
Journal of Medical Signals & Sensors

195Vol 3  | Issue 4  |  Oct-Dec 2013

Introduction

A biometric system is essentially a pattern recognition 
system, which makes a personal identification by 
determining the authenticity of a specific physiological 
or behavioral characteristic. There exist a number of 
biometrics methods today, e.g., signatures, fingerprints, 
iris, palm print and etc.[1] There is a considerable 
interest in authentication based on handwritten 
signature verification system as it is the cheapest way 
to authenticate the person. Furthermore, signature’s 
widespread acceptance by the public, make it more 
suitable for certain lower‑security authentication 
needs.[2] Fingerprints and iris verification require the 
installation of costly equipments and hence cannot be 
used at day‑to‑day places like banks etc.

Signatures are a special case of handwriting in which 
special characters and flourishes are viable. Signature 
based personal identification has a wide variety of 
potential applications, from security, forensics and financial 
activities to archeology (e.g., to identify ancient document 
writers).[3] Based on the nature of features extracted, 
signature verification process is commonly divided into two 
categories:
•	 Static or off‑line
•	 Dynamic or on‑line.
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Although both of them can be computerized, a static 
signature comparison only takes into account how the 
signature looks like, while dynamic signature verification 
analysis how the signature is made. A  static signature 
verification system captures a two‑dimensional signature 
image as input from a camera or a scanner and is useful in 
automatic verification of signatures found on bank checks 
and documents. Static verification methods are based on 
the limited information available only from the shape and 
structural characteristics of the signature image. A dynamic 
signature verification system gets its input from a digitizer 
or other device usually pen‑based, dynamic input device 
and could be used in real time applications like credit card 
transaction or resource access.

The on‑line signature is more robust to copy the 
problem than other biological features in that it has 
dynamic characteristics in addition to the morphological 
characteristics while the others typically provide only the 
morphological characteristics.[4] Therefore, compared with 
static signature verification, dynamic signature verification 
has a higher potential to increase the authentication trust 
and to decrease the possibility of deception.

Signature is easy to obtain and different people have different 
signatures. An individual’s signatures are remarkably 
consistent; however, there will always be slight variations 
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in a person’s handwritten signature, but the consistency 
of an individual’s signature makes it natural for biometric 
identification.[5] The act of signature is almost entirely 
subconscious and habitual, which means that signature 
dynamics (the way that a signature is written) is extremely 
individualistic. Hence, the dynamic signature verification 
technology examines the behavioral components of the 
signature, such as stroke order, velocity and pressure, as 
opposed to comparing visual images of signatures.

Based on the theory of movement control, signature is 
a ballistic complex movement. Although Plamondon[6] 
stressed the absence of feedback contribution during 
the movements, Elliott’s experiments[7] stated that motor 
commands can be adjusted online without the necessity to 
involve a conscious decision process. In order to optimize 
movement capabilities and extend the possibilities of motor 
learning, nature provided the human arm with a redundant 
number of degrees of freedom. This means that, each time 
a movement is produced, the sensorimotor control must 
have selected one of the countless possible strategies to 
achieve that motor goal.[8] Nevertheless, it is possible to 
observe not only intra‑subjective, but also inter‑subjective 
invariants in fast arm movements, e.g.,  bell‑shaped hand 
velocity profiles;[9,10] moreover, velocity profiles are also 
invariant with regard to the spatial extent or amplitude of 
the movement.[11] This invariant aspect is that the planar 
ballistic movements are practically without discontinuity.

Signature forgers would generally focus all efforts on 
replicating the appearance of a signature with little or no 
knowledge of how the original signature was written in time 
in terms of the pen‑tip pressure, the tempo, hesitations, 
the rhythm etc.[12] Since these dynamic attributes are 
mostly inaccessible through the image of a signature, 
they are practically impossible to imitate. Therefore, by 
incorporating signature dynamics, especially velocity in the 
verification process and segmentation of signature to basic 
components or strokes, an extra dimension of difficulty is 
created that is highly resistant against forgeries, thereby 
making dynamic signature verification a highly robust way 
of verifying human identities. In this paper, with using 
pole‑zero models based on discrete cosine transform (DCT) 
represent tangential velocity. Then features extract based 
on DCT coefficients and poles locus.

The rest of this paper is organized as follows. In Section 2, 
we provide a brief review of recent literature in the field 
of dynamic signature verification. Section 3 deals with the 
acquisition of signature data and pre‑processing steps. 
Section 4 formulates the signature modeling and details 
the structure of our proposed model and segmentation 
of signature. In Section 5, we introduce a feature set. 
The experiment results and comparisons are discussed in 
Section 6. Finally in Section 7, we present our conclusions 
and suggestions for future work.

PREVIOUS WORK

Signature verification systems are different both in their 
feature selection and their decision‑making methodologies. 
The features can be categorized in two types: Global or 
parameter and local or function. Global features are those 
related to the signature as a whole. Feature studied in this 
work are also examples of global features. Local features 
on the other hand are extracted at each point or segment 
along the trajectory of the signature and meaning that 
the signature is characterized in terms of a time‑function. 
In general, function features allow better performance 
than parameters, but they usually require time‑consuming 
matching procedures.[13] The advantage of global features 
is that there are a fixed number of measurements (features) 
per signature, regardless of the signature length, making 
the comparison task easier.

In the literature, several hundreds of parameters have been 
proposed for signature verification. Some of them are 
obtained from time‑function signals of the signature. The 
average, the root mean square, the maximum and minimum 
values are generally derived from the position, displacement, 
velocity and acceleration time‑functions representative of a 
signature.[14,15] Velocity is generally considered to be more 
informative than position and acceleration for dynamic 
signature verification.[16]

Other parameters are determined as coefficients obtained 
from mathematical transforms. Fourier and Wavelet 
transforms (WTs) have been proposed for on‑line signature 
verification.[17‑21] Other typical parameters for on‑line 
signature verification describe the signature apposition 
process, as total signature time duration, pen‑down time 
ratio, number of pen‑lifts (pen‑down, pen‑up), etc.

When parameters are used as features, the Euclidean 
distance is the most commonly used dissimilarity measure. 
When functions are considered, the matching techniques 
must take into account the variations of signing durations. 
Elastic matching such as dynamic time warping (DTW) and 
hidden markov models  (HMM) are the best one for this 
purpose.

The methods used for on‑line signature verification 
are classified as the following categories: DTW, neural 
networks  (NN), HMM, support vector machine  (SVM), 
statistical methods, fuzzy models, WT, hierarchical 
approaches and etc., It is difficult to make a comparison 
between different signature verification techniques based 
on different databases.

The goal of the DTW algorithm is used to find the most 
optimal time alignment between the reference signature 
and the test signature.[22,23] Once this correspondence is 
found, the transformations is allowed in the correspondence 
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are stretching or compression along the temporal axis of a 
signature. The aim of these local adjustments is to minimize 
the difference between the two signatures. DTW allows us to 
have a verification system more flexible, more efficient and 
more adaptive than the systems based on computed features 
processed by NN or HMM. Though, DTW is quite successful, 
it has two main drawbacks: Heavy computational load (time 
complexity of DTW is of O (n2)) and warping of forgeries.

The two main reasons for NN widespread usage are:[24] First 
power, the sophisticated techniques used in NN allow a 
capability of modeling quite complex functions and second 
ease of use, as NN learn by example it is only necessary for 
a user to gather a highly representative data set and then 
invoke training algorithms to learn the underlying structure 
of the data. Although, the NN‑based approaches have the 
capabilities in generalization, the drawback is the need 
for a large number of genuine and forgery signatures for 
training, which is not always practically viable.

HMM is of capability to perform stochastic matching for 
a model and a signature using a sequence of probability 
distributions of the features along the signature. This 
statistical theory of learning has an ability to absorb the 
variability and similarity between the patterns.[25] The main 
limitations of HMM are high computational complexity and 
large memory requirements. The number of parameters 
to be set in HMM is more and making a large assumption 
about the data  (regarding transition probabilities and 
distributions) is required. In addition, larger number of 
positive data are required to train an HMM.

SVM are widely used to solve classification and regression 
problems. Compared with most methods used for signature 
verification such as HMM, NN and DTW, SVM which are based 
on the principle of structural risk minimization, have major 
advantages like a convex objective function with efficient 
training algorithms and good generalization properties.[26] 
A big disadvantage of this approach is that these kernels 
are unable to deal with time series of different lengths. 
Therefore, it is necessary to rescale the time series to a 
common length or to extract a fixed number of attributes 
before these kernels can be applied. The main limitations of 
SVM are high algorithmic complexity and extensive memory 
requirements in large‑scale tasks.

When developing a signature verification scheme, the main 
aim is to achieve the lowest possible equal error rate 
(EER). The EER is simply the intersection between the false 
rejection rate (FRR) and the false acceptance rate  (FAR). 
The FRR or type‑I error represents the number of genuine 
signatures that the system rejects whereas, the FAR or 
Type‑II error represents the number of fraudulent signatures 
that the system accepts. Since the relationship between FRR 
and FAR is inversely proportional, trying to decrease the 
one will inherently cause an increase in the other.

Nalwa developed a strategy primarily based on the shapes 
of signatures for dynamic signature verification.[27] His 
approach differs from the traditional approaches, which 
rely primarily on the pen dynamics during the production 
of the signature, in fact that he proposed a local shape 
based model for handwritten on‑line curves. Experiments 
were conducted based on three databases of signatures. 
The EER for the three databases were about 3%, 2% and 5%, 
respectively.

Quan and Ji offered a novel approach that applied the 
DTW to match the crucial points of signatures.[28] Firstly, 
the signatures were aligned through the DTW and the 
crucial points of signatures were matched according to 
the mapping between the signatures. Then, the signatures 
were segmented at these matched crucial points and the 
comparisons were accomplished between these segments. 
The distance between the two was computed using a 
simplified Mahalanobis distance. An EER of 3.8% was 
obtained using random forgeries.

A new stroke‑based signature verification system was 
proposed by Chang and Shin  (2007).[29] According to the 
authors, it was crucial to find correct points of a testing 
signature to be spilt according to its template signature. In 
their study, they proposed a modified DTW for the problem. 
The test data were all the semi‑skilled forgeries and the 
result obtained from the proposed was 3.85% of EER.

A multivariate autoregressive  (MVAR) modeling in 
combination with a DTW‑based segmentation technique 
was proposed by Osman et al. (2007).[30] Database is including 
signature of 2400 genuine and 1920 forgeries. A  MVAR 
model is used to extract coefficients for each segment to 
construct a feature vector. These vectors are then fed into 
a NN with multi‑layer perceptron architecture. The system 
achieved accuracies of 99.9% in a random forgery test and 
96.6% in a skilled forgery test.

Mohankrishnan et  al. proposed a method based on an 
autoregressive  (AR) model that treats the signature as an 
ordering of curve types.[31] Each signature was divided 
in 8 segments and each segment was modeled by an AR 
model. A database of 58 sample signatures from 16 individuals 
was used for testing. No skilled forgeries were available but 
random forgeries were used. There total error rates for each 
user vary from a low of 7.92% to a high of 21.83%.

Hamilton et al. constructed a three layer NN, trained using 
supervised learning with back propagation.[32] Number of 
input neurons varied between 28 and 40 and the network 
contained one hidden layer. The results indicate that taking 
a large enough set the FRR reduces to 7% and FAR to 6%.

As per Wu et  al.[33] a combination of linear prediction 
coding (LPC) and NNs were used for signature verification 
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of Chinese characters, where each signature consists of 
several symbols. The LPC‑cepstrum of both the x and y 
coordinates were computed and later compared against 
a stored template using a three‑layer perceptron network 
that is trained using the back propagation method. The 
comparison was done for each symbol separately. The 
performance of the system was shown to be able to 
produce EER of less than 4%.

Pacut and Czajka proposed a dynamic signature verification 
system, which applied two NNs as the classification 
functions, namely a two layer sigmoid perceptron and the 
restricted coulomb energy (RCE) network, which is a variety 
of radial basis network.[34] They extracted several features 
from five channel signals: Position, pressure, azimuth and 
altitude angles. It was reported that a FAR of 0% and a FRR 
of 22% were achieved for the two‑layer sigmoid perceptron 
network; and a FRR of 11.11% and a FAR of 8.33% for the 
RCE network.

Kashi et  al.  (1998) described a method for the automatic 
verification of on‑line handwritten signatures using both 
global and local features.[35] They demonstrated that 
adding a local feature based on the signature likelihood 
obtained from HMM, to the global features of a signature, 
considerably improved the performance of verification. The 
test database 542 genuine signatures and 325 forgeries 
were used. The best result obtained from their research 
method with an EER of 2.5%.

Ortega‑Garcia et al. present results of using the usual five 
time sequences, x and y co‑ordinates, pressure, inclination 
and attitude as well as three derived sequences, path 
tangent angle, path velocity and log curvature radius.[36] 
With using these eight sequences and their first and second 
derivatives, signatures are modeled using HMM based on 
the sequences. The experiments resulted in 4.83% EER with 
common threshold which reduced to 0.98% by using user 
thresholds.

Shintaro et al. (2006) used user‑generic Fusion model with 
Markov Chain Monte Carlo Method.[37] The database consists 
of pen position, pen pressure, angle, altitude and azimuth 
based on the time sequence. From 330 individuals, 25 
genuine signatures and 25 skilled forgeries were collected 
for each individual and obtained the best results with 4.06% 
of EER.

Kholmatov and Yanikoglu have used classifiers, which are 
principal component analysis  (PCA), Bayes Classifier and 
SVM.[38] A test signature’s authenticity is established by first 
aligning it with each reference signature for the claimed 
user, using DTW. The distances of the test signature to the 
nearest, farthest and template reference signatures are 
normalized by the corresponding mean values obtained 
from the reference set, to form a three dimensional feature 

vector. Comparison has been done among these classifiers 
and PCA achieved the best result with EER of 1.46%.

Gruber et al. proposed a new technique based on integrates 
a longest common subsequences  (LCSS) detection 
algorithm, which measures the similarity of signature 
time series into a kernel function for SVM.[39] A database 
with signatures of 153 test persons and the SVC 2004 
benchmark database are used to show the properties of 
the new SVM‑LCSS. Experiments showed that SVM with 
the LCSS kernel verify persons very reliably and with a 
performance, which is significantly better than that of the 
best comparing technique, SVM with DTW kernel. With 
ten genuine signatures for reference, the FRR is only 0.75%, 
whereas the FAR% is 0.00%.

An online signature verification system based on local 
information and on a one‑class classifier, the Linear 
Programming Descriptor classifier was presented by Nanni 
and Lumini  (2008).[40] The information was extracted as 
the time functions of the signatures, then the discrete 1‑D 
WT was performed on these features. The DCT was used 
to reduce the approximation coefficients vector obtained 
by WT to a feature vector of a given dimension. The 
experimental with using MCYT Database showed an EER of 
5.2% in the Skilled Forgeries.

Signature Verification Process

The on‑line signature verification system including modules: 
Data acquisition, Pre‑processing, modeling, Feature 
extraction and comparing and decision. Figure 1 shows the 
general online signature verification process.

Data Acquisition

For the experimental process, we have used three databases:
•	 Persian database:[41] This database is constructed with 

50 subjects, 13 of them were women. Each subject 
provided 25 genuine signatures. Skilled forgeries were 
30 volunteers that produced 40 forgery signatures for 
each subjects. The data was collected in one session. 
To acquire the data in the dynamic verification system, 
we used a digital tablet, which capture dynamic 
information of signature such as position, pressure, 
azimuth and altitude of pen by each sampling period. 
In this system, we use a WACOM digital tablet (Graphier 
4). The sampling rate is 100 Hz

•	 SVC2004 database:[42] That provided two different 
signature databases namely task 1 and task 2. Each 
signature is represented as a sequence of points, which 
contains x coordinate, y coordinate, time stamp and 
pen status (pen‑up or pen‑down). In task 2, additional 
information like azimuth, altitude and pressure are 
available. Each database contains 20 genuine signatures 
from one signer and 20 skilled forgeries from at least 
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four other signers. The signatures are mostly in English 
or Chinese

•	 The Sabanci University Signature database  (SUSIG):[43] 
That is an online signature database and consists of 
two parts, namely visual and blind sub‑corpora. Visual 
sub‑corpus collected by Interlink Electronics ePad‑ink 
tablet. The tablet has a sampling rate of 100  Hz, 
recording at each sample point the x, y coordinates of 
the signature’s trajectory, pressure. SUSIG consists of 
signatures 110 signers; each signer supplied 20 genuine 
and 10 forgery signatures. Genuine signatures were 
collected in two different sessions. Blind sub‑corpus was 
collected using Wacom Graphire2 pressure sensitive 
tablet. For each subject, there are 10 genuine and 10 
forgery signatures. Genuine signatures were collected 
in a single session. Examples of signatures from the 
database are shown in Figure 2.

Pre‑processing

One of the difficulties faced by a signature verification 
system is the fact that different signatures by the same 
signer may differ in angle, position, width and even in size. 
This may cause a problem if we wish to compare the shapes 
of the signatures. The widely accepted norm is simply to 
transform the signature to a standard size and orientation. 
There are some commonly done pre‑processing steps, 

aimed to reduce and eliminate some of the variations, 
removing uninformative in signature and to improve the 
verification performance of a system. For this purpose, 
several signal‑processing algorithms for pre‑processing 
can be used. The pre‑processing of an on‑line signature 
generally consists of smoothing, rotation, normalization 
and numerical differentiating.

Smoothing
Tablets involved to capture the signatures may have lower 
resolution and thus may suffer from discretization errors, 
resulting in jagged signature trajectories. Extracting local 
features from jagged signature trajectories and then using 
them for verification, may lead to poor system performance. 
The recorded data is usually smooth. To solve this problem, 
we fit a smooth path through the (x, y) co‑ordinates of each 
signature. We employed the cubic splines for smoothing 
purposes due to their nice mathematical properties. After 
smoothing the signatures, the isolation strokes in a word 
are joined together to form one single stroke. Figure  3 
shows two sample signatures before and after smoothing 
through cubic splines.

Rotation
In many cases, signatures even those that belong to the 
same person, have a different direction, hence it should 
be corrected. Signature direction can be observed as a 
line trend. In this paper to eliminate the trend, the linear 
regression method was used. In the proposed approach, 
orthogonal regression line was introduced.

It follows from statistics that linear regression is a classic 
statistical problem, where relationship between two 
random variables x and y should be determined. Linear 
regression attempts to explain this relationship with a 
straight line to fit the data. The linear regression model 
postulates that:

y = ax + b� (1)

Straight line (1) is estimated by means of the least‑squares 
method.[44] The coefficients a and b are determined by the 
minimization of some distances and the sum of the squares 
of such distances should be as small as possible. We must 
minimize the orthogonal (perpendicular) distances from the 
data points (xi, yi) to the fitted line 1. The values a and b can 
be determined on the basis of the equations:

Figure 1: Process of signature verification

Figure 2: Some of the signatures
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Where  (x, y) is a given signature coordinates and  (X, Y) 
signature coordinates after rotation. Figure  4 shows two 
sample signatures before and after rotation based on 
orthogonal regression.

Normalization
In systems where the user may have to sign on tablets with 
different active areas, signature size normalization may be 
required. People usually scale their signatures to fit the area 
available for the signature. However, size difference may be 
a problem in comparing two signatures. In this paper, size 
is normalized by scaling each of X and Y dimensions to a 
standard deviation of one.

Differentiator
A number of preprocessors were investigated that perform 
various differencing operations on neighboring feature 
vector dimensions. Some of these differentiators also 
include smoothing techniques. We use the following 
estimate for simplicity and generality.

D x
x x x x

i
i i i i( )

( ) ( ) /
=

− + −− + −1 1 1 2
2

� (4)

This estimate is simply the average of the slope of the 
line through the point in question and its left neighbor 
and the slope of the line through the left neighbor and 
the right neighbor. Empirically this estimate is more 
robust to outliers than any estimate considering only 
two data points. Note the estimate is not defined for the 
first and last elements of the sequence. Instead we use 
the estimates of the second and penultimate elements 
respectively.

Signature Modeling

Many investigators have reported that the velocity 
profiles of rapid‑aimed movements are approximately 
bell‑shaped.[45‑47] Knowing that this system is constituted 
by a very large number of neurons and muscle fibers 

is possible to declare, based on the central limit 
theorem that a rapid and habitual movement velocity 
profile asymptotically tends toward a delta‑lognormal 
equation.[47] Moreover, the shape of the bell, after 
appropriate rescaling, is approximately super imposable, 
that is, the shape is almost preserved for movements 
that vary in duration, distance or peak velocity.[46] This 
invariance in the shape of the velocity profiles suggests 
that velocity might play a key role in movement control. 
Figure  5 shows velocity profile shape invariance across 
different conditions.

These velocity profiles have also been observed in 
handwriting, for curvilinear velocity. The characteristics 

Figure 4: Rotation on the basis of the orthogonal regression.  (a) Original 
signature. (b) After smoothing and rotation

ba

b

Figure  3: Smoothing of signature based on cubic splines.  (a) Before 
smoothing. (b) After smoothing

a

Figure  5: Tangential velocity profile shape invariance across different 
conditions: Illustrated by normalized tangential velocity profile for fast 
velocity and unloaded[46]
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The inverse transform (IDCT) of X (k) in (5) is
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Consider a second‑order discrete‑time system with a 
complex pole pair at r< and two real zeros a1 and a2 in the 
Z plane. The transfer function of such a system having a gain 
G is given by:
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Which, in turn, can be rewritten as
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It can be shown that X  (k) the impulse response of the 
transfer function in X (z−1) in Eq. (8) is a damped cosinusoid 
and is given by

of the process of signing  (i.e.,  velocity, pen pressure, 
stroke etc.) are unique to every individual. Plamondon 
suggests that the signature consists of a series of rapid 
movements.[48] It is supposed that the features of the 
process of signing originate from the intrinsic properties 
of human neuromuscular system, which produces the 
aforementioned rapid movements. This statement explains 
stability of the characteristics of the signatures. Thus, the 
signature can be treated as an output of a system observed 
in a certain time interval, necessary to make the signature. 
This system models the person making the signature.[34] 
Figure  6 shows signature velocity of the same person in 
two trials.

Pole‑zero Model

The DCT of a bell‑shaped  (Gaussian) biphasic function is 
approximated mathematically by a system function with 
two poles and two zeros, i.e., of order (2, 2).[49,50] Conversely, 
the inverse discrete cosine transform (IDCT) of the model 
impulse response gives back the time signal with all its 
features intact. This model is expanded into a unique set of 
partial fractions each of order (2, 2) and a biphasic function 
is recovered from each one of these fractions in the inverse 
process.

We make use of the result that the IDCT of the impulse 
response of a second‑order system function X (z−1) with 
two poles and two zeros gives a bell‑shaped biphasic 
wave called a fractional component and vice versa. Of 
the four forms of the DCT of a discrete‑time sequence 
x  (n), i.e.,  of N sample duration, we use the following 
definition:

ba

Figure 6: Velocity of signature. (a) Two genuine signature of the same person. (b) Genuine and its skilled forgery
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The parameter set P  (r,, a, b) in Eq.  (8) controls the 
frequency of oscillation and the rate of decay of X  (k) in 
Eq.  (9). Furthermore,  determines the location of peak 
sample number in the biphasic wave and parameters (r, a, b) 
control not only the peak amplitude, but also the rising and 
falling slopes of x (n) that is, the entire shape of the biphasic 
wave in the time domain is controlled by P.

Modeling of Complex Signal

If a complex signal is formed from the combination of 
bell‑shaped signals then complex signal is modeled by a 
linear combination of pole‑zero models expressed in Eq. (8) 
and addition to the basic components can be identified and 
extracted. The given signal is represented by the sum of M 
Gaussian fractional components, i.e.,:

x n x n x n x n x nM i
i

M

( ) ( ) ( ) ( ) ( )= + + + =
=
∑1 2

1

 � (10)

Now consider the inverse problem, i.e., how do we delineate 
the component signals xi  (n) that are present in x  (n)? For 
this purpose, DCT of Eq. (10) becomes:

X k X k X k X k X kM i
i

M

( ) ( ) ( ) ( ) ( )= + + + =
=
∑1 2

1

 � (11)

The X  (k) in Eq.  (11) are still unknown and have to be 
determined. Approximate X (k) as the impulse response of a 
system of order (2M, 2M) i.e., X (k) in Z plane and
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The partial fraction expansion of Eq. (12) gives
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Figure 7: Block diagram of parametric modeling in discrete cosine transform 
domain

Now B2M/A2M has to be split into M factors ci associated with 
each of the second‑order terms in Eq. (13) such that

C
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M
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2

2 1

= =
=
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For the decomposition C0 of into ci based on the initial value 
ˆ (0)ix  of each fractional component, ci is determined

ˆ(0)ic x N= − � (15)

The sum of all the component waves gives the complete 
signal ˆ( )x n . Visually, the delineated components ˆ ( )ix n  

compare well with xi  (n) in the original.[50] Figure  7 show 
method of pole‑zero modeling for complex signal.

Modeling of Velocity Signal

A signature may be considered as a sequence of 
strokes. Dimauro et  al. define strokes as “a sequence 
of fundamental components, delimited by abrupt 
interruptions.”[19] The dynamic characteristics for 
creating a stroke may exhibit in different channels such 
as velocity and pressure etc., Because of the tangential 
velocity profile on skilled movements especially 
signature handwritings are bell‑shaped, therefore, 
pole‑zero models based on DCT are a suitable strategy 
for modeling and reconstruction of signature. Signature 
patterns in velocity domain are generated by the 
combination of many fractional component or strokes 
i.e., Vi (t), i = 1,2…, M. A stroke is a basic unit in writing 
that consists of an acceleration phase, a velocity peak 
and a deceleration phase. Therefore, the strategy is to 
decompose the given signal V (t) initially into M strokes 
using the knowledge of Section 4‑2 and then combine 
these strokes such that Eq.  (11) is satisfied. Thus, to 
obtain the desired solution, we have to solve a sub 
problem, namely determination of the number M in 
Eq.  (11). Figure 8 shows an example of multiple stroke 
movement. As can be seen from the resulting shape 
of the velocity profile, the number of strokes can be 
estimated by counting the velocity extrema.

Figure 8: Complex movement. (a) Signature pattern. (b) Tangential velocity 
profile

ba
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the same person, but those have minor differences such as: 
Amplitude of peaks, symmetry of bell‑shape and time of 
peaks occurrence. These variations are caused variations of 
the parameter set P (r,, a, b) especially angular difference 
Δ for pole clusters. It is sensitive to small variations in 
the timing and variation of velocity amplitude. Poles locus 
for both periodic and quasi‑periodic signal are showed in 
Figure 10. As seen Δ between poles are equal for periodic 
signal, but variation of Δ for pole clusters is unequal in the 
case quasi‑equal signal. Thus, the intra‑angular separation 
of clusters clearly indicates the regularity or otherwise 
nature of the rhythm in these two cases. Two global features 
set are defined based on the model structure.
•	 DCT coefficients obtained from velocity profile
•	 Angular difference for poles of consecutive strokes.

We use 25 features, i.e., 15 DCT coefficients extracted from 
velocity signal, 5 DCT coefficients and 5 angular differences 
of strokes that have high velocity amplitude. Angular 
difference of strokes Δ(s) is defined as follow:

∆  ( ) ( ( )) ( ( ))s Min poleof stroke i Max poleof stroke ii = − −1 � (18)

Since the poles are complex and conjugate, only poles 
belong to upper half z‑plane are considered for features set. 
Therefore, number of features based on Δ(s) is M‑1 for a 
model of degree (2M, 2M).

Figure  11 shows feature of angular difference of strokes 
on genuine and forgery signature. We see a small variation 
in strokes angular difference Δ(s) among reference and 
genuine test signatures, whereas Δ(s) of forgery signature 
is quite distinct from genuine.

Results

As in Section 4‑3 was noted, a stroke is modeled with the 
system of degree  (4, 4). Because of variation of signing 

To have a small error in modeling, a stroke is not modeled 
by a system of order  (2, 2). For single stroke, assume a 
parametric model in the form of a linear difference equation,
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If the order of the model is less than 4° then model error 
will be large and if order of the model is more than 8 then 
added zeros and poles shall be near to each other. According 
to the signatures in the database and for reasons such as: 
Reconstruction error of model, excessive complexity of 
some of the signatures, time computation and software 
limitations in the estimation of high order models, we set 
a model of order equal to 4 for a stroke. Figure  9 show 
modeling velocity profile and pole‑zero locus. In addition, 
it shows that reconstruction original signal is accurate and 
negligible error. Error criterion is defined based on percent 
root mean square difference (PRD).

1/ 21 1
2 2

0 0

ˆ( ( ) ( )) / ( )
N N

n n

PRD x n x n x n
− −

= =

 = −  
∑ ∑ � (17)

FEATURE EXTRACTION

Initially, our interest is to find the most suitable, reliable 
and stable dynamic feature to be used in the model. Since 
two signatures of the same person cannot be completely 
identical, we must make use of a measure that takes into 
account this variability. Indeed, two signatures cannot have 
exactly the same timing, besides these timing differences 
are not linear. In addition, we are trying to find features, 
which are inherent to a particular person. Such features can 
be used to identify genuine signatures from forgeries.

In domain velocity, although the structures of the Gaussian 
components are the same for two signatures belonging to 

Figure 9: Modeling of velocity profile. (a) Velocity signal: Original (‑‑‑) and reconstruction (…). (b) Roots locus
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velocity, number of strokes is not constant even for a 
person. The criteria for choosing the model degree can be 
based on mean of model degree on reference signatures 
and this degree is used for forgery signatures.

Methods

During enrollment to the system, the user supplies a 
number of reference signatures  (3‑10  samples) which are 
used to measure the variation within his/her signatures. In 
this paper, a number of reference signatures are 5 samples 
that have chosen randomly from genuine signatures. Set 
of training data are defined 5 genuine signatures for each 
signer and 7 signatures from skilled forgeries. The remaining 
signatures are used for verification. In these experiments, 
the forgery signatures consist of 2 types, which are the 
random forgeries and the skilled forgeries. Therefore, in 
the verification phase 10 signatures from other signer has 
chosen randomly for random forgeries samples.

Feature vectors are extracted from the reference signatures 
and are pair wise compared using the Euclidean distance. 
Based on the observations that most of the feature values 
tend to be clustered about a mean value with a certain 
variance that is characteristic to a certain user, it is natural 

to use Gaussian density to model the distributions of these 
features. So if the user supplies N reference signatures, pair 
wise comparison of them result in N (N‑1)/2 distances, then 
unbiased estimator for the mean and variance of distances is:

µ
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During the verification phase, a feature of test signature is 
compared with the same feature of each reference signature, 
resulting in several of distances. Minimum, average and 
maximum of all distance values are normalized according 
to Eq. (20).

Min Ave Max dF n
Min Ave Max dF dF

dF

, , ( )
, ,{ } =

{ } − µ
σ

� (20)

We utilize all of these normalized distances and treating them 
as features to classify the test signature as genuine or forgery.

To evaluate the experiments, we determined EER 
performance. The EER is generally adopted as a unique 
measure for characterizing the performance level of a 

dc

ba

Figure 10: Variation of poles angular. (a) Periodic signal, the original (‑‑‑) and model output (…) signal. (b) Poles plot. (c) Quasi‑periodic signal, the original (‑‑‑) 
and model output (…). (d) Poles plot
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obtained using the parzen window classifier. We obtained 
the EER performance  (common threshold) is 1.76%, 1.72% 
and 1.97% for random forgeries and 5.91%, 5.62% and 3.91% 
for skilled forgeries with using Persian, SVC2004 and SUSIG 
databases, respectively. As can be seen, for SUSIG database, 
random forgery EER performance is lower than skilled 
forgery tests but is not very intuitive. Since one would 
expect random forgery results to be much lower; after all, 
these are not even true forgeries but other people’s genuine 
signatures. This is partly due to a significant emphasis on 
the correct timing of a signature: Analysis of the random 
forgery errors has shown that intentional forgeries in the 
skilled and highly skilled sets are on average twice longer in 
duration compared to genuine signatures.

Comparison with Previous Works

Results of previous systems on the same databases are 
mentioned for comparison. Nonetheless, comparing 
different results is difficult due to varying experimental 
setups. In particular, (i) the number of reference signatures 

biometric system and it indicates the security level provided 
by the biometric system. The whole experiment is repeated 
10 times to provide better statistical accuracy and then the 
average values of EER for all 10 trials are calculated. For 
every trial, the training set is randomly selected.

Experimental Results

The system uses five classifiers based on linear classifier, 
fuzzy k‑nearest neighbor, fisher linear discriminate, parzen 
window and SVMs for genuine and forged signatures. The 
values of EER are presented in Tables  1‑3 in two mode 
of operation: (i) common threshold, we choose the same 
threshold for all subjects and average the error rate and 
(ii) writer‑dependent threshold, we choose the optimal 
threshold for each subject. The system’s performance was 
also evaluated random forgeries against skilled forgeries.

Verification improvements can be clearly observed with 
writer‑dependent thresholds because of it to take into 
account the specificity of intrapersonal variations. It is 
hard to obtain a writer‑dependent threshold of optimum, 
because of limited genuine samples. A common threshold 
has the advantage that all the feature values from all training 
signatures can be used to find an optimal value.

The verification phase results summarized in Tables  1‑3, 
separately for random and skilled forgeries. The best results 

Figure  11: Feature of angular difference.  (a) Reference signature. 
(b) Velocity pattern, original  (‑‑‑) and model output  (…).  (c) Genuine 
signature. (d) Velocity pattern. (e) Forgery signatures. (f) Velocity pattern

c

b

a

Table 1: EER (%) performance for persian database
Classifier Random forgery Skilled forgery

Common T Writer T Common T Writer T

LIC 2.51 1.23 8.89 5.38
FKNN 1.97 0.94 6.17 3.87
FLD 2.42 1.21 7.75 5.04
PWC 1.76 0.81 5.91 3.43
SVM 2.01 0.89 6.34 3.93
LIC – Linear classifier; FKNN – Fuzzy k‑nearest neighbor; FLD – Fisher linear 
discriminate; SVM – Support vector machine; EER – Equal error rates; PWC – Parzen 
window classifier

Table 2: EER (%) performance for SVC 2004 database
Classifier Random forgery Skilled forgery

Common T Writer T Common T Writer T

LIC 2.43 1.17 8.64 5.06
FKNN 1.91 0.98 6.31 3.42
FLD 2.34 1.06 7.45 4.59
PWC 1.72 0.79 5.62 3.12
SVM 1.94 0.85 6.26 3.51
LIC – Linear classifier; FKNN – Fuzzy k‑nearest neighbor; FLD – Fisher 
linear discriminate; SVM – Support vector machine; EER – Equal error rates; 
SVC – Signature verification competition; PWC – Parzen window classifier

Table 3: EER (%) performance for SUSIG database
Classifier Random forgery Skilled forgery

Common T Writer T Common T Writer T

LIC 2.95 1.91 5.56 3.71
FKNN 2.32 1.41 4.45 2.52
FLD 2.84 1.78 5.34 3.63
PWC 1.97 1.33 3.91 2.09
SVM 2.27 1.46 4.58 2.64
LIC – Linear classifier; FKNN – Fuzzy k‑nearest neighbor; FLD – Fisher 
linear discriminate; SVM – Support vector machine; EER – Equal error rates; 
SUSIG – Sabanci University signature; PWC – Parzen window classifier
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used; (ii) number of available component signals used, 
such as coordinate sequence, pressure, azimuth etc., 
(iii) whether a priori or a posteriori normalization is used 
for score normalization. In general, the higher the number 
of references, the better one would expect the results to 
be, due to having more information about the genuine 
signatures of a user. Similarly, higher numbers of signal 
components normally give better results. Finally, score 
normalization affects the performance significantly, since 
the a posteriori normalization results are intended to 
give the best possible results, if allgenuine and/or forger 
statistics in the database were known ahead of time.

The SVC2004 provided a common test set and tested more 
than 15 online signature verification systems from industry 
and academia. The results of this competition indicate 
state‑of‑the‑art results of 2.84% EER for task 1 and 2.89% 
EER for task 2 in skilled forgeries.[51]

Doroz et al. proposed a stroke‑based approach to dynamic 
analysis of signature based on individual features can 
be identified by finding the discrete signature points 
like x, y‑coordinates, pressure, time and pen velocity.[52] 
Experimental results show that measurement of dynamic 
features (velocity changes) contains important information 
and offers a high level of accuracy for signature verification 
in comparison with the results without such measurements. 
The result of evaluation on the SVC2004 database is 
1.40% EER.

Ragot et al.[53] tried to evaluate the impact of the temporal 
variability of the signatures during the authentication 
process. They used a DTW classifier that performed local 
comparisons, contrary to the previous feature‑based. The 
system was tested with two different data sets: SVC2004 
database and MCYT‑100. The results of this system on the 
SVC2004 database are 1.94% EER and on the MCYT‑100 
database is 3.5% EER.

Kholmatov and Yanikoglu presented an online signature 
verification system based on the Fast Fourier Transform.[19] 
They reported on the effectiveness of the proposed method, 
along with the effects of individual preprocessing and 
normalization steps, on the overall system performance. 
Furthermore, they showed that fusion of the proposed 
system with a state‑of‑the‑art DTW system can lower 
the EER. The best results obtained on the SUSIG‑Visual 
sub‑corpus and the MCYT‑100 database are 2.6% for the 
SUSIG database and 7.7% for the for the MCYT‑100 database 
on skilled forgeries.

Rashidi et  al. presented a simple and efficient approach 
to on‑line signature verification based on DCT applied to 
44  time signals as position, velocity, pressure and angles 
of pen.[54] Experiments are carried out on two benchmark 
databases, SVC2004 and SUSIG. The proposed system is 

tested with different classifier with skilled forgery and the 
EER were 3.61%, 2.04% and 1.49% for SVC2004 Task 1 and 2, 
Task 2 and SUSIG databases, respectively.

Conclusion

In this paper, we have shown a new proposal for an 
on‑line signature verification system with using model 
of pole‑zero based on DCT. The model represent velocity 
signal with very small error. On one side, invariance in 
the shape of the velocity profiles suggests that velocity 
play a key role in rapid movements control especially 
handwriting signature. On the other side, intra‑personal 
variation can some people provide signatures with poor 
a consistency. The velocity and other dynamic features 
pertaining to the signatures made by the same person 
can differ greatly, which makes it quite challenging to 
extract consistent and stable features. Therefore, we was 
expected verification performance improve and suitable 
to the problem of comparison of signatures through 
modeling of velocity.

The simplicity of extracted strokes helps us in discriminating 
genuine signatures from forgeries. We believe that the 
system could cover intra‑personal variation. The reason 
for improved performance lies in the better exploitation 
of inter‑dependencies between velocity and shape signals 
by employing multiple velocity bands and extracting 
simple strokes of a given signer where a forger will have a 
hard  time in maintaining shape within a certain velocity 
band.

The advantage of using the DCT is the ability to compactly 
represent an online signature using a fixed number of 
coefficients, which leads to fast matching algorithms. 
More importantly, the fixed‑length is better‑suited or even 
necessary in certain applications related to information 
theory and biometric cryptosystems. This system 
supposes a drastic reduction in storage requirements and 
computational load.

Finally, taking into account that the database used is relatively 
large and different language and the other conditions, we 
conclude that, the verification process guides the system 
for accurate and reliable decision.

Future work for improving the performance is to use of the 
DCT coefficients extracted from strokes. Furthermore, we 
will try to extract and to use basic feature from time signals 
reconstructed from x, y and pressure aimed to compensate 
the intra‑personal variation.
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