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introduction

Sudden cardiac death is a major cause of mortality in the 
industrialized world,[1] and ventricular fibrillation (VF) is 
the leading cause of sudden cardiac death.[2] An electrical 
wavebreak in the heart tissue may lead to VF. According to the 
so-called restitution hypothesis, rate-dependent alteration 
of action potential duration (APD) and refractoriness (R) are 
believed to be important determinants of the wavebreak.
[3] The changes in APD that accompany the changes in rate, 
reflect the dependence of APD on the preceding diastolic 
interval (DI), a relationship characterized by the electrical 
restitution curve.[3] All of these mean that the modeling and 
simulating of restitution property in the cardiac cell is very 
important.

Cellular Automata (CA) may be considered as a method 
for modeling discrete dynamic systems.[4] A CA consists 
of a discrete system of lattice sites (cells) having various 
initial values. These cells evolve in discrete time steps, 
as each cell assumes a new state based on the rules, 
that is, the states of its local neighborhood and a finite 
number of previous time steps.[5] The neighborhood 
is described by specifying the set of cells that are the 
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neighbors of a given cell. Figure 1 depicts two kinds of  
neigborhoods.

A CA lattice may be 1-D or multidimensional. For 2-D 
CA, there are several possible lattices and neighborhood 
structures. For a squarelattice, two types of neighborhoods 
are typically used; the generalized ‘Von Neumann’ 
neighborhood and the ‘Moore’ neighborhood.[6]

Action potential duration restitution is an important 
electrical property of the cardiac cells. If a cell which is still 
in the refractory state is re-stimulated by an adequate large 
stimulus (S2 in Figure 2), the generated APD; APDn+1 will be 
shorter than that in the normal case, APDn, that is, when the 
cell is stimulated after complete refractory.

The action potential duration restitution property refers to 
the relationship between APDn+1 and the previous diastolic 
interval DIn, as shown in Figure 2. DI is defined by the 
duration between the end of the cell’s re-polarization and 
the next applied stimulation [Figure 2].

The plot of APDn+1 versus DIn is called the restitution curve 
[Figure 3].[9]
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Restitution curve may be explained as a function f:

APD f DIn n+ =1 ( )� (1)

Experimental measurements and observations confirmed 
that the restitution curve may be fitted by a sigmoid function 
like:[3]
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There are different methods for experimental plotting of the 
restitution curve, like the S1-S2 standard and the dynamical 
restitution method.[3]

Action potential duration is usually explained as APD95 
or APD90. APD95 is defined as the time distance between 
the S2 stimulus (beginning of AP) and 95% of the cell’s 
full repolarization. In this research, APD95 has been used. 
Regarding Figure 2, DI is defined as follows:

DI=(S1-S2 interval)-(APD95 caused by last S1)� (3)

aims

In the literature, mainly square lattices, with nearest 
neighbor interactions are studied. However, triangle and 
hexagonal lattices are also possible.[4] Figure 1 illustrates 
two types of neighborhoods that are generally used in 
literature.[7]

In this article a model based on CA is proposed. This model 
can be used for simulating the restitution phenomena in a 
ventricular cell.

This article is organized as follows: Section 2 reviews the 
restitution property. In Section 3 the proposed automata 
model is introduced, as also the method of implementation 
of the restitution property in the proposed model. Section 
4 includes the simulation results and model validation 
investigation. Section 5 has the conclusions and remarks.

Materials and Methods

Presume a square lattice with M×M  cells. Two state variables 
are assigned to each cell; one for the action potential variable 
(APt

mn) and the other for the refractory variable (Rt
mn), where 

m, n, and t denote the column number, row number, and the 
time step, respectively. The amplitude of each state variable 
takes a value from 0 to N-1. The variable St

mn stands for the 
stimulus applied to the cell, which is in the coordinate (m,n) 
in time t. Table 1 summarizes the description of the other 
parameters.

The transition rule (automata rule) in the proposed model 
is defined as follows:

Figure 1: Two kinds of neighborhoods. (a) Von Neumann; (b) Moore[7]

Figure 2: Illustration of the restitution property, APD and DI[8]

Figure 3: A sample restitution curve[10]

Sabzpoushan and Pourhasanzade: A cellular automata based model

40

20

0

-20

-40

-60

-80

-100
0 100 200 300

t(msec)

APDn

S1 S2

APDn+1

DIn

400 500
A

P 
(m

v)

200
180
160
140
120
100
80
60
40
20
0

200150100500
DI (msec)

A
P

D
 (m

s)

I.	 If St
mn is greater than the excitation threshold; Δ and 

APt
mn=Rt

mn=0, the cell in position mn; cellmn will be 
excited in the next time step; t+1 and APt+1

mn=APup and 
Rt+1

mn=0
II.	 If St

mn<Δ and Rt
mn=APt

mn=0, the cell will not be 
stimulated and stays in its previous (rest) state

III.	 If R APt
mn

t
mn+ ≠ 0, the cellmn will take the path in the 

state space, as shown in Figure 4. Notice that Rmn starts 
decreasing when the APmn reaches its maximum value 
After a complete evolution in the state space the Rt

mn 

and APt
mn will return to their rest states again
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The parameter values in the model are set so that the time 
course of AP and R in a single cell are as depicted in Figure 5.  
Here the continued and dashed lines show AP and R, 
respectively. Referring to Figure 5, it is clear that the general 
morphology of action potential and refractory in a heart cell 
are preserved.

For the R state variable, five phases (0, 1, 2, 3, 4) are assumed. 
In phase 0, R has its maximum value, so the cell is absolutely 
unexcitable. Phase 1 stands for R when the cell has just 
entered the rest state. In this phase R starts decreasing. 
Phases 0 and 1 are called absolute refractory. In phases 2 
and 3, R continues decreasing and a strong enough stimulus 
can re-excite the cell. In phase 4, R reaches its minimum 
value; 0. Here, the cell is in rest and normal stimulus can 
excite it and generate an AP with normal duration, that is, 
a normal APD.

If a cell is excited during phases 2 or 3, the restitution 
property will require that the APD is shorter than normal.

The main aim of this research was the simulation of 
restitution in a single cell, so a lattice of a single cell without 
any neighbor was considered. The automata rule was as 
discussed in section 3 and Figure 4. The parameter RDown 

was considered as a time-dependent parameter, as:

R
t

NDown =
−

exp( )
α

� (4)

In eq. 4, t denotes time and a is an adjustable coefficient. 
The model was implemented by matlab.

RESULTS

The model parameters were adjusted so that by stimulating 
a single cell, the outcome of the AP and R morphology 
was generally similar to a ventricular cell. The outcome is 
depicted on the left side of Figure 6. Referring to Figure 6, 
it is clear that the proposed model can simulate the AP and 
R morphology.

In Figure 6, three stimuli are applied to a cell, at times 0, 
40, and 70 milliseconds. The time interval between the first 
and second stimulus is long enough. In other words; DI1 is 
normal and the cell has enough time for full recovery, and 

Figure 4: Evolution of the cellmn state variables; APmn and Rmn in the state 
space. See the text for transition rules

Figure 5: (a) Time course of AP and R as implemented in the model; (b) A 
real AP time course[11]

Table 1: Definition of parameters used in the proposed model
DescriptionParameter name

AP up stepAPup

AP down stepAPDown

AP down step while R increasesAPd

R up stepRup

R down stepRDown

Cell’s stimulus threshold Δ
The border between phase 1 and 2 in Figure 5N0

The maximum value of APDAPDmax
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this leads to a normal APD2. The third stimulus is applied 
shortly after the second one. Therefore, DI2 is shorter than 
the normal case (DI1). It means that the cell has not enough 
time for complete recovery. The right hand side of Figure 6  
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Rup

0

N -1

Rt
mn

APt
mn

N -1

St
mn ≥ Δ

R
D

ow
n

APup

APDown

AP2

(a)

(b)

0 50 100 150 200 250 300 350 400 450
-100

-80

-60

-40

-20

0

20

40

60

80

t (ms)

A
P 

(m
V

)

-100

-50

0

+50

V (mv)

1

2

3 4

100 300200

0

Time



Journal of Medical Signals & Sensors

Vol 1  | Issue 1  |  Jan-Apr 201122

restitution property, that is, the third APD (APD3) is shorter 
than the first and second one.

After assurance about the installation of the restitution 
property in the model, its validity should be justified. Figure 7  
depicts three actual restitution curves.[12] If the proposed 
model is precise, it should simulate each of these curves by 
the adjustment of its parameters.

In this research the adjustment of the model was done 
via the regulation of N, a, and APDmax. The Normalized 
Mean Square Error (NMSE) criterion was used for fitness 
comparison of the restitution curves.

At first, the guinea pig restitution curve of Figure 7 was 
tested. The result is depicted in Figure 8. Here, the model 
parameters were adjusted as shown in the table in Figure 8. It 
is clear that the two curves coincided, with negligible NMSE.

Figure 7: Three experimental restitution curves[12]

Figure 8: Comparison of the guinea pig restitution curve with the 
simulated curve created by the model. The model parameters are adjusted 
as in the table. The proposed model can simulate the guinea pig restitution 
curve

Figure 10: Comparison of the rabbit 2 restitution curve with the simulated 
curve created by the model. The model parameters are adjusted as shown 
in the table. It is clear that the proposed model can simulate the rabbit 2 
restitution curve properly
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Figure 6: The outcome of the proposed model simulation. AP and R 
morphology are reserved as well as the restitution property
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Figure 9: Comparison of the rabbit 1 restitution curve with the simulated 
curve created by the model. The model parameters are adjusted as in 
the table. It is clear that the proposed model can simulate the rabbit 1 
restitution curve
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Second, as an attempt for the model validity justification, 
the rabbit 1 restitution curve of Figure 7 was examined. 
The result is depicted in Figure 9. Here, the model 
parameters were adjusted as shown in the Table in Figure 9.  
It is clear that the two curves coincided, with negligible 
NMSE.

And finally, the rabbit 2 restitution curve of Figure 7 was 
investigated. The outcome is illustrated in Figure 10. Here 
also, it is clear that the proposed model can simulate the 
restitution curve of rabbit 2, when its parameters are 
adjusted as shown in the table of Figure 10.

CONCLUSIONS

Restitution is a particular property of the cardiac cell. In this 
research, a cellular automata-based model was proposed 
for simulating restitution. For the validation test of the 
model, the restitution curves that were simulated by the 
model were evaluated against the experimental results 
of the validated sources. In this research, the parameters 
α, N, and APDmax were used for model regulation. The 
results showed that the proposed model could not only 
simulate restitution properly, but could also be regulated 
for simulating restitution curves of different kinds of 
cardiac cells. On account of the low computational load of 
the automata-based cell models, the model would be very 
useful for simulating propagation of electrical waves in the 
ventricular tissue and investigation of the wave break and 
fibrillation, which would form the matter of the authors’ 
future researches.
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