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INTRODUCTION

Ultrasound elastography is a non-invasive imaging method 
which introduced about two decade ago to image the 
elasticity of soft tissues. Lots of cancers cause stiff masses 
that aren’t recognized simply by conventional ultrasound. 
Hence, the elastography has attracted attentions as a 
diagnostic technique especially about diseases that lead to 
pathological changes.

Researches on elastography can be categorized in some 
general groups:

The first group is the detection and recognition of tumors. 
Malignant tumors are usually stiffer than benign. Kumar 
in[1] attempted a quantitative analysis of the improvement 
in classification accuracy when ultrasound elastography is 
combined with echography. The main focus of this study 
is to quantify the improvement in diagnosis of tumors 
by combining the ultrasound B mode imaging with 
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elastography. Quantification is based on the textural 
parameters measured from the ultrasound B mode image 
and strain measured from the elastogram. They concluded 
that an increase in the classification accuracy was achieved 
following the inclusion of the average strain parameter as 
an additional input to the classifier.

In another work,[2] the axial-shear strain elastogram (ASSE) 
was studied to decrease the unnecessary breast tumor 
biopsies. They hypothesized that ASSEs contain novel and 
independent features that may be useful for the noninvasive 
classification of breast tumors as benign or malignant. They 
showed that the feature from the ASSE, “the normalized 
area of the axial-shear strain region” contains valuable 
information useful for more accurate classification of breast 
cancer.

Luo et al. in[3] have worked on ultrasound elastography 
feasibility as a screening tool to reduce the number of 
fine needle aspiration (FNA) biopsies being performed on 
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benign thyroid nodules. The diastolic strain variation is 
used to differentiate malignant nodules from benign. They 
showed the number of FNA biopsies can be reduced by 53%.

The second group of researches is on monitoring. In[4] a 
computationally efficient method for monitoring the 
progress of high-intensity focused ultrasound (HIFU) 
treatment is presented. The method utilizes the phase 
change before and after applying static compression. Both 
simulation and experimental results confirm that the phase 
change is a good and sensitive indicator of tissue stiffness 
which cannot be assessed with conventional B-mode 
imaging modalities. Rubert et al. in[5] evaluated the in vivo 
implementation of the electrode displacement technique 
in liver tissue during microwave and radio frequency (RF) 
ablation procedures. The results show that although 
principal axis measurements may be appropriate for 
determining cross sectional areas of spherical or cylindrical 
lesions, they are not generally feasible for most RF or 
microwave ablated lesions. Comparison of the ablated 
areas between gross pathology and strain images were 
then performed using contour delineation which resulted 
in good agreement between strain and pathological 
measurements.

Third category of studies is on measuring the parameters. 
Farron et al. in[6] developed and evaluated the use of an 
RF elastography algorithm for estimating the strain along 
tendinous fibers during a muscular twitch contraction. 
Experiments were performed on the tibialis anterior, a 
superficial dorsiflexor of the ankle, undergoing twitch 
contractions and strain estimations were compared with 
the timing and magnitude of strains determined from visual 
analysis of B-mode images.

Next group of researches is on improving the quality of 
elastography images. In[7] a two dimensional (2-D) strain 
imaging technique based on minimizing a cost function 
using dynamic programming introduced. Furthermore 
there are researches that present new methods for strain 
estimating.

Making an elastogram with a simply distinguishable stiffer 
area is the challenge of almost all techniques that have been 
presented up to now. It means that improving the image 
contrast can be one of the main goals of each method. In 
this study, achieving this goal is attempted.

With a glimpse on the works are done in elastography 
domain and especially in the field of signal processing, 
an explicit point is found out. Almost in all methods 
presented in papers, for strain estimating, the original pre 
and post compression RF signals without any changes are 
used. In this paper, we are going to use intrinsic mode 
functions (IMFs) obtained from RF signals in the estimation 
process.

ACQUIRING ELASTOGRAM 
USING EMPIRICAL MODE 
DECOMPOSITION EMD METHOD

EMD Algorithm

EMD is a relatively new form of time series decomposition 
that without leaving the time domain, breaks down a 
complicated signal into a collection of simpler signals called 
IMF.[8]

The process is useful for analyzing natural signals, which 
are most often non-linear and non-stationary. An IMF 
is a function that satisfies two conditions: (1) In the 
whole data set, the number of extrema and the number 
of zero crossings must either be equal or differ at most 
by one; and (2) at any point, the mean value of the 
envelope defined by the local maxima and the envelope 
defined by the local minima is zero. The way that extracts 
IMFs, designated as the sifting process, is described as 
follows.

By virtue of the IMF definition, the decomposition method 
can simply use the envelopes defined by the local maxima 
and minima separately. Once the extrema identified, all the 
local maxima are connected by a cubic-spline interpolation 
as the upper envelope. The procedure is repeated for the 
local minima to produce the lower envelope. Then their 
mean is designated as m1, the difference between the data 
and m1 will be the first component, h1, i.e.,

X t( ) − =h m1 1 (1)

If h1 satisfies the requirements of an IMF, it is selected as the 
first extracted component of signal else h1 itself regarded as 
a signal and the explained process implemented on it.

h m h1 11 11− =  (2)

Sifting procedure repeats k times, until h1k chosen as first 
IMF, that is

h m hk k k1 1 1 1( )− − =  (3)

c1 1h k (4)

To guarantee that the IMF components retain its two 
requirements, a criterion is determined for the sifting 
process to stop. This can be accomplished by limiting the 
size of the standard deviation (SD), computed from the two 
consecutive sifting results as

SD
h t h t

h t
k k

kt

T

=
−−

−=
∑[

( ( ) ( ))

( )
]

( )

( )

1 1 1

2

1 1
2

0

 (5)

A typical value for SD can be set between 0.2 and 0.3.[8]
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After specifying c1 as the first component of signal, it is 
separated from primary signal and now the sifting process 
executes for rest r1

X t c r( )− =1 1 (6)

The sifting process can be stopped by any of the following 
predetermined criteria: Either when the component, cn, 
or the residue, rn, becomes so small that it is less than the 
predetermined value of substantial consequence, or when 
the residue, rn, becomes a monotonic function from which 

no more IMF can be extracted. Finally, the signal can be 
explained as:

X t c ri n
i

n

( ) = +
=
∑
1

 (7)

In Figure 1 an example of a signal and its IMFs are shown.

The various advantages and differences of EMD with 
wavelet or Fast Fourier Transform (FFT) based analysis is 
listed below in the Table 1. The table shows that EMD is 
indeed a powerful tool for analyzing data from non-linear 

Figure 1: A signal and its intrinsic mode functions
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and non-stationary processes: It is based on adaptive basis; 
the frequency is derived by differentiation rather than 
convolution; therefore it is not limited by the uncertainty 
principle.

Data Acquisition

To implement the idea of paper, two datasets are used. 
In first data a sandwich structure of cooked and normal 
tissue provided where the cooked tissue becomes stiffer 
than normal one. To do this, two pieces of pork tissue 
were obtained. One of the pieces was placed in boiling 
water (100°C) for 30 min. The other piece was kept normal. 
Both pieces of tissues (normal and coagulated) were kept in 
degassed de-ionized water at 5°C for 24 h. A transverse cut 
was made through the normal tissue and consequently two 
pieces of normal tissue were obtained with thicknesses half 
of the thickness of the original normal tissue. The coagulated 
tissue is further sandwiched [Figure 2] between the two 
normal pieces of tissues. Extensive amount of coupling gel 
was poured in between each layer in order to minimize the 
reflection of the ultrasound waves propagating through this 
sandwich.

The tissue sandwich was placed on a scale. 
A SonixRP (UltraSonix, 12-14 avenue, Carnot batiment, 
Carnot plazza, Massy, France) scanner and a linear 
transducer array (L14-5/38) were used to image the tissue 
sandwich. It was imaged at the center frequency of 4 
MHz and sampling frequency of 40 MHz. The linear probe 
was pressed on the sandwich to generate pressure. This 
dataset was provided in Advanced Biomedical Ultrasound 
Imaging and Therapy Laboratory, Ryerson University in 
Canada. For second dataset, the data from[9] was used. In 
this data a ramp- and-hold stress stimulus was used to 
initiate a creep-recovery method for imaging breast lesions. 
A patient lied on her side while a linear transducer array 
from an Antares™ System is manually pressed into the skin 
surface, scanning in the anterior-posterior direction during 

a time period of approximately 15 s. A set of malignant 
and a set of benign patient data acquired. Both sets are 
from biopsy-verified studies and both presented with 
non-palpable tumors initially detected by mammography. 
Both sets provide 183 RF frames in total and are recorded at 
a rate of 17 frames/s. In this paper, we just used data from 
malignant lesion.

Strain Estimation Techniques

To estimate the displacement, two techniques are used: 
Cross correlation and continues wavelet transform. In 
cross correlation algorithm a frame before and a frame 
after compression are chosen and corresponding A-lines 
are windowed and corresponding segments are cross 
correlated, then the lag which is corresponds to the peak 
correlation coefficient is considered as the time delay of that 
segment, then the time delay is converted to displacement. 
To implement this method the windows with a size of 
about 100 samples and 70% overlapping considered and a 
polynomial interpolation to find the subsample location of 
the correlation peak was used.

In wavelet algorithm, corresponding A-lines from pre and 
post compression frames were segmented and then each 
segment is continues wavelet transformed. The result of 
transformation is a 2-D matrix of scale versus time. Now 
for finding the time delay between segments their matrixes 
move on each other until in an instance of time that the 
maximum correlation happens. That time is selected as the 
time delay between those segments.[10]

In both methods, after estimating the displacements, a 
2-D median filter is used to increase the signal-to-noise 
ratio (SNR).

The Idea of Using IMFs

At the first step, using EMD, pre and post compression 
signals is decomposed to their IMFs, then in the 
process of displacement estimating these IMFs are 
used instead of original signals. Regarding the first 
IMF of pre compression signal and the first IMF of post 
compression signal a displacement matrix is estimated. 
Differentiating this matrix resulting in the elastogram 
from the first IMFs. Similarly, for each IMF a displacement 
matrix and elastograms are obtained. Final elastograms 
is made by averaging these elastograms. Two ways of 
averaging is possible, before differentiating and after it. 

Table 1: Differences of EMD with wavelet and FFT
Feature Fourier Wavelet EMD

Basis A priori A priori Adaptive
Frequency Convolution Convolution Differentiation

Global Regional Local
Uncertainty Uncertainty Certainty

Presentation Energy-
frequency

Energy-time-
frequency

Energy-time

Suitable for analysing 
which type of signals

Non-linear No No Yes
Non-stationary No Yes Yes

Feature extraction No Discrete: No
Continues: Yes

Yes

Theoretical base Theory 
complete

Theory 
complete

Empirical

EMD – Empirical mode decomposition; FFT – Fast fourier transform

Figure 2: Sandwich structure of cooked and normal tissue
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Averaging before differentiating means that first obtain 
a displacement matrix from each IMF and average them 
then differentiate from the averaged displacement matrix 
to get the final elastogram. Averaging after differentiating 
means that different from each displacement matrix to get 
one elastogram from each IMF and then averaging these 
elastograms. Figure 3 shows a schematic of displacement 
matrix. In this matrix, the number of columns is equal to 
the number of A-lines of RF data frame and the number of 
rows is equal to the number of windows which is placed 
on each line.

Evaluating the Elastograms

To evaluate the generated elastograms two conventional 
parameters were used. Elastographic SNR and 
contrast-to-noise ratio (CNR) are the most common 
criterion for evaluating elastographic images and define as 
follows:[11]

CNR
C
N

s sb t

b t

= =
−
+

2 2

2 2

( )
 (8)

SNR
s

 (9)

Where sb and st  are the spatial strain average of the target 
and background, b

2 and t
2 are the spatial strain variance 

of the target and background and s  and are the spatial 
average and standard deviation of estimated values from 
one window in the strain image, respectively. In order to 
get a more confident evaluation for each image, 3 windows 
in the target area and 6 windows in the background area are 
considered. In this way, 18 SNR and CNR values obtained for 
each elastogram and then they are averaged.

RESULTS

As mentioned before two techniques of strain estimating 
were used in this paper. In this section, first results of the 
cross correlation and then the results of the wavelet method 
will be presented.

In Figure 4a, the B-mode image obtained from cooked and 
uncooked tissue sandwich structure is shown. Figure 4b also 
shows the primary elastogram obtained from RF signals or 
in the other word “before EMD” elastogram. 

In Figure 5, the elastograms obtained after using EMD is 
observed. Figure 5a shows the elastogram which is made 
by averaging the elastograms produced by each IMF and 
Figure 5b shows the elastogram which is made by averaging 
the displacement matrix produced from each IMF and then 
averaged displacement matrixes is differentiated.

It can be seen that both elastograms in this figure in 
comparison with the primary elastogram in Figure 3 
show considerable improvement and the cooked part of 
tissue in the middle of the image is better distinguishable. 
Furthermore, as it will be brought in follow, the Figure 5b 
in comparison with Figure 5a has better SNR and CNR, it 
means that when the averaging is done among displacement 
matrixes and then averaged matrix is differentiated, the 
destructive effects of differentiating is reduced.

As shown in Figure 6, the images are made from second 
dataset, the malignant tumor. The B-mode image, primary 
elastogram or before EMD elastogram and two elastograms Figure 3: Schematic of displacement matrix

Figure 4: (a) B-mode image and (b) Before empirical mode decomposition elastogram obtained from cooked and uncooked tissue using the cross-correlation 
technique

a
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made by averaging of elastograms and displacement 
matrixes are observable.

As it’s observed in Figure 6b, finding the margins of tumor 
in primary elastogram is very difficult and maybe without 
looking at sonography image [Figure 6a] is impossible. 
However as Figure 6c and d show in both elastograms 
produced after using EMD the area of the tumor can 
be recognized more easily. In this dataset likewise, the 
elastogram made by differentiating after averaging yields 
higher SNR and CNR.

As hinted before for getting SNR and CNR, for each image 
the mean value of 18 CNRs and SNRs is calculated. These 
18 values resulted from 6 windows in the background area 

and 3 windows in the target area. Figure 7 represents these 
windows for both dataset elastograms.

In cross correlation method for cooked and normal 
tissue datasets, CNR and SNR for elastogram formed 
from original RF signals (before using EMD) are 21.31 
and 14.21 respectively. These parameters after using 
EMD will improve to 35.09 and 18.32 respectively for 
elastogram made by averaged strain matrixes and 37.86 
and 23.73 respectively for elastogram made by averaged 
displacement matrixes.

In a malignant tumor dataset, CNR and SNR for primary 
elastogram are 11.98 and 9.49 respectively. After using EMD 
these values improve to 28.86 and 12.21 for elastogram 

Figure 5: (a) Elastograms which is made by averaging of elastograms produced by each intrinsic mode function (IMF) (b) Elastograms which is made by 
averaging of displacement matrixes obtained from each IMF and then differentiating the averaged matrix

a

Figure 6: (a) B-mode image of malignant tumor (b) Elastogram produced before using empirical mode decomposition (c) Elastogram that is made by averaging 
the elastograms produced from each intrinsic mode function (d) elastogram that is made by averaging displacement matrixes and then differentiating

c

a

d



Sadeghi, et al.: Ultrasound elastography using EMD

Journal of Medical Signals & Sensors

Vol 4  | Issue 1  |  Jan-Mar 201424

made by averaged strain matrixes and 30.03 and 16.82 
respectively for elastogram made by averaged displacement 
matrixes.

Wavelet transform was the second strain estimator method 
that EMD idea was implemented on it. Again two datasets 
considered and images before and after using EMD were 
made. Figure 8 shows results of this technique. In Figure 8a-c 
elastograms from normal and cooked data and Figure 8d-f 
obtained elastograms from a malignant tumor are shown.

As it is seen, in this method likewise, the first dataset, 
the cooked part in the middle of the image is better 
distinguishable. But in second dataset it is almost impossible 
to find the tumor area in primary elastograms but in “after 
EMD” elastograms this area becomes distinguishable and 
the margins simply recognizable.

Calculations of CNR and SNR for cooked and normal 
tissue are 20.32 and 12.43 respectively for before EMD 
elastogram. These parameters after using EMD will become 
33.21 and 15.59 respectively for averaged strain matrixes 
and 35.05 and 22.90 respectively for elastogram made by 
differentiating of averaged displacement matrixes.

In a malignant tumor dataset CNR and SNR for primary 
elastogram are 6.73 and 9.26 respectively. After using EMD 
these values improve to 21.69 and 10.44 respectively for 
elastogram made by averaging the strain matrixes and 
24.40 and 16.25 respectively for elastogram made by 
differentiating of averaged displacement matrixes.

In[12] the normalized cross-correlation, sum squared 
difference and sum absolute difference are used as three 
techniques for strain estimating. For these methods they 
has reported the CNR, 16.4, 16 and 16.1 respectively. It is 
seen that using the method which is described in this paper, 
we will have about 19 dB improvements in CNR for cross 
correlation method.

DISCUSSION

Improving the elastogram quality has been ever one of the 
important researchers’ challenges. In this paper using a 
relatively new processing method called EMD and by making 
changes in the process of displacement estimating, attempt 
is made to get better quality elastograms. The main idea is 
that instead of directly using RF signals for displacement 
estimating, the pre and post compression signals decompose 

Figure 7: Windows on background and target area for (a) Cooked and uncooked dataset (b) Malignant tumor dataset

a

Figure 8: Wavelet method: Elastograms from first dataset (a) Before empirical mode decomposition (EMD) elastogram (b) After EMD elastogram: averaging 
of strain images (c) After EMD elastogram: Differentiating of averaged displacement matrixes, Elastograms obtained from second dataset d) Before EMD 
elastogram (e) After EMD elastogram: Averaging of strain images (f) After EMD elastogram: differentiating of averaged displacement images

d

ca

e
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to their IMFs by EMD algorithm and these IMFs are used 
up to make an elastogram. In order to get better results, 
different combinations of IMFs and also the effect of high, 
middle and low IMFs were tested. Among all different tested 
conditions, whenever the combinations contained middle 
IMFs specially third and fourth IMFs, the SNR and CNR will 
improve and the resulted elastogram will have better visual 
quality. It means that the area that has different strain is 
better recognized. However, the idea that yields the best 
result was averaging. It means that using the first IMF of pre 
compression RF signal and first IMF of the post compression 
a displacement matrix is calculated. Similarly from each IMF 
of pre compression signal and its corresponding IMF from 
post compression signal a displacement matrix is calculated. 
Now two works can be done. One is differentiate from each 
displacement matrix to make an elastogram from each IMF 
and then averaging these elastograms to make the final 
one. Second is averaging the displacement matrixes and 
differentiating of averaged matrix to make final elastogram. 
To implement these ideas two estimating techniques, 
cross-correlation and wavelet transform and also two 
different datasets were selected. Calculations of CNR and 
SNR and also visual comparison of resulted elastograms 
show that in both techniques and both datasets after using 
EMD the results will improve. To continue and complement 
this work it is suggested to choose other estimating methods 
to implement the idea for them. For example angular strain 
estimation[13] or method that estimates the displacement 
from phase change[4] are interesting to test the idea on 
them. It is recommended to select other datasets that their 
stiffer area is smaller. One of the best datasets to achieve this 
goal is data that is acquired from HIFU lesions. In the other 
word, it is interesting to know is the idea helpful for HIFU 
monitoring or not.

CONCLUSION

It was shown that using EMD analysis for strain estimating 
can resulted in getting better elastograms and leading an 
improvement in values of CNR and SNR parameters.
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