 90.3595 79.9001 89.2175 87.9648
4 87.3468 78.1490 90.4044 95.6853
5 84.1068 84.1002 97.2664 94.7292
6 84.6101 91.4642 94.9833 89.7468
7 86.5344 83.3248 97.3334 88.0938
8 86.4733 84.4840 95.3341 93.4030
9 84.5857 79.3732 90.7154 84.8979
10 87.5159 90.0843 90.1394 91.6327
11 90.5563 83.7325 96.8215 86.6643
12 86.3067 85.3934 89.3369 87.6588
13 86.4372 79.3165 98.8120 86.6543
14 80.8457 86.7216 96.7926 91.2698
15 84.8414 84.8155 94.2274 86.2611
16 83.1088 78.4804 92.7765 85.2048
17 85.9285 83.3829 94.6246 91.1860
18 88.4816 81.3725 110.7461 87.5733
19 91.2752 83.6679 92.1866 90.4779
20 92.0458 82.1927 84.8214 87.8380
21 86.6827 82.4414 102.5270 90.1373
22 86.1135 78.9851 95.8702 79.6515
23 89.2990 81.8945 89.4557 90.8637
24 88.3824 86.3628 106.1084 95.9982
25 89.1527 90.3732 95.5698 92.9854
26 89.1892 78.4619 94.2604 92.5103
27 82.8651 92.9674 88.7930 88.2530
28 88.5230 89.4769 87.3289 89.8097
29 86.7537 83.9109 83.7411 90.0437
30 84.8813 81.9851 90.6031 89.4967
Standard deviation 2.5818 4.1311 5.8215 3.5217
Average result 86.8699 83.8555 93.9 89.4490
SI – Similarity index; JI – Jaccard index; SE – Sensitivity; SP – Specificity

Table 1: ESV and EDV volumes and calculated EF of some 
patients
Parameter number EDV (ml) ESV (ml) EF (%) EF (%) manual

1 224.4 170.5 24.019 23.890
2 218.5 165.5 51.716 58.342
3 256.3 173.4 32.345 37.212
4 209.4 121.1 42.168 40.016
5 172.2 94.0 45.412 44.997
6 200.1 115.2 42.429 42
7 194.0 125.7 35.206 38.001
8 220.1 107.5 51.158 50.151
9 165.8 63.2 61.881 65.435
10 188.5 55.6 70.503 73.331
ESV – End‑systolic volume; EDV – End‑diastolic volume; EF – Ejection fraction



Figure  8: Right-ventricle ejection fraction (left plot) and volume (right plot), determined by the human expert and by the automatic segmentation for 
30 exams. The root mean square error is expressed in the same units as the ejection fraction and volume
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provided in two groups that was basal and apical slices and 
mid‑ventricular slices. Choosing between these two shape 
information terms was performed manually. Three force 
terms was used for curve evolution in the proposed method 
containing shape term, region term and boundary term 
that are gathered in an equation called energy function. 
Each term of this equation was weighted by a positive 
constant. And all parts of energy function were solved by 
numerical solutions. The main goal of numerical solution 
is minimizing energy function that leads the curve to a 
homogenous region  (regards to region term), borders of 
right‑ventricle (regards to boundary term) and a predefined 
shape of right‑ventricle  (prepared by PCA regards to 
shape term). Future researches can develop this work by 
defining a parameter for choosing shape information terms 
or four‑dimensional processing of short axis cardiac MRI 
images for determining the first ventricular slices.
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