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INTRODUCTION

One of the most important fields of medical image 
analysis involves post acquisition like denoising, because 
the presence of noise in image is unavoidable. It can be 
caused by the image formation process, image recording 
and image transmission. These random distortions make 
problems to perform any required image processing. Even 
a small amount of noise is detrimental to the high accuracy 
analyzing, e.g., in sub-cell image analysis. Thus, removing 
noise is often the first step in interferograms analysis. In 
recent years, partial differential equations methods in image 
processing have been extensively used due to their good 
performance to improve traditional approaches. These 
methods cannot only remove the noise but also keep much 
more details without blurring or changing the location of the 
edges. Moreover, their scope include not only the significant 
problem of image denoising but also other restoration tasks 
such as deblurring,[1,2] blind deconvolution,[1] inpainting,[3-5] 
edge detection[6,7] and segmentation.[8-10] In this paper, we 
focus on the use of anisotropic diffusion model which 
has been extensively studied since it is introduced by the 
Perona and Malik in 1987.[11] Perona-Malik model has been 
considered as a useful tool for image noise removal and 
other areas of image processing.[12-14] However, if we decide 
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to restore noisy images using some methods starting from 
an input image, which led to a set of possible filter solutions 
by gradually removing noise, the crucial question is when to 
stop filtering in order to get the optimal restoration result. 
The objective is quite challenging, because the stopping 
time has a great effect on the output result. Introducing 
small amount of stopping time gives more confidence to the 
input data, so more noise in input data is remained; whereas, 
most parts of the image are destroyed in the large value of 
stopping time.[15] On the other hand, stopping in the steady 
state yields an overly smooth image;[16] as a result, the time 
derivative acts as a regularizing parameter and a fundamental 
feature of abovementioned reconstruction procedure is the 
necessity to decide when to stop the iterations. In general, 
this is done by trial and error. Many studies have been 
conducted in the area of introducing stopping criterion. Let 
us briefly review previous works on the stopping criteria. 
Dolcetta and Ferretti defined a stopping time by finding 
a minimum of the performance index.[17] They need a 
constant that is found using an ordinary image with similar 
details and discontinuities. This is a rather ambiguous 
requirement; also they need some approximations to 
determine the constant. Sporring and Weickert proposed 
the stopping criterion based on the signal to noise ratio, the 
relative variance at time t and the initial image.[18] Mrazek 
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and Navara extended this idea and introduced the stopping 
criterion by considering some assumptions to minimize 
the correlation of the signal and noise.[19] Other methods 
have been introduced to choose a stopping criterion, 
but most of them used statistics information[15,20] or were 
applied to one dimensional signal.[21] Some of the previous 
methods were computationally intensive.[22,23] Furthermore, 
the above techniques did not discuss about advancing 
the equation in time and the cause of iterative methods 
on the stopping criterion or frequency approaches. One 
of the working in these areas is suggested by Ilyevsky 
and Turkel.[16] In their stopping criterion the Perona-malik 
model is solved by complex and time consuming multigrid 
method. Here, the proposed automatic stopping criterion 
can satisfactory reduce the computational cost besides 
improving image quality and speed property in which 
it uses only the corrupted image content itself and does 
not need any additional information. The performance of 
proposed algorithm on medical images from the aspects 
of great improvement in time and denoising trough peak 
signal to noise ratio (PSNR) is evaluated. An outline of the 
paper is as follows:

In Section 2, we briefly introduce Perona-Malik model. This 
helps us to understand the important advantages of this 
model especially for medical imaging. Section 3 analyzes 
our new proposed stopping criterion with the important 
principles behind our approach. Some empirical evidences 
to show its efficiency based on reduced costs, PSNR analysis, 
and visual verification for a more systematic comparison is 
considered in Section 4 and the paper is concluded with a 
summary in Section 5.

PERONAMALIK MODEL

The idea behind the use of the diffusion equation in image 
processing comes from the result of Gaussian filter in 
multiscale image analysis. Convolving the given image with 
a Gaussian filter k :

k x, y exp
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with standard deviation , is equivalent to the solution of 
the diffusion equation in two dimensions. Therefore, for an 
N × N image I the diffusion process defined as:
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Where L is the maximal gray level, I(x, y, t) is the image I(x, y) 
at time t = 0.5 2 with initial condition I (x, y, 0) = I0(x, y) 
and I0 denotes the original image.

In general, this can be written as:
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Where c(x, y, t) is the diffusion coefficient,  represents the 
gradient operator and div denotes the divergence operator.

Perona and Malik introduced an inhomogeneous diffusivity 
by considering the following function for c:
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Here the parameter k is a threshold to evaluate the 
gradient of the image. This definition of c provides a 
good control for the process of denoising and edge 
preserving. It means that in the area with the high value 
of I such as edges results in decreasing of c. Therefore, 
the problem of edge smoothing will be solved by the 
model of Perona-Malik. Whereas in homogeneous regions 
where observation of noise is more likely, I is small; 
thus, c tends to 1; consequently, smoothing is achievable. 
Interestingly, there exists a relevancy between (3) and 
the neural dynamics of brightness perception. Cohen and 
Grossberg[24] presented a model of the primitive visual 
cortex with similar inhibition effects as in the Perona-Malik 
model. Furthermore, rapid decay of diffusivity c causes 
non-monotone flux function. This property of rapidly 
decreasing diffusivities are explicitly intended in the 
Perona-Malik method, so they offer the desirable result 
of blurring small fluctuations and sharpening edges in 
one single process.[25] The results of Perona and Malik are 
visually impressive; edges remains stable over a very long 
time. It is demonstrated[11] that edge detection based on 
this process clearly outperforms the linear canny edge 
detector. It is easily seen that many of the preceding 
results can be generalized to higher dimensions. This 
can be useful especially for medical image sequences 
from computed tomography (CT) or magnetic resonance 
imaging (MRI) images.[25]

Implementation of nonlinear diffusion filters are mostly 
based on finite difference methods, because they are 
easy to apply. Furthermore, the pixel structure of digital 
images provides a natural discretization of a fixed 
rectangular grid and they are well-suited for parallel 
architectures.[25] On the other hand, the Perona-Malik 
process is instable. However, the only observed instability 
result is the so-called staircasing effect. Weickert and 
Benhamouda[26] showed that the regularizing effect of 
a standard finite difference discretization is sufficient 
to solve instability problem and turn the Perona-Malik 
filter to a well-posed initial value problem. This is other 
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significant advantage of utilizing finite difference-based 
explicit scheme.

On the other hand, the problem with the explicit scheme is 
that due to the stability restrictions the time step must be 
very small, resulting in very slow convergence. As a result, 
in this paper a swap technique to tackle this essential 
difficulty of explicit method is used, so the main objectives 
in this article are (1) to present a fast and effective stopping 
criterion with low computational cost, (2) to utilize 
explicit algorithm due to its capabilities and as a remedy 
for ill-posedness problem of Perona-Malik model, (3) to 
provide a software technique with high ability to remove 
the difficulty of low convergence in the explicit scheme and 
decrease processing time.

In the following subsection, we introduce an effective time 
stopping procedure which takes the advantages of using 
explicit time marching algorithm, very low computationally 
expenses and improved quality.

NEW STOPPING CRITERION

Definitions

I. High frequencies are defined as frequencies from 
N
to

N
4 2

.

II. Denote the Lh2 as a Euclidean norm of the transform 
of the image in the frequency domain when only high 
frequencies are considered (indicative of a criterion to 
evaluate the energy of high frequencies).

We solved Perona-Malik equation by explicit method and 
computed Lh2 in every iteration (Lh2)i Then we computed 
high frequency relative forward difference (HFRFD) 
( ) ( )
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i iL L
L

h h

h
2 4 2

2 1

+⎛
⎝⎜

⎞
⎠⎟

 to analyze grey value fluctuations within a 

neighborhood of each image point, for we need information 
about its derivatives to understand the structure of an 
image.

It is known that noise is usually represented by high 
frequencies in the frequency domain. The converse is 
not true, because all high frequencies are not noise. 
Interestingly results arise when one probes the diagram 
of HFRFD. It means that at first, the rate of decreasing in 
Lh2 (energy of high frequencies) is fast (during the process of 
denoising) but after some iterations the rate of decreasing 
becomes slow and slower and consequently uniform (an 
asymptotic line) [Figure 1]. There is a region with the 
maximum cavity in its diagram before the asymptotic line 
including an important point of undulation point. This 
point is located close the minimum point of the curve. In 

this region the race of decreasing in Lh2 becomes very slow 
and most parts of the image is denoised; thus, in practice, 
more denoising after this situation is not useful and even 
damages the important features of image such as edges 
and lines.

Furthermore, with more investigation, it will be clear 
that the thresholds for parameter r (r  1 to 1.3) which is 
introduced in[16] as the ratio of the spectral energy of the 
denoised image and the blurred version of the image with 
no noise for a stopping criterion are located in this region; 
consequently, a threshold should be determined to stop 
denoising in this region. This threshold is selected as 0.09 
by various experiments on different images with different 
details. Figure 1 represents Lh2, HFRFD diagrams and the 
situation of r for the abdomen CT which is contaminated 
by a Gaussian noise of variance = 0.02. It shows the details 
of the proposed restoration algorithm. Thus, we will have 
this algorithm:
i. Solve the Perona-Malik equation and compute HFRFD 

as ( ) ( )
( )

.i iL L
L

h h

h
2 4 2

2 1

+⎛
⎝⎜

⎞
⎠⎟

ii. Stop when ( ) ( )
( )

. .i iL L
L

h h

h
2 4 2

2 1

0 09+⎛
⎝⎜

⎞
⎠⎟
≤

We use PSNR for quantification comparing and observation 
manner for qualification comparing.

The PSNR is calculated as:

PSNR
MAX

MSE
20 10log ( )  (5)

With,

MSE=
mn i

m 1
j=0
n 1

ij ij

1
0Σ Σ= −| |o R  (6)

In the equations (5) and (6) MSE is the mean square error. 
Where O is an original non-corrupted image, R is a restored 

Figure 1: The Lh2 and high frequency relative forward difference reduction 
in every iteration for a noisy abdomen computed tomography contains a 
Gaussian noise of variance = 0.02 during the denoising process
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image and Max is the maximum possible pixel value of 
the image. The advantages of proposed method from the 

aspects of visual and qualification criteria and processing 
time will be discussed in the next sections.

Table 1: Results of implementation for proposed method 
and Ilyevsky algorithm using Perona-Malik model on CT 
images
Results of implementation for proposed algorithm (Perona-Malik 
model-explicit method)

Image Variance 
of noise

PSNR Time Number of 
iteration

Body CT 0.02 27.3588 10.21 s 23
Body CT 0.04 27.3473 15.07 s 35
Body CT 0.08 27.3181 21.98 s 52
Pelvic CT 0.02 28.7434 9.87 s 14
Pelvic CT 0.04 28.6304 14.93 s 35
Pelvic CT 0.08 28.4805 21.98 s 52
Abdomen CT 0.02 29.2310 9.99 s 23
Abdomen CT 0.04 29.0881 14.49 s 34
Abdomen CT 0.08 28.8892 21.05 s 50
Results of implementation for Ilyevsky stopping 
criterion (Perona-Malik model-multigrid method)

Image Variance 
of noise

PSNR Time Number 
of iteration 
(step 1 and 

step 2)

Body CT 0.02 27.2691 5639.6 s 14
Body CT 0.04 27.2095 8676.9 s 20
Body CT 0.08 27.1131 13670.2 s 31
Pelvic CT 0.02 28.7256 5633 s 14
Pelvic CT 0.04 28.6074 8723 s 20
Pelvic CT 0.08 28.4347 14295 s 32
Abdomen CT 0.02 29.2248 5674.3 s 14
Abdomen CT 0.04 29.0844 11659 s 21
Abdomen CT 0.08 28.8931 14360.4 s 32
CT – Computed tomography; PSNR – Peak signal to noise ratio

Table 2: Results of implementation for proposed method 
and Ilyevsky algorithm using Perona-Malik model on MRI 
images
Results of implementation for proposed 
algorithm (Perona-Malik-explicit)

Image Variance 
of noise

PSNR Time Number of 
iteration

Ankle MRI 0.02 28.6108 8.84 s 20
Ankle MRI 0.04 28.5157 13.79 s 32
Ankle MRI 0.08 28.3877 22.47 s 53
Knee MRI 0.02 27.4777 9.75 s 22
Knee MRI 0.04 27.4482 14.56 s 34
Knee MRI 0.08 27.4197 22.46 s 53
Neck MRI 0.02 28.9366 10.03 s 23
Neck MRI 0.04 28.8316 15.14 s 35
Neck MRI 0.08 28.6575 22.07 s 52
Results of Implementation for Ilyevsky stopping 
criterion (Perona-Malik-multigrid method)

Image Variance 
of noise

PSNR Time Number 
of iteration 
(step 1 and 

step 2)

Ankle MRI 0.02 28.5784 6224.5 s 14
Ankle MRI 0.04 28.4865 8674.8 s 20
Ankle MRI 0.08 28.3473 14192.3 s 31
Knee MRI 0.02 27.3957 6307.5 s 14
Knee MRI 0.04 27.3241 10116.1 s 20
Knee MRI 0.08 27.2263 14213.6 s 31
Neck MRI 0.02 28.9074 5956.9 s 14
Neck MRI 0.04 28.8173 9704.6 s 20
Neck MRI 0.08 28.6534 14578.4 s 32
MRI – Magnetic resonance imaging; PSNR – Peak signal to noise ratio

Figure 2: Tested images

d

ca

e



Journal of Medical Signals & Sensors

76

Khanian, et al.: An optimal stopping criterion for medical image denoising

Vol 4  | Issue 1  |  Jan-Mar 2014

EXPERIMENTAL RESULTS

In this section, we present some examples to show the 
effectiveness of the proposed approach. To this aim, we used 
the set of images shown in Figure 2. including body CT (a), 
pelvic CT (b) abdomen CT (c), ankle MRI (d), knee MRI (e), 
and neck MRI (f) images and we added to them Gaussian 
noise of zero mean with different variances (  = 0.02, 0.04, 
0.08). Then the different stopping times, using proposed 
and Ilyevsky et al. methods are compared. All images are in 
size of 512 × 512; however the proposed technique can be 
used for higher dimensions due to its low processing time. 
The denoised image, in every case, is evaluated using the 
PSNR and processing time and optical results. The results of 
the measurements are shown in Table 1 and Table 2. The 
optical results can be seen in Figures 3-20. For each image, 

methods are executed by a personal computer with these 
characteristics:

4800 + 2.50 GHz

Numerical Experiments

As it can be seen from the Table 1 that results of proposed 
method show much less computational cost and better PSNR 
is achieved for most of the images. This increase of PSNR for 
images with more details is higher than other cases. For 
example, 14 iterations of Ilyevsky method need 5633 s, and 
obtained PSNR is 28.7256 whereas 14 iterations of HFRFD 

Figure 6: (a) Original image. (b) A noisy image with  = 0.02. (c) The 
Ilyevsky filtering result using Perona-Malik model with t = 5633 s, peak 
signal to noise ratio (PSNR) = 28.7256. (d) The proposed method using 
Perona-Malik model with t = 9.87 s, PSNR = 28.7434

dc

a

Figure 5: (a) A noisy image with  = 0.08. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 13670.2 s, peak signal to noise ratio 
(PSNR) = 27.1131. (c) The proposed method using Perona-Malik model 
with t = 21.98 s, PSNR = 27.3181

c

a

Figure 4: (a) A noisy image with  = 0.04. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 8676.9 s, peak signal to noise ratio 
(PSNR) = 27.2095. (c) The proposed method using Perona-Malik model 
with t = 15.07 s, PSNR = 27.3473

c

a

Figure 3: (a) Original image. (b) A noisy image with  = 0.02. (c) The 
Ilyevsky filtering result using Perona-Malik model with t = 5639.6 s, peak 
signal to noise ratio (PSNR) = 27.2691. (d) The proposed method using 
Perona-Malik model with t = 10.21 s, PSNR = 27.3588

dc

a
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reconstruction procedure need 9.87 s, and obtained PSNR 
is 28.7434 for a noisy version of Pelvic CT image with  
= 0.02. Moreover, for the body CT image with  = 0.08, 
31 iterations of the multigrid algorithm and 52 iterations 
of proposed technique produce restored images with 
PSNR = 27.1131 in 13670.2 s and PSNR = 27.3181 in 21.98 

s, respectively and finally 20 iterations of Ilyevsky method is 
executed in 8676.9 s, and PSNR is 27.2095 but 35 iterations 
of proposed procedure need 15.07 s, with PSNR = 27.3474 
for the Body CT image which Gaussian noise with  =0.02 
is added to it.

It should be noted that HFRFD approach gives visually 
better results than those of the denoised images carried 
out by multigrid scheme which they seem blocky. As 
shown in Table 1, the proposed technique takes in 
general more iteration to reach its best restored image. 

Figure 7: (a) A noisy image with  = 0.04. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 8723 s, peak signal to noise ratio 
(PSNR) = 28.6074. (c) The proposed method using Perona-Malik model 
with t = 14.93 s, PSNR = 28.6304

Figure 9: (a) Original image. (b) A noisy image with  = 0.02. (c) The 
Ilyevsky filtering result using Perona-Malik model with t = 5674.3s, peak 
signal to noise ratio (PSNR) = 29.2248. (d) The proposed method using 
Perona-Malik model with t = 9.99 s, PSNR = 29.2310

Figure 10: (a) A noisy image with  = 0.04. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 11659 s, peak signal to noise ratio 
(PSNR) = 29.0844. (c) The proposed method using Perona-Malik model 
with t = 14.49 s, PSNR = 29.0881

c

a

dc

a

Figure 8: (a) A noisy image with  = 0.08. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 14295 s, peak signal to noise ratio 
(PSNR) = 28.4347. (c) The proposed method using Perona-Malik model 
with t = 21.98 s, PSNR = 28.4805

c

a

c

a
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However, this observation does not imply that it makes 
the denoising process slow down because we use swap 
technique. It is safe to say that the proposed algorithm 
does speed up the restoration procedure but runs more 
steps to continuously improve image quality in higher 
levels.

Table 2 shows PSNRs and processing time of restored 
images by applying two different mentioned denoising 
mechanisms on MRI images. It is appeared from the Table 2 
that proposed algorithm shows great improvement in 

computational efficiency and gains better PSNRs compared 
with another method for all MRI images. To illustrate, Knee 
MRI image with variance of 0.02 is restored by proposed 
strategy in t = 9.75 s with PSNR = 27.4777 and using 
Ilyevsky technique in t = 6307.5 s with PSNR = 27.3957.

Figure 14: (a) A noisy image with  = 0.08. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 14192.3 s, peak signal to noise ratio 
(PSNR) = 28.3473. (c) The proposed method using Perona-Malik model 
with t = 22.47 s, PSNR = 28.3877

c

a

Figure 13: (a) A noisy image with  = 0.04. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 8674.8 s, peak signal to noise ratio 
(PSNR) = 28.4865. (c) The proposed method using Perona-Malik model 
with t = 13.79 s, PSNR = 28.5157

c

a

Figure 12: (a) Original image. (b) A noisy image with  = 0.02. (c) The 
Ilyevsky filtering result using Perona-Malik model with t = 6224.5 s, peak 
signal to noise ratio (PSNR) = 28.5784. (d) The proposed method using 
Perona-Malik model with t = 8.84 s, PSNR = 28.6108

dc

a

Figure 11: (a) A noisy image with  = 0.08. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 14360.4 s, peak signal to noise ratio 
(PSNR) = 28.8931. (c) The proposed method using Perona-Malik model 
with t = 21.05 s, PSNR = 28.8892

c

a



Journal of Medical Signals & Sensors

79

Khanian, et al.: An optimal stopping criterion for medical image denoising

Vol 4  | Issue 1  |  Jan-Mar 2014

Representing the Gradient

Following, the Sobel gradient of images, which is a popular 
edge detection method, yielding by our method will be 
presented for better analyzing a tradeoff between edge 
preserving and denoising. The Sobel operator is used in 

image processing based on an edge detection algorithm. 
It is a discrete differentiation operator which computes 
an approximation of the gradient of the image. It is 
based on the convolving of the image with the separable 
and integer valued filter in the horizontal and vertical 
directions. The filter is an approximation of a Gaussian 

Figure 18: (a) Original image. (b) A noisy image with  = 0.02. (c) The 
Ilyevsky filtering result using Perona-Malik model with t = 5956.9 s, peak 
signal to noise ratio (PSNR) = 28.9074. (d) The proposed method using 
Perona-Malik model with t = 10.03s, PSNR = 28.9366

Figure 16: (a) A noisy image with  = 0.04. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 10116.1 s, peak signal to noise ratio 
(PSNR) = 27.3241. (c) The proposed method using Perona-Malik model 
with t = 14.56 s, PSNR = 27.4482

c

a

Figure 15: (a) Original image. (b) A noisy image with  = 0.02. (c) The 
Ilyevsky filtering result using Perona-Malik model with t = 6307.5 s, peak 
signal to noise ratio (PSNR) = 27.3957. (d) The proposed method using 
Perona-Malik model with t = 9.75 s, PSNR = 27.4777

dc

a

dc

a

Figure 17: (a) A noisy image with  = 0.08. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 14213.6 s, peak signal to noise ratio 
(PSNR) = 27.2263.(c) The proposed method using Perona-Malik model 
with t = 22.46 s, PSNR = 27.4197

c

a
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which is the only filter that does not introduce artifacts. 
Each direction of Sobel filter is applied to an image. 
Then two new images are created. One image shows the 
vertical response and the other shows the horizontal 
response. Afterwards, two images are combined into a 
single image. The purpose is to determine the existence 
and location of edges in an image. The results of Sobel 

gradient images are shown in Figures 21-23. It can be 
seen that the difference in denoising for HFRFD = 0.09 
and HFRFD = 0.1 is visible, whereas the amount of 
denoising with compared to degraded edges after 
HFRFD = 0.09 is not remarkable. This is the reason for 
very slow decreasing in energy of high frequencies of 
denoised image after HFRFD = 0.09 as shown in Figure 1.

Figure 19: (a) A noisy image with  = 0.04. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 9704.6 s, peak signal to noise ratio 
(PSNR) = 28.8173. (c) The proposed method using Perona-Malik model 
with t = 15.14 s, PSNR = 28.8316

c

a

Figure 20: (a) A noisy image with  = 0.08. (b) The Ilyevsky filtering result 
using Perona-Malik model with t = 14578.4 s, peak signal to noise ratio 
(PSNR) = 28.6534. (c) The proposed method using Perona-Malik model 
with t = 22.07s, PSNR = 28.6575

c

a

Figure 21: (a) Sobel gradient of the original image. (b) Sobel gradient of noisy image with  = 0.02. (c) Sobel gradient of the proposed filtering result with 
high frequency relative forward difference (HFRFD) = 0.1. (d) Sobel gradient of the proposed filtering result with HFRFD = 0.09. (e) Sobel gradient of the 
proposed filtering result with HFRFD = 0.06. (f) Sobel gradient of the proposed filtering result with HFRFD = 0.03

d

ca

e
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DISCUSSION AND CONCLUSION

In the field of image processing and analysis, the problem 
of image denoising forms a significant preliminary step of 
image restoration. A major concern in image denoising 
models is to preserve important features such as edges 
and lines which are easily detected by the human visually 

system while denoising process. Perona-Malik model 
as anisotropic diffusion filter aims at degrading noise 
without removing fundamental parts of the image. This 
filter has become a valuable tool for many areas of image 
processing. However, this filter performs successfully as 
long as some important points are considered. A main 
feature of anisotropic diffusion procedure is presenting 

Figure 22: (a) Sobel gradient of the original image. (b) Sobel gradient of noisy image with  = 0.04. (c) Sobel gradient of the proposed filtering result with 
high frequency relative forward difference (HFRFD) = 0.1. (d) Sobel gradient of the proposed filtering result with HFRFD = 0.09. (e) Sobel gradient of the 
proposed filtering result with HFRFD = 0.06. (f) Sobel gradient of the proposed filtering result with HFRFD = 0.03
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Figure 23: (a) Sobel gradient of the original image. (b) Sobel gradient of noisy image with  = 0.08. (c) Sobel gradient of the proposed filtering result with 
high frequency relative forward difference (HFRFD) = 0.1. (d) Sobel gradient of the proposed filtering result with HFRFD = 0.09. (e) Sobel gradient of the 
proposed filtering result with HFRFD = 0.06. (f) Sobel gradient of the proposed filtering result with HFRFD = 0.03
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an easy solving method due to its nonlinearity property in 
addition to removing its ill-posedness problem. The other 
important point is introducing the stopping time with 
low computational cost as a regularizing parameter which 
forms the quality of output image. Finally, using effective 
and swift software technique to handle processing time 
when one uses this filter is significant subject that cannot 
be neglected. Here, we used explicit method for addressing 
the ill-posedness problem of Perona-Malik model besides its 
other mentioned advantages.[25] Furthermore, an automatic 
stopping criterion is proposed that takes into consideration 
the quality of denoised images and uses only the content 
of noisy images in terms of its high frequency energies. 
Moreover, in order to further improvement in denoising 
procedure, a software technique with high capability to 
tackle the difficulty of low convergence in explicit scheme 
and processing time is introduced. We verified effectiveness 
of the proposed denoising strategy using several images 
with different levels of noise and Sobel gradient images. 
The results of the measurements which are shown in the 
Section 4 indicated that the proposed method achieved 
better results regarding the quality measure of denoising, 
visual verification, preserving important features  
and time.
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