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INTRODUCTION

Myocardial infarction (MI) or heart attack occurs when one of 
the coronary arteries become completely blocked. The part of 
myocardium for which the blood is supplied by the coronary 
artery loses its blood supply and will remain deprived of 
oxygen and other nutrients. There are two ways in which 
blood is supplied to the myocardium. One of them brings 
blood to the right side of the heart (right coronary artery) and 
the other covers the left side of the heart (left main artery).

In general, the infarction can be divided into several 
anatomical groups: Inferior, lateral, anterior, and posterior 
infarction. Combinations of these may be observed, such 
as anterolateral and inferoposterior infarction. Almost all 
kinds of myocardial infarction involve the left ventricle (LV). 
It is not surprising because left ventricular muscle has more 
volume than the other muscles in the heart. The 12‑lead 
electrocardiogram is a standard tool for clinical diagnosis 
of heart disease and can provide information about the 
location and extent of MI. For example, abnormal Q waves 
and ST waves are important indicators of acute and chronic 
MI, respectively. Here, we provide several examples of 
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previous research about the diagnosis of MI using body 
surface potential map (BSPM) data.

In 2007, SadAbadi et al. presented a method with imposed 
rules on the extracted features of ECG to determine the 
location and extent of MI. They extracted two features, 
which are Q‑wave amplitude and ST‑segment dispersion, 
and finally they obtained good results.[1]

In 2010, Arif et al. presented an automatic method for MI 
localization using K‑nearest neighbor  (KNN). Time domain 
features like T‑wave and Q‑wave amplitudes and ST level 
dispersion were extracted from 12‑lead ECG. They used PTB 
database including 20160 beats of ECG, and after extracting 
the above features, they used KNN classifier. The sensitivity 
was 99.97% and the specificity was 99.9% for detecting MI, 
and the accuracy was equal to 98.3% for localization.[2]

In 2007, Zarychta et  al., using PhysioNet Challenge 2007 
database, offered clinical evaluation method based on 
the ECG recorded and BSPM with 120 leads that viewed 
by three cardiologists. They stated that abnormal initial 
depolarization (in the Q‑wave) and initial repolarization (in 
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ST‑segment) are important factors of chronic and acute MI, 
respectively. The overall accuracy of that method for the 
first test patient (Case #3) was obtained in the regions 3, 
4, 9, and 10 of the LV have MI and the extent of MI in this 
patient was 30%, and for Case #4, it was not reported.[3]

In 2008, Vesterinen et al. used BSPM data for localization 
of MI with rest BSPM signals. The labels were determined 
by angiography and echocardiogram. The features were 
QRSSTT, QRS and STT integrals, and T‑wave amplitude. They 
reached a differential between anterior and inferoposterior 
MI with 85% (P < 0.001) accuracy.[4]

In 2007, Farina et  al. used a model‑based approach to 
determine the location and extent of MI. In their method, 
an optimized physiological model was used to simulate 
transmembrane voltage  (TMV) to compare with data. The 
EPD were 43 and 14 for Case #3 and Case #4, respectively. 
The SO parameter was 0.4 and 0.167 for Case #3 and Case 
#4, respectively, and finally CED was 1 for both patients.[5]

In 2007, Ghasemi et  al. used a new method based on 
vectorcardiogram. They assumed that the heart vector is 
proportional to relevant active depolarization areas. The 
EPD was 32, SO was 0.933 and CED was 1.[6]

In 2007, Mneimneh and Povinelli used RPS/GMM, and 
localized and determined the extent of MI. They used PTB 
database for training and the four patients in PhysioNet 
challenge database for testing.[7]

In 2010, Nader Jafarnia et  al. presented a method and 
extracted features such as Q‑wave integrals and QRS 
complex integrals. They defined the rules on these features 
to determine the location of MI.[8]

In this study, we used the recorded ECG signal by BSPM 
and torso plane. Then, we extracted new features of ECG 
signals, such as T‑wave amplitude and R‑wave amplitude. 
After this step, we defined several rules and appropriate 
threshold levels on these features, and the location and 
extent of MI with high accuracy were obtained.

MATERIALS

Database

In this study, data from the four patients with MI have 
been used  (PhysioNet Challenge 2007). These data 
include information of BSPM data with 352 leads on the 
torso plane  (obtained from 120‑electrode recording). 
Also, these data included the standard 12 leads and Frank 
leads. All these leads, based on their location in the torso 
plane, have a unique form of ECG signal. Horizontal and 
vertical lines on torso in this position, based on body 
surface electrodes and leads, are shown in Figure 1. In 
this figure, torso plane consists of 17 horizontal and 
32 vertical lines and all electrodes are located at the 
intersection of these lines. This database contains ECG 
signals of four patients with MI and their MI had been 
determined with magnetic resonance imaging  (MRI) 
analysis from expert persons. In this study, two patient’s 
data were used for training set to define the rules on 
ECG waveforms. Then, we used data from two other 
patients to test our hypothesis and determine the results 
of the proposed method. It should be noted that the 
exact location of MI in each patient in this database was 
presented according to the 17‑segment standard model 
of LV by Cerqueira et al. in 2002.[9] Finally, we compared 
the obtained results with the labeled data and measured 
the evaluation parameters.

Figure 1: Explanation of horizontal and vertical lines on the torso plane[17]
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Body Surface Potential Map

Even though the 12‑lead ECG signal is widely used, it has 
some limitations and, therefore, pushed us to finding 
other methods. There is lack of appropriate detection 
of MI in 12‑lead ECG. In fact, 50% of MI patients are not 
diagnosed early by 12‑lead ECG because abnormal changes 
detection does not appear in ECG correctly.[10] The reason 
is that 12‑lead ECG specially records the electrical activity 
of the LV, while there is no sufficient information on the 
right ventricle. These constraints can be overcome by BSPM 
which can be used to obtain the information of ECG, instead 
of the normal 12‑lead ECG.

The BSPM was firstly presented by Waller in 1889.[11] He 
measured the potential of each location and displayed data 
for these big quantity locations. The advantage of using 
BSPM is getting the electrical activity of heart from many 
points. A BSPM can have 32-213 electrodes in any location 
on the torso and it can record and display all the information 
of ECG distributed across the chest.

The main advantage of BSPM is its ability to give detailed 
information about the location of the electrical field as 
well as in the time domain, while the standard 12‑lead ECG 
focuses on the time display and has information on a few 
locations.[12] Also, in 1987, Mirvis compared BSPM with 
other methods of obtaining ECG and outlined four major 
advantages of BSPM as follows:[13]

•	 It is sensitive to the region of cardiac electrical events
•	 Torso is sampled directly extensively
•	 Emphasis on spatial characteristics of the heart and
•	 Evaluates similar models for producing ECG signals.

In 2005, Carly et  al. compared the detection accuracy of 
12‑lead ECG with BSPM.[14] In that study, the two standards 
were used for detection of MI (12‑lead ECG and BSPM) and 
they were compared. This study showed that the BSPM has 
increased accuracy in determining MI. Unfortunately they 
also showed that BSPM has less specificity in detecting MI. 
However, Maynard et al. in another study showed that the 
specificity of the BSPM is acceptable.[15]

Also, McClelland et  al. compared the interpretation of 
computer on 80‑lead BSPM with the interpretation of 
the 12‑lead ECG, and concluded that the BSPM increases 
the sensitivity in the detection and diagnosis of acute 
MI.[16]

Standard Model Segmentation of LV

The heart model in 17 segments is used as an optimal 
model to predict and determine the location of MI in 
various diagnostic methods such as imaging methods. This 
model is now used as a reference model for segmentation 
of the heart in most studies.[9] In anatomy studies, 102 

adults without heart disease were studied. The heart 
was named by cutting horizontally into three sections: 
Apical, mid‑cavity and basal, and the ratio of the mass 
of different heart sections per total mass of myocardium 
is 42% for basal, 36% for the mid‑cavity and 21% for the 
apex of heart. Cerqueira et al. model of LV in 17 segments 
provides the distribution of mass as 35%, 35% and 30% 
for basal sectors, mid‑cavity and the apex of the heart, 
respectively, and these values ​​are very close to those of 
anatomical study.[9] The results of this model are shown 
in Figure 2.

Methods

First, the data are read by MATLAB software. We have 352 
leads for each patient.[17] In fact, we can generate 12‑lead 
ECG signals, and also we have a signal for each lead in the 
torso plane (i.e. 352 signals), each of them showing different 
waveforms according to the location and distance from the 
heart as shown in the following formulae.[17]

RA = �((bspmdata. potvals (60,:) + (bspmdata. potvals (101,:))/2;
LA = ((bspmdata. potvals (50,:) + (bspmdata. potvals (90,:))/2;
LL = �(3*((bspmdata. potvals (343,:)) + (2*(bspmdata. potvals 

(344,:)))/5;
I = LA – RA,
II = LL – RA,
III = LL – LA,

The BSPM data, consisting of ECG data for 352 torso surface 
sites, are provided for an averaged PQRST complex signal 
sampled at 1  kHz. The 12 ordinary leads and the Frank 
leads can be also provided.

First, we loaded the signals in “.mat” format in MATLAB. 
We had 352 ECG signals  (each signal is one cycle of 
ECG) in 1639  samples for each patient. As the data were 

Figure 2: Explanation of 17‑segment standard model of left ventricle with 
the name of each segment
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pre‑processed, we did not need to do any pre‑processing. 
Then, we extracted the features from these 352 signals and 
obtained the required rules for localization and determining 
the extent of MI. Based on the number of rows and columns 
of the torso plane for each lead, we labelled the features like 
the T‑wave amplitude, T‑wave integral, Q‑wave amplitude, 
and the R‑wave amplitude, and then plotted the labelled 
features according to their horizontal and vertical position. 
The results of this method are shown in Figures 3-6 for the 
training set.

Determine the location of myocardial infarction

Firstly, we explain the relationship between vertical and 
horizontal lines in the torso plane with the standard model 
of the LV. The relationship between vertical lines and the 
standard model of LV that is expressed in the research of 
SadAbadi et al. is shown in Figure 7.[1]

In this study, we found a relationship between the horizontal 
lines and the standard 17‑segment model of LV. The ratios 
of different sections in the 17‑segment model to the total 
mass were 35%, 35% and 30% for basal, mid‑cavity and apical 
sections, respectively. As there are 17 horizontal electrode 
lines on the torso plane  (in fact, 33 horizontal lines on 
which we placed 17 lines of electrodes), 35% of the lines 
were devoted to the basic  (regions 2, 1, 6, 5, 4, and 3 in 

LV model), 35% to the mid‑cavity  (regions 8, 7, 12, 11, 10 
and 9) and 30% of these lines were devoted to the apical 
(regions 14, 13, 16, 15 and 17) segment.

As shown in Figure 8, six orange circles  (horizontal lines 
1-6) with the electrodes in torso plane correspond to basal; 
the next six lines shown in purple, i.e.  horizontal lines 
7-12 on the torso plane, correspond to mid‑cavity; and five 
blue horizontal lines 13-17 correspond to apical region. In 
fact, this figure shows the relationship between horizontal 
and vertical lines in the torso plane with standard model 
segmentation of LV.

With these relations between vertical and horizontal lines 
and the 17‑segment model, we can label the location of MI.

Definition rules on the extracted features to 
determine the location of MI

We can define rules on each extracted feature to identify 
the location of MI. These rules should separate healthy 
regions from the MI areas. We can suggest a rule for 
each feature. In this study, we framed rules from Case 
#1 and Case #2, and then we applied the rules in the 
two test patients. Finally, we compared the results with 
the labels and measured the accuracy of the proposed 
method.

Figure 3: Results of feature extraction base on the number of horizontal lines for Case #1
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Figure 4: Results of feature extraction base on the number of vertical lines for Case #1

Figure 5: Results of feature extraction base on the number of horizontal lines for Case #2
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We defined one threshold in the extracted features in 
horizontal lines for the R‑wave amplitude. We used the 
condition “R amplitude  <  200” to define the MI region. 
Also, we defined another rule in the horizontal and vertical 
lines on the T‑wave amplitude as the second feature. Here, 
the condition is “T amplitude ≤ 0.”

We defined the third rule on the Q‑wave amplitude 
according to equation 1. Areas that satisfy this equation are 
healthy; otherwise they are considered as MI region.[1]

Th = 
1
5

 {max(Q Amplitude) – min(Q Amplitude)}� (1)

Figure 9 shows how to apply the above rule on the amplitude 
of Q‑wave on the ECG signal for Case #1 as the first patient.

Finally, we applied the fourth rule on the integral 
characteristics of the T‑wave, as shown in Figure 10. 
According to this rule, signals of leads on the torso plane that 
T‑wave integral is less than 1 are introduced as MI regions.

Figure 6: Results of feature extraction base on the number of vertical lines for Case #2

Figure 7: Relationship between vertical lines on the torso plane and the 
17‑segment standard model of left ventricle

Figure 8: Relationship between vertical and horizontal lines on the torso 
plane and all parts of the standard model of left ventricle
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Determination of MI extent

We used the T‑wave integral as one feature to determine 
the extent of MI. We used equation 2 for determining the 
MI extent, which is as follows:

Mi Extent = |Min (T wave Integral)| × a� (2)

In this equation, the coefficient α is obtained from the 
T‑wave integral feature from the data of two cases in the 
training set. Figures 11 and 12 show the results of the T‑wave 
integral as the feature extracted from horizontal lines for 
Case #1 and Case #2 as the training set, respectively.

We used this formula for the training set and obtained the 
extent of MI for Case #1  (29.1757%), while in this case, the 
extent of MI with MRI analysis was 31%. Also, we got the MI 
extent for Case #2 as 24.2947%, while MRI analysis for this case 
showed 30%. These results confirm the accuracy of the formula.

Now we are ready to apply the formula in test data. MI 
extent for Case #3 was obtained to be equal to 47.03%. 
In this patient, MRI analysis of MI showed 52%. MI extent 
in Case #4 was obtained to be equal to 13.6%, while MRI 
analysis showed 14%. The results show high accuracy in the 
test data.

RESULTS

So parameter is introduced as a standard parameter to 
determine the performance of different methods used to find 
the location of MI.[17] This parameter is obtained by dividing 
the number of common elements between the diagnostic 
elements by the proposed method with the elements of MI 
in reality, per sum of the common elements and elements 
that are not detected by the proposed method and elements 
that are healthy but have been diagnosed with MI by the 
proposed method. This parameter is a number between 0 
and 1; if the number is closer to 1, it means performance 

Figure 9: Applying threshold rule on the Q‑wave amplitude for Case #1 as 
the first patient

Figure 10: Applying threshold rule on the T‑wave integral for Case #1 as 
the first patient

Figure 11: Results of the T‑wave integral as the feature on the horizontal 
lines for Case #1 as the first patient in the training set

Figure 12: Results of the T‑wave integral as the feature on the horizontal 
lines for Case #2 as the second patient in the training set
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of the proposed method is better. Also, CED parameter, 
defined as the distance between the center region of MI 
that was diagnosed by our method and compared with 
standard MRI (which is defined in PhysioNet). In this study, 
the regions at the geometric center of the heart with 
MI were diagnosed as the center of MI regions. CED is a 
numerical value between 0 and 8; lower value shows higher 
accuracy in the method. EPD parameter is defined by the 
percentage discrepancy between the MI extent as estimated 
and as determined from the MRI gold standard, gadolinium 
MRI. This parameter is a numerical value between 0 and 8, 
and lower value shows the higher accuracy in the method.

We used all the features and got the MI location in one 
approach, and in another approach, we used only T‑wave 
integral. But for the extent of MI, we used only T‑wave integral.

The results are shown in Tables 1 and 2. In Table 1, it can be seen 
that the final value of SO parameter for two test patients is 0.89, 
the final CED parameter value is 6, and the final value of EPD 
parameter is 5.37. Although these results are good compared 
with the results of pervious research, there was improvement 
only when we used T‑wave integral as the feature. The results 
are shown in Table 2. The final value of SO parameter for the 

two test patients is 1.16, the final CED parameter value is 1, and 
the final value of EPD parameter is 5.37.

These results show the high accuracy of the proposed 
method to determine the location and extent of MI by 
applying the described rules on the extracted features.

DISCUSSION AND CONCLUSION

In this study, a new method to determine the location and 
extent of MI using BSPM data by defining rules and thresholds 
on the extracted features is proposed. Results of our method 
and the results obtained from MRI about the estimated 
location and extent of MI were compared. The results show 
the high accuracy of the proposed method. In Table 3, we see 
the comparison of our results with previous researches.

According to Table 3, the value of SO obtained for Case #3 is 
equal to 0.66, which is better than four previous researches. 
The value of SO for Case #4 was obtained as 0.5, which 
is better than all previous researches. We see the total 
SO = 0.66 + 0.5 = 1.16 is the best in all researches. With 
regard to CED parameters, the total for two test cases is 
obtained as equal to 1  (optimal value may be 0), which is 

Table 1: Results of the proposed method using all features for MI location and T‑wave integral for MI extent in test data
EPD 

parameter
MI extent 

(%)
CED 

parameter
Centroid location of MI 

according to LV segmentation
SO 

parameter
Location of MI according 

to LV segmentation
Patient

4.9747.030100.622,3,4,5,8,9,10,11,14,15,16,17Case #3
0.413.6690.271,2,3,4,8,9,10,14Case #4

Table 2: Results of the proposed method using T‑wave integral to determine the location and extent of MI in test data
EPD 

parameter
MI extent 

(%)
CED 

parameter
Centroid location of MI 

according to LV segmentation
SO 

parameter
Location of MI according 

to LV segmentation
Patient

4.9747.030100.662,3,4,5,8,9,10,11, 14,15,16Case #3
0.413.61140.51,2,3,4,9,10, 14,15,17Case #4

Table 3: Final results of the proposed method in comparison with previous researches done on the BSPM data
Results for Case #4Results for Case #3MethodsResearcher

EPDCEDSOEPDCEDSO

1740.0002210.444Clinical evaluation of ECG signals by comments of 
three cardiologists

Philip Langley[3]

1410.1674310.400Model-based approach to the localization of infarctionDmitry Farina[5]

2110.3331100.600Heart vector analysisMasood Ghasemi[6]

610.444200.500Feature extraction and definition rules on features 
and determining results with semi-manual method

Hamid SadAbadi[1]

210.2502500.900Feature extraction and training with PTB database in 
PhysioNet by RPS/GMM approach

Mohammed Mneimneh[7]

––0.4––0.7Neural networkNader Jafarnia[8]

0.460.274.9700.62ECG signal processing and automatic method to 
determine results

Proposed method (intersection results of all 
extracted features for the location of MI, and 
results of T-wave integral to determine MI extent)

0.410.54.9700.66ECG signal processing and automatic method to 
determine results

Proposed method (best results) (by two 
described rules on T-wave integral to determine 
the location and extent of MI)
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better than the results of two previous studies and equal 
to three previous studies. With regard to EPD parameter, 
the final value for T‑wave integral feature was obtained 
as 5.37  (optimal value is closer to 0). This value, ​​as seen 
in Table 3, for other previous studies has been reported 
as 39, 57, 32, 8 and 27. In fact, results indicate excellent 
performance for EPD parameter in the proposed method.

It should be noted that the main advantages of the proposed 
method are its simplicity and high accuracy.

SUGGESTIONS FOR FUTURE STUDIES

Future studies can focus on other parameters in ECG signals, 
such as slope of T‑wave, duration of QRS complex, and total 
signal integral in one cycle from the data of leads in the 
torso plane to determine the localization and extent of MI 
to obtain higher accuracy.

ACKNOWLEDGMENTS

With special thanks from Science and Research Branch, Islamic 
Azad University, Tehran, Iran.

REFERENCES

1.	 SadAbadi H. Variation of ECG features on torso plane: An innovative 
approach to myocardial infarction detection. Comput Cardiol 
2007;34:629‑32.

2.	 Arif  M, Malagore  IA, Afsar  FA. Detection and localization of 
myocardial infarction using K‑nearest neighbor classifier. J Med Syst 
2012;36:279‑89.

3.	 Zarychta  P, Smith  FE, King  ST, Haigh  AJ, Klinge  A, Zheng  D, et  al. 
Body surface potential mapping for detection of myocardial infarct 
sites. Comput Cardiol 2007;34:181‑4.

4.	 Vesterinen  P, Väänänen H, Stenroos  M, Hänninen H, Korhonen  P, 
Tierala  I, et  al. Localization of prior myocardial infarction by 
repolarization variables. Int J Cardiol 2008;124:100‑6.

5.	 Farina  D, Dössel O. Model‑based approach to the localization of 
infarction. Comput Cardiol 2007;34:173‑6.

6.	 Ghasemi  M, Jalali  A, SadAbadi  H, Atarod  M, Golbayani  H, 

Ghorbanian  P, et  al. Electrocardiographic imaging of myocardial 
infarction using heart vector analysis. Comput Cardiol 2007;34: 
625‑8.

7.	 Mneimneh  MA, Povinelli  RJ. RPS/GMM approach toward the 
localization of myocardial infarction. Comput Cardiol 2007;34:185‑8.

8.	 Jafarnia‑Dabanloo N, SadAbadi H, et al. Neural network classification 
of body surface potential contour map to detect myocardial infarction 
location. Comput Cardiol 2010;1‑4.

9.	 Cerqueira  MD, Weissman  NJ, Dilsizian  V, Jacobs  AK, Kaul  S, 
Laskey  WK, et  al. Standardized myocardial segmentation and 
nomenclature for tomographic imaging of the heart. A  statement 
for healthcare professionals from the Cardiac Imaging Committee of 
the Council on Clinical Cardiology of the American Heart Association. 
Circulation 2002;105:539‑42.

10.	 Menown  IB, Patterson  RS, MacKenzie  G, Adgey  AA. Body‑surface 
map models for early diagnosis of acute myocardial infarction. 
J Electrocardiol 1998;31:180‑8.

11.	 Medvegy  M, Duray  G, Pintér A, Préda I. Body surface potential 
mapping: Historical background, present possibilities, diagnostic 
challenges. Ann Noninvasive Electrocardiol 2002;7:139‑51.

12.	 Mirvis DM. What’s wrong with electrocardiography. J Electrocardiol 
1998;31:313‑6.

13.	 Mirvis  DM. Current status of body surface electrocardiographic 
mapping. Circulation 1987;75:684‑8.

14.	 Carley SD, Jenkins M, Mackway Jones K. Body surface mapping versus 
the standard 12 lead ECG in the detection of myocardial infarction 
amongst emergency department patients: A  Bayesian approach. 
Resuscitation 2005;64:309‑14.

15.	 Maynard  SJ, Menown  IB, Manoharan  G, Allen  J, McC Anderson  J, 
Adgey AA. Body surface mapping improves early diagnosis of acute 
myocardial infarction in patients with chest pain and left bundle 
branch block. Br Med J 2003;89:998‑1002.

16.	 McClelland  AJ, Owens  CG, Menown  IB, Lown  M, Adgey  AA. 
Comparison of the 80‑lead body surface map to physician and to 
12‑lead electrocardiogram in detection of acute myocardial infarction. 
Am J Cardiol 2003;92:252‑7.

17.	 Available from: http://www.PhysioNet.org/Challenge/2007.

How to cite this article: Safdarian N, Dabanloo NJ, Matini SA, 
Nasrabadi AM. Rule‑based method for extent and localization of 
myocardial infarction by extracted features of ECG signals using 
body surface potential map data. J Med Sign Sens 2012;3:129-38.
Source of Support: Nil, Conflict of Interest: None declared



Safdarian, et al.: Introduction – Materials- Method – Results - Conclusion and Discussion - Suggestions for future studies

Journal of Medical Signals & Sensors

138 Vol 3  | Issue 3  |  Jul-Sep 2013

BiographIES

Naser Safdarian received a B.Sc. degree in 
Biomedical Engineering from Department 
of Biomedical Engineering, Islamic Azad 
University of Dezful in 2009, and he 
received M.Sc. in Biomedical Engineering 
from Science and Research Branch, Islamic 

Azad University, Tehran, Iran in 2011. His research interest 
is Biomedical Signal Processing, especially ECG Signal 
Processing, and Medical Image Processing.

E-mail: n.safdarian@srbiau.ac.ir

Nader Jafarnia Dabanloo who was born in 
1963 was graduated from Tehran University, 
K.N. Toosi University and Iran University of 
Science and Technology. He continued his 
researches in Leeds University, UK in a 
sabbatical opportunity. He has more than 

25 years of experience in industry, education and research. 
The output of these years are designing different medical 
equipments, registering many inventions and more than 
50 scientific papers in international journals and conferences. 
He has been the Dean of the Biomedical Engineering Faculty, 
Science and Research Branch, Islamic Azad University, 
Tehran, IRAN. He was also the Executive Secretary of the 
3rd Iranian Conference on E‑Health and applications of ICT in 
medicine and he was also member of scientific committee in 
many Biomedical conferences. He is now the Head of 
Engineering Rehabilitation Department in Biomedical 
Engineering Faculty, Science and Research Branch, Islamic 
Azad University, Tehran, Iran.

E-mail: jafarnia@srbiau.ac.ir 

Seyed Ali Matini Was born in 1953. He 
graduated MD from Tehran University with 
a first rank in 1981 and he graduated 
degree in cardiology from Tehran University 
in 1985. In 1991 he obtained the degree of 
angioplasty from Switzerland, France, 

England and Belgium. Since 1989 he has been assistant 
professor and in 1992 associate professor of Tehran 
University. He has presented 57 papers in the field of 
angioplasty in 40 countries around the world.

E-mail: samatini@yahoo.ca

Ali Motie Nasrabadi received a BS degree 
in Electronic Engineering in 1994 and his 
MS and PhD degrees in Biomedical 
Engineering in 1999 and 2004, 
respectively, from Amirkabir University of 
Technology, Tehran, Iran. Since 2012, he 

has been Associate Professor in the Biomedical 
Engineering Department at Shahed University, in Tehran, 
Iran. His current research interests are in the fields of 
Biomedical Signal Processing, Nonlinear Time Series 
Analysis and Evolutionary Algorithms. Particular 
applications include: EEG Signal Processing in Mental 
Task Activities, Hypnosis, BCI and Epileptic Seizure 
Prediction.

E-mail: nasrabadi@shahed.ac.ir


