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INTRODUCTION

Numerical solution to scattering equation is the key in 
solving a variety of inverse problems in engineering and 
science including electromagnetic inverse scattering,[1]

quantum inverse scattering,[2-5] and medical imaging.[6] There 
are many medical imaging applications including cross-well 
tomography,[7] ground penetrating radar surface imaging,[8,9]

ultrasound tomography,[10] optical microscopy,[11,12] photon 
imaging,[13] induction imaging,[14] positron emission 
tomography (PET)[15] and electrical impedance tomography 
(EIT).[6,16-21]

There are several numerical methods for solving non-linear 
inverse scattering problem including direct and iterative 
approaches. D-bar is one of the significant methods 
based on direct methodology introduced by Beals and 
Coifman[22] that recently received a lot of attentions due to 
circumventing highly complex iterative approaches. D-bar is 
based on formulating several non-linear inverse scattering 
integrals into some linear D-bar equations.[23,24]

Planar D-bar equation in partial differential form can be 
represented by:[22]

( ) ( ) ( )k T k k  (1.1)
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Where the solution : R2  C to the D-bar equation is 
asymptotic to 1. That is, when k is large,  (k)  1. Here T (k) 
is a complex function. The ˆ-operator in (1.1) is defined by:
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The variable k may be defined in the real domain (k  R2) 
or complex domain (k  C); in other words in Eq. 1.2, the 
notations k = (k1, k2) and k = k1 + ik2 are interchangeable. 
Convolving both sides of Eq. 1.1 with Green’s function 
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 for -operator[22] and using asymptoticity of , 

the integral equation of D-bar becomes:
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where k = k1 + ik2  C,k 

A couple of methods are introduced for the numerical solution 
of the D-bar equation including product integrals (PI) and 
multigrid (MG). The PI method is introduced by Siltanen 
et al.,[25] first, for implementing an EIT algorithm based on 
the constructive proof of Nachman[24] for two-dimensional 
inverse conductivity problem. In this approach, a uniform 
grid is used to discretize the Eq. 1.3. Then, it computes 
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the singular convolution integral in D-bar equation via 
separating it into smooth and singular parts. The singular 
part of the integral is computed analytically and the smooth 
part may be computed using an interpolator polynomial. 
Then the discrete form of the equation may be solved by 
means of an iterative solver such as generalized minimal 
residual solver (GMRES).[26] Note that, the PI based methods 
requires O (N6) arithmetic computations to converge to 
the approximate solution of the D-bar equation on N-point 
grids, which is huge even for advanced ultra-fast computers.

In order to circumvent the huge computational complexity 
of PI methods, more recently, another class of algorithms 
is developed by Knudsen et al.[27] based on multigrid 
method. Note that, MG methodology was first introduced 
by Fedorenko as claimed[28] in 1962. Derivations of this 
methodology have shown good efficiency in solving partial 
differential equations (PDEs).[29,30] In the year 2000, over 
three decades later, Vainikko used MG methods for solving 
Lippmann-Schwinger integral equations.[31] In 2004, Knudsen 
et al. adapted Vainikko’s MG method for solving the D-bar 
equation as mentioned earlier. The first step in MG method 
is to obtain the periodic version of the D-bar integral 
equation. Next, the periodic equation is discretized using a 
special kind of grid mapping in which each function in (1.3) is 
expanded in terms of Fourier basis on the points of a uniform 
grid. This type of mapping allows neglecting the singular 
computations of the convolution kernel; however, it imposes 
some error in approximating the solution of (1.3). Although 
fast implementations of MG approach gain a remarkable 
speed and decrease the computational burden from O (N6) to 
O (N4 log N) via the use of fast Fourier transforms (FFT) on 
N-point grids, these methods suffer from low convergence 
rate (CR), especially near discontinuities. For example, the CR 
of the adaptation of MG in[27] is of O (h) where h denotes the 
spacing parameter of the grid, which is considered very low.

Disadvantages of the MG method motivated us for a new 
computational method. We found out that sinc-based 
methods could guarantee ultra-linear CR s in solving integral 
equations.[32-37] As a result, we decided to use the method 
of moments with sinc basis to solve the planar D-bar 
integral Eq. 1.3.

Therefore, in this paper a method of moments with sinc 
basis functions speed moment method (SMOM) is used to 
numerically solve the D-bar Eq. 1.3. This is based on sinc 
interpolation function; and it is able to achieve an ultra 
linear CR.[38] The sinc based methods are already used for 
solving specific ordinary differential equations, PDE’s and 
integral equations in diverse applications in science and 
engineering.[35-43] Sinc methods show considerable efficiency 
in terms of accuracy and computational complexity 
especially in tackling singular computations.[38]

In the proposed method, the nonpareil features of 
sinc functions are considered to solve the planar D-bar 

equation, efficiently. We show that the orthogonality of 
sinc basis functions may lead to discretize Eq. 1.3. Thus, 
the closed form solution of (1.3) is not required and so, 
it can help us to circumvent the direct computations of 
two-dimensional D-bar integral equations. In the following 
section, the details of the proposed algorithm is introduced 
and discussed.

METHOD OF MOMENTS WITH SINC 
BASIS FUNCTIONS

Disceretizing the D-bar Equation

In this section, we derive a solution for (k) from Eq. 1.3 
based on the method of moments. We start by expanding 
the product of ( ) ( )T k k . Assume the product ( ) ( )T k k  is 
frequency band-limited and can be expanded in terms of a 
set of sinc basis function as

1 2

1 2
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Here, h is the constant step size between grid points in each 
coordinates kq, q = 1, 2. Inserting expansion (2.1) in Eq. 
1.3 gives us:

' '
1 2 1 1 2 2 1 2

1 2

( ) 1 ( , ) ( , ).

( , ) ( ' ) ( , ) ( ' ) ( ' , ' ) ,

( , )

a Z b Z

k T ah bh ah bh

S a h k S b h k g k k k k dk dk

k k k (2.4)

Next, substituting (2.3) in (2.4) gives 

1 2 1 2

' '
1 2 1 2

( ) 1 ( , ) ( , ). ( , )

( , ) ( ' ) ( , ) ( ' ) ( , ) ( ' ) ( , ) ( ' )

, ( , )

a Z b Z c Z d Z

k T ah bh ah bh g ch dh

S c h k S d h k S a h k S b h k

dk dk k k k (2.5)

Remarkably, the orthogonality of sinc basis[37,38] helps us to get

g k ch k dh

S c h k S d h k S a h

k
d Zc Z

( , ).

( , ) ( ' ) ( , ) ( ' ) ( , )

( '1 2

1 2

1− −
∈∈
∑∑ )) ( , ) ( ' )

( , )

' 'S b h k dk dk

h g k ah k bh
2 1 2

2
1 2= − −−∞

∞

−∞

∞

∫∫
 (2.6)



Journal of Medical Signals & Sensors

45

Abbasi: Accurate D-bar reconstructions of conductivity images using SMOM

Vol 4  | Issue 1  |  Jan-Mar 2014

Substituting Eq. 2.6 in Eq. 2.5 leads to

2
1 2

1 2

( ) 1 ( , ) ( , ) ( , ),

( , )
a Z b Z

k h T ah bh ah bh g k ah k bh

k k k  (2.7)

Finally, Eq. 2.7 can be evaluated at discrete grid points 
k = (mh, nh) as

2( , ) 1 ( , ) ( , ) ( , ),

( , )
a Z b Z

mh nh h T ah bh ah bh g mh ah nh bh

k mh nh  (2.8)

The above equation is a discrete two-dimensional 
convolution equation. In the following section, we consider 
the computational complexity of solving Eq. 2.8 assuming 
that T (k) = 0 outside an open disk B (0, R). We show 
that this assumption helps to reduce the computational 
complexity of the solution.

Reducing the Computational Complexity

Let us denote the domain of two-dimensional integral in 
Eq. 1.3 by  and support of T (k) by supp (T). Unlike the 
continuous function g (k), the samples of T (k) are usually 
available via some computations on experimental data in a 
finite number of points k, where k  supp (T). For example, 
in the D-bar integral equation for EIT, T (k) may be obtained 
via finite samples in k space using “discrete voltage to the 
current map.”[19,45]

In addition, due to the commutative property of the 
convolution integral,[46,47] we can convolve T (k)  (k) 
over the kernel, instead. That is, we may re-write the Eq. 
1.3 as:
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Note that the solution  (k) for k  supp (T) suffice. That 
is, the integral Eq. 2.9 may be solved without the need for 

the values of  (k) at points outside the problem bound, 
i.e., k  supp (T). As a result, all we need to compute the 
convolution (2.9) is to supply the discrete values of the 
product T (k)  (k) at points k  supp (T).

In addition, the integral equation may be solved easier 
in the polar coordinate system using the notation 
k = k1 + ik2 instead of the Cartesian notation k = (k1, k2) 
in Eq. 2.9 as well as in Eq. 1.3. Now, based on our own 
crucial observations, if sup (T) is assumed to be embedded 
in an open disc B (0, R) (i.e., supp (T)  B (0, R)), then the 
convolution integral of (2.9) does not require the values of 
the kernel for |k´|  2R. Therefore, we may only need to 
find convolution values inside the open disk of radius 2R as 
it is shown in Figure 1. More specifically, as it is illustrated 
in Figure 1b, to compute the convolution integral in the 
right hand side of the Eq. 2.1, there is no need to use 

the values of the kernel function 
1

( )g k
k

 outside of the 

open disc B (0, 2R). As a result, we characterize the domain 

of integration as R, 2R R, 2R] and rewrite 
Eq. 1.3 as
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That is, the computation grid is finite and as illustrated 
in Figure 1c may be embedded in the open disk B (0, 2R). 
The consequence is that the two-dimensional discrete 
convolution operations in the right hand side of (2.8) 
may be implemented using discrete Fourier transform 
(DFT).[46,47]

Since the Eq. 2.8 is a discrete two-dimensional convolution 
equation, the FFT and its inverse (FFT-1) may be used to 

Figure 1: Bounds of two-dimensional convolution in D-bar equation and required grid structure. (a) Domain of integration and support of T (k). (b) T (k) 
*g (k) in the support of T (k). (c) Required grid

cba
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speed up the DFT computations. Thus, the Eq. 2.8 may be 
implemented as

2 11 ( . ). ( )h FFT FFT T FFT g  (2.12)

Traditionally, the FFT algorithms are more effective when 
they are dealing with matrices that contain 2m data points 
in each dimension.[46] Thus in the SMOM procedure, the 
number of points in the grid, N, is chosen to be powers of 
two to accelerate FFT computations. On the other hand, 
extending the number of data points in each dimension 
of the matrix of the two-dimensional functions, T (k) and 
g (k), via zero padding may result in a more approximate 
computation of their DFTs.[46] Therefore, as shown in 
Figure 2, before doing FFT computations of Eq. 2.12, the 
related matrices are extended via padding at least N data 
points in each dimension. The number of double precision 
mathematical operations required to compute each 
two-dimensional FFT-based convolution computation is 
O (N2 log N).[46] In addition, FFT (g) is only computed once 
and reused in all iterations. Moreover, to solve Eq. 2.12 
using an iterative solver like GMRES, one should set the 
upper bound of the number of iterations as a parameter. 
For example, in GMRES, this parameter should be set as 
an integer in the range [1…10]. Therefore, only O (N2 log 
N) double-precision mathematical operations are required 
in each of the iterations of the Eq. 2.12 of the SMOM 
method, using FFT and FFT inverse. That is, solving Eq. 
2.12 for the value of  (k) in each of N2 discrete points 
k = k1 + ik2 k1, k2 N, using an iterative solver 
with a fixed upper bound on the number of iterations 
requires O (N2 log N) arithmetical operations. It is clear 
that solving Eq. 2.12 for all N2 discrete points requires 
O (N2) iteration of the solver. Therefore, FFT is called 
O (N2) times. As a result, entirely O (N4 log N) arithmetical 
operations are required for N2-point SMOM solution to 
D-bar equation.

It is worth noting that, since FFT algorithms subdivide 
the computational data into small segments and combine 
them hierarchically, the effect of round-off error in their 
computations is considerably minimized.[46]

EIT USING SMOM

In this section, the proposed SMOM method is employed 
to solve the inverse conductivity problem. The aim of 
this problem is to reconstruct the bounded conductivity 
distribution  of a body  via the knowledge of injected 
current patterns and resulted voltages on the electrodes 
surrounding the body.[21] An in-depth review for the 
mathematical formulation of two-dimensional inverse 
conductivity EIT problem may be found in.[17,18,21] We refer 
the readers to these sources for more details.

Briefly, let us suppose a bounded domain   R2. Let also 

apply a voltage potential f H∈ ∂
1
2 ( )Ω  on the boundary of 

, through electrodes of an EIT measurement system. The 
consequent of this system is a potential distribution u  H1 
induced in , which can be obtained as the unique solution 
of the conductivity equation

∇ ∇ =
=

⎧
⎨
⎩ ∂

.( )u in

u f

0 Ω

Ω (3.1)

Another effect is the normal current distribution

g
u
n

H=
∂
∂

∈ ∂
− 1
2 ( )Ω  which can be measured through the 

same set of the electrodes. Using the distribution of the 
potential and normal current on the boundary of , the 
Dirichlet-to-Neumann map may be defined as

Λ : f
u
n

∂
∂

(3.2)

The forward and inverse problems of EIT are related to 
this mapping. The forward EIT problem is to determine 

 from the knowledge of  in the mapping   ; while 
the inverse problem is to determine  from the knowledge 
of  in the inverse mapping  . The inverse problem 
was first stated by Calderon.[48]

The significance of the forward EIT problem comes into 
account when a numerical test model is necessary for the 
solution evaluation of an inverse problem. In such a case, the 
Eq. 3.1 is solved as the model solution, with a pre-assumed 
distribution  to find the normal current distribution g and 
normal potential distribution f on the boundary of . 
Then, any intended inverse conductivity solution may be 
compared with this model.

For the inverse solution, Brown and Uhlman[49] proved that 
it is possible to solve such problems with a constructive 
solution and offered an algorithm. In the following, we review 
their constructive proof for inverse conductivity problem in 
C1 conductivities. In this type of conductivity distribution, 
the induced potential is modeled with a continuous function.

In Brown and Uhlmann algorithm, two D-bar equations arises 
on the inverse conductivity problem defined on a body. There 

Figure 2: Illustration of zero padding before fast Fourier transforms based 
implementation of the speed moment method. (a) The proper padding for a 
function (b) The correct result convolution

ba
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are some efforts to solve these two equations including 
Knudsen et al. and Siltanen et al. methods.[27,25] In this section, 
we employ and implement a new algorithm based on SMOM 
approach for solving the Brown and Uhlmann described 
version of the two-dimensional D-bar equations.

In the following, we first review Brown and Uhlmann 
constructive description of the two dimension D-bar problem. 
Then a numerical model solution implying the cross-section 
of human chest during expiration, which is suggested in,[27] is 
formed to evaluate recent D-bar solution methods as well as 
our SMOM method and compare them together.

Brown and Uhlmann EIT Method

The method of Brown and Uhlmann solves the inverse 
conductivity problem in two constructive steps:[49]

Λ → →
1 2

S  (3.3)

In the first step, the problem is transformed to inverse 
scattering problem to arrive at an intermediate function S. In 
the second step, the conductivity distribution  is computed 
from S. Note that the ill-posedness of EIT problem comes 
from the first step. For the purpose of comparison, we 
adapted some notations and formulations from.[27]

Let u be a solution to the conductivity equation in the plane. 
In the following, we identify (z1, z2)   with the complex 
number z = z1 + iz2. Defining the potential

q z= − ∂
1
2

1
2  (3.4)

the ( , ) ,v w u uz z= ∂ ∂( )
1
2  is the solution to the system.[49]

∂ =

∂ =

⎧
⎨
⎪

⎩⎪

z

z

v qw

w qv (3.5)

A helpful assumption in this method is taking  = 1 outside 
the boundary of . With this assumption, the potential q can 
be extended to whole R2 by q = 0, in R2\ . The scattering 
transform S is related to potential q via[49]

1 1 2( ) ( , ) ( ) ( , )
i

S k e z k q z m z k dz dz  (3.6)

where e z k i zk zk( , ) exp( ( ))= + . The solutions to the first 
D-bar equation[49]

∂ = ± − =± ± →∞ ±z
z

m z k q z e z k m z k m z k( , ) ( ) ( , ) ( , ) , lim ( , ) 1 (3.7)

are related to the functions m1 (z, k) eikz and m2 (z, k) eikz via[49]

m z k m z k m z k e z k± = ± −( , ) ( , ) ( , ) ( , )1 2  (3.8)

These exponentially growing solutions, with asymptotic 
conditions[49]

lim ( , )

lim ( , )
,

z

z

m z k

m z k
→∞

→∞

=

=

⎧
⎨
⎪

⎩⎪

1

2

1

0
(3.9)

are introduced by Faddeev.[50] Using Eq. 3.8, m1 (z, k) may 
be computed as

m z k m z k m z k1

1
2

( , ) ( , ) ( , )= +( )+ − (3.10)

In order to compute the conductivity , the second D-bar 
equation is to be solved that may be represented as:[49]

∂ = − − =+ +

→∞

+
k

k
m z k S k e z k m z k m z k( , ) ( ) ( , ) ( , ) , lim ( , ) 1 (3.11)

Finally, the unique solution m + to this equation is used to 
compute[27]

( ) (Re( ( , )))z m z= + 0 2 (3.12)

Next, a particular conductivity model of chest cross-section 
during expiration is defined and our SMOM solution is 
offered for the related D-bar equations.

Test Example: Numerically Simulated Phantom 
Chest

Our test example is a numerically simulated cross-section of 
the phantom chest in a unit circle that is illustrated in the 
Figure 3a. This numerical phantom is used recently in some 
EIT researches.[27,51] To have a simulated model of the chest 
conductivity during expiration, the conductivity values of 
the heart, lungs and background tissue are assumed to be 
equal to the values of the second column of Table 1. These 
conductivities are then scaled by dividing by the value of 
the background conductivity. The scaled conductivity values 
are enlisted in the third column of Table 1.

Table 1: The conductivity values of the simulated chest 
phantom
Object Normalized 

conductivity (mS/m)
Scaled 

conductivity

Heart 200 0.5
Lungs 800 2
Background 400 1

Figure 3: The reconstructed test conductivity using speed moment 
method: (a) Original conductivity true (b) Conductivity SMOM

ba
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The lungs are modeled by ellipses and the heart is modeled 
by a circle. For this conductivity the corresponding 
potential q is computed using numerical differentiation 
on a 512 × 512 grid defined on z variable. To compute 
S (k), the forward solution, on the points of the grid which 
is defined on k variable, first, the Eq. 3.7 is solved on 
the aforementioned grid defined on z variable. Note that 
512 × 512 fine grid guarantees a high accuracy solution to 
Eq. 3.7. The integral form of Eq. 3.7 is[27]

m z k
q z e z k

z z
m z k dz dz

R± ±= ±
−∫( , )

( ') ( ', )
'

( ', )1
2 1 2  (3.13)

Next, we compute the function m1 (z, k) using Eq. 3.10 and 
then, evaluate integral (3.6) to compute S (k) using trapezoid 
rule.

In order to solve the inverse problem and to compute 
the conductivity in the second step of the reconstruction 
algorithm m+ (z, k) is computed for each z in a new uniform 
grid in z-plane. Note that, using these two different grids 
on z variable mitigates the well-known inverse crime 
problem.[52,53] Having computed the scattering transform 
S (k), the integral equation

m z k
S k e z k

k k
m z k dk dk

R

+ += + − −
−∫( , )

( ') ( , ')
'

( ', ) ' '1
2 1 2 (3.14)

is solved for each z in the uniform grid and the conductivities 

rec are computed via evaluation of the solution of (3.14) 
to (3.12) at k = 0.

In the next section, first the implementation of SMOM 
algorithm as well as PI and MG methods are described. 
Next, using the subsequent numerical results derived in 
the application of all three methods on the aforementioned 
test problem, some significant parameters of efficiency are 
computed for the proposed SMOM method as well as other 
two methods and then compared.

SMOM IMPLEMENTATION AND 
EVALUATION

In order to implement and evaluate our SMOM method 
for solving D-bar equations in the inverse conductivity 
problem and compare it with best of its competitor 
methods, namely PI and MG methods, three Matlab codes 
were developed by authors one for each. Note that to 
implement a Matlab code for the PI numerical method, 
the analytical computation of 16 singular integrals in the 
form:[25]

I s
k k
s k

dk dks
v

v

u

u

j

j

i

i

, ( ) : , { , }βα

α β

α β= ∈
++

∫∫ 1 2
1 2

11

0 1
−

 (4.1)

Is required. Theses integrals have integrable singularity 
when the variable s lies in one corner of the mesh element 

that is defined by [ui, ui + 1] × [ i, i + 1]. A simple approach 
that may facilitate to analytically compute these singular 
integrals is to divide the domain of integration in to two 
parts as it is done in Figure 4. Computing integrals (4.1) over 
each In, n = 1, 2 and adding the results gives us the value 
of (4.1) over the mesh element. Table 2 enlists the results 
of analytical computation of the integrals (4.1) where the 
parameters (a, b) = (0, 0) and the evaluation variable s lies 
in four corners of the mesh element. The value of these 
singular integrals are analytically computed for other 
12 cases and enlisted in Tables 3-5.

Table 2: The result of analytical computation of singular 

integrals I ds,00 ( ) :=s
s k

k dk
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2 2i j
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I i

S=(ui, vj+1) 1,00 (1 )(ln2 )
2 2ij

h
I i
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2 2i j

h
I i

Table 3: The result of analytical computation of singular 

integrals I s
k

s k
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Figure 4: Dividing the domain of integration to compute and evaluate the 
singular integrals (4.1) on the corners of mesh elements in the product 
integrals method
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Implementation

In order to implement and later compare, the iteration 
parameters should be set in a common range for all three 
methods namely PI, MG, and our SMOM method. For this 
purpose, same-size grids are used. In addition, the upper 
bound of the iterations and acceptable tolerance of the iterative 
solver was set to 10 and 10 , respectively, for all three cases.

In order to reconstruct the test conductivity, we follow 
the steps of the Brown and Uhlmann that explained in the 
previous section. That is, after constructing the required 
grid structure, all three methods solve the first D-bar Eq. 
3.13. Then, the scattering transform is computed according 
to the Eq. 3.6 using trapz function of Matlab. Note that Eq. 
3.6 can be written as[54]

S k
i

e m k e dz dzi zk i zk( ) ( ) (., )= − −
∂∫2 1 1 1 2Λ Λ
Ω

 (4.2)

In this equation, , l are the Dirichlet-to-Neumann maps 
of respectively the inhomogeneous chest phantom with 

conductivity distribution  and a homogenous phantom 
with constant conductivity  = 1. Employing Eq. 3.6 to 
compute the scattering transform allows us to circumvent 
the explicit computation of the Dirichlet-to-Neumann 
maps , l.

Having computed this intermediate function, the second 
D-bar equation which is represented by Eq. 3.14 is solved 
for points k ∈ −[ ]× −[ ]25 25 25 25, , . Finally, evaluating the 
solutions of the second D-bar equation to Eq. 3.12 at k = 0 
results the image of the conductivity values in positions 
of the uniform grids defined on z-space. The result of the 
reconstruction of the test conductivity via SMOM using 
64 × 64 gird in z-plane is illustrated in Figure 3b.

Evaluation

In order to evaluate the proposed method and weigh it 
against its competitor methods, the most important and 
frequently-used parameters of efficiency[55] namely, accuracy, 
dynamic range of reconstructed conductivity (DRRC) and 
computational complexity versus accuracy are examined.

Accuracy
Due to the outperformance of MG method compared 
with PI methodology, we only discuss and compare the 
accuracy of SMOM with that of MG method. Similar to MG 
method, we follow the Knudsen et al. methodology,[27] for 
SMOM accuracy. That is, we use the supermom norm as a 
comparative measure of accuracy for the solution of the 
D-bar equations in the aforementioned EIT test problem as 
was used in the MG methods. In addition, since the true 
value of m+ (z, k) is not available for all k, and also to avoid 
the quantization errors that emerges in the computation 
of S (k), the solution matrix m+ (.,1) is considered in both 
methods. That is, first, the matrix m+ (.,1) is computed as 
the solution to Eq. 3.14 at k = 1 with a 512 × 512 grid in 
k-plane. Next, the solution matrix m+ (.,1) is used as the 
true solution against the other approximate solutions that 
are resulted with coarser grids in z-plane. Let us denote 
this true solution as mtrue (.,1) and denote the approximate 
solution with a grid of size Ni, i = 1,…,5 as mi (.,1). The 
supermom norm of solution error may be defined as:

E m mi true i= −sup (4.3)

In addition, the CR can be defined as:

CR
E
Ei

i

i

=
+1

(4.4)

Thus, the Eq. 3.14 is solved at k = 1 using the SMOM with 
different levels of disceretization in k-plane that are enlisted 
in the second column of the Table 6. For each solution, the 
value of Ei is computed as it is reported in the third column 
of the Table 6. According to the Eq. 4.4, the values of error 
norm are used to compute the respective CRs that are 

Table 4: The result of analytical computation of singular 

integrals I s
k
s k

dk dks
v

v

u

u

j

j

i

i

, ( ) :10
2

1 2

11

=
−

++

∫∫
Position of s Is,10

S=(ui, vj) I
h

i v Iij j ij, ,(ln )10

2

002
2= − − +

S=(ui+1, vj) I
h

i v Ii j j i j+ += − − +1 10

2

1 002
2, ,( ln )

S=(ui, vj+1)
2

1,10 1 1,00(1 ln2 )
2 2ij j ij

h
I i v I

S=(ui+1, vj+1) I
h

i v Ii j j i j+ + + + += − − +1 10

2

1 1 1 002
2, ,(ln )

Table 5: The result of analytical computation of singular 

integrals I s
k k
s k

dk dks
v

v

u

u

j

j

i

i

, ( ) :11
1 2

1 2

11

=
−

++

∫∫
Position of s Is,11

S=(ui, vj)
2

3
,11

2

,00

4 1
(1 )( ln2) (ln2 )

12 6 2

(1 ln2)
2

ij i

j i j ij

h
I h i i u

h
i v u v I

S=(ui+1, vj)
2

3
,11

2

1 1 1 ,00

4 1
(1 )( ln2) (1 ln2

12 6 2

) (1 ln2)
2 2

i j

i j i j i j

h
I h i i

h
u i v u v I

S=(ui, vj+1)
2

3
1,11

2

1 1 1,00

4 1
(1 )( ln2) ( ln2)

12 6 2

(1 ln2 )
2 2

ij i

j i j ij

h
I h i i u

h
i v u v I

S=(ui+1, vj+1)
2

3
1 1,11 1

2

1 1 1 1 1,00

4 1
(1 )( ln2) (ln2 )

12 6 2

(1 ln2)
2

i j i

j i j i j

h
I h i i u

h
i v u v I



Journal of Medical Signals & Sensors

50

Abbasi: Accurate D-bar reconstructions of conductivity images using SMOM

Vol 4  | Issue 1  |  Jan-Mar 2014

shown in the fourth column of Table 6. The results show 
that the SMOM follows an ultra-linear CR.

Table 7 shows the analysis of the CR of MG method using 
supermom norm reported by Knudsen et al.[27] Comparing 
the Table 7 results with that of the SMOM in Table 6, we 
observe that the new proposed SMOM method possesses a 
higher CR than MG.

Another important parameter to evaluate and rank an EIT 
numerical solution method is the analysis of the DRRC 
of resulted images. Such analysis is offered in many EIT 
publications including[16] and.[45] In fact, DRRC can reflect the 
efficiency of the numerical solution method used for solving 
the D-bar equations. In the following subsection, we shall 
use this parameter and analyze our SMOM as well as PI and 
MG numerical methods, and compare them together.

DRRC
Let define the DRRC as:[16,45]

DRRC rec
rec rec

True true

( )
max( ) min( )
max( ) min( )

= −
−

×100 (4.5)

This parameter demonstrates the potency of the 
reconstruction algorithm in separating the different levels of 
the reconstructed conductivity. The diagram in the Figure 5 
compares the resulted values of DRRC parameter in different 
reconstructions of all three methods at different levels of 
disceretization in k -plane. Computing the DRRC of SMOM, 
PI and MG methods, it can be observed that the DRRC using 
the new SMOM method is closer to 100% compared to each 
of the other two methods. For example, while the DRRC of 
the PI and MG with 128 × 128 grids in k-plane are about 74% 
and 92.2% respectively, the DDRC of SMOM is about 95.56%.

Computational complexity
For comparing the computational complexity of our 
method with that of PI and MG, we measured the required 

computing time (in seconds) for solving Eq. 3.13 at a fixed 
point k = 1 using a dual core, 2.53 GHz processor speed 
Sony laptop. For this purpose, the following scenario is 
arranged:
1. Set a common environment for all three methods. That 

is, equal numbers of grid points are set. In addition, 
the acceptable tolerance and the upper bound of 
the iterations of the solver are set to 10  and 10, 
respectively

2. Under common settings of part (1), D-bar equation 
defined in (3.13) is solved at point k = 1 with different 
levels of disceretization.

All three methods’ performances are reported in Table 8. 
The results indicate that the computational complexity 
of the new SMOM is way too smaller than that of the PI 
method. In addition, SMOM takes much less computing 
time than MG method, as well.

Table 6: Analysis of the convergence rate of the 
approximate solution mi (.,1) computed by the SMOM 
method to the true solution mtrue (.,1)

i Number of sinc 
grid points (Ni)

Ei CRi=(Ei/Ei+1)

1 16 0.2290 2.5
2 32 0.0916 5.2
3 64 0.0176 11.4
4 128 0.0015 14.1
5 256 0.0001
SMOM – Speed moment method; CR – Convergence rate

Table 7: Analysis of the convergence rate of the approximate 
solution mi (.,1) computed by the one-grid method to the 
true solution mtrue (.,1)[27]

Number of 
grid points

Ei CRi=(Ei/Ei+1)

16 0.2173 2
32 0.1109 2.5
64 0.0436 1.6
128 0.0272 1.5
256 0.0107
CR – Convergence rates

Table 8: The time required for computing the approximate 
solution of equation (3.13) in the fixed point k=1 using 
different sizes of grids
Grid 
size

Required 
time for PI (s)

Required time 
for MG (s)

Required time 
for SMOM (s)

8×8 0.4331 0.0042 0.0028
16×16 0.1218 0.0051 0.0046
32×32 0.0644 0.0124 0.0121
64×64 0.302 0.0397 0.0392
128×128 2.42576 0.2594 0.2018
256×256 27.3248 0.9038 0.8917
512×512 359.618 3.9255 3.8781
PI – Product integrals; MG – Multigrid; SMOM – Sinc basis with method of moments

Figure 5: Dynamic range of the reconstructed conductivities via applying 
the product integrals, multigrid and sinc based moment method
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CONCLUSION

Applying the -operator on non-linear equations, which 
arise in quantum inverse scattering, PET and EIT -result 
into a convolution form D-bar integral equation. High 
computational complexity of the PI methods and low 
precision of the MG methods demonstrate the inefficiency 
of both of them in solving the D-bar equation.

In this work, sinc functions are utilized as basic functions to 
introduce a new sinc basis Method of Moment (SMOM) for 
solving the planar D-bar equation. The brilliant feature of this 
novel method is that, upon the orthogonality of sinc basis 
functions, the computation of highly computational-burden 
convolution integral in the D-bar equation is circumvented. 
In this method, the discrete two-dimensional convolution 
equation of D-bar easily lends itself to a fast computational 
implementation via the FFT.

The performance of our method is compared with the best 
available methods namely PI and MG. In order to numerically 
compare these methods, a scenario was adapted for our 
SMOM algorithm as well as the other two methods, similar 
to settings adapted by other researchers. That is, we adapt 
an inverse conductivity problem defined on a numerically 
simulated chest phantom.

Numerical results confirm the effectiveness and the 
superiority of our SMOM method for solving planar D-bar 
equations in terms of both the computational complexity 
and accuracy over MG and PI.
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