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INTRODUCTION

Progress in magnetic resonance imaging  (MRI) techniques 
increases non‑invasive study of the structure and functional 
organization of the brain. MRI provide excellent spatial 
resolution and tissue contrast and are thus ideally suited for 
morphological analysis of the brain. Brain tissue segmentation 
as a tool for delineation of the 3D anatomical structures or 
tissues plays an important role for numerous applications such 
as visualization and quantitative analysis of the brain. It can 
be used for studying the neuro‑degenerative disorders such 
as the schizophrenia[1] or Alzheimer’s disease,[2] characterizing 
morphological differences between subjects based on 
volumetric analysis of grey matter  (GM), white matter  (WM) 
and cerebrospinal fluid  (CSF).[3‑5] On the other hand, brain 
segmentation is a preliminary step for the other procedures such 
as brain registration, warping and voxel‑based morphometry.[6]

Manual delineation of the brain structures or tissues from 
high‑resolution 3D images is a tedious task in comparison 
to accurate and reliable automated segmentation methods. 

A B S T R A C T

In this paper, we present a new semi‑automatic brain tissue segmentation method based on a hybrid hierarchical approach that 
combines a brain atlas as a priori information and a least‑square support vector machine (LS‑SVM). The method consists of three 
steps. In the first two steps, the skull is removed and the cerebrospinal fluid  (CSF) is extracted. These two steps are performed 
using the toolbox FMRIB’s automated segmentation tool integrated in the FSL software (FSL‑FAST) developed in Oxford Centre for 
functional MRI of the brain (FMRIB). Then, in the third step, the LS‑SVM is used to segment grey matter (GM) and white matter (WM). 
The training samples for LS‑SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected 
as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; 
however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The 
proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI 
simulator and real data provided by Internet Brain Segmentation Repository. The semi‑automatically segmented brain tissues were 
evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were 
calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues 
accurately with respect to corresponding ground truth.
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Nowadays, databases contain hundreds of cross‑sectional 
and longitudinal MRI which may require several hours per 
scan for accurate manual segmentation of several structures. 
Such segmentation can be very error prone and exhibit 
nontrivial intra‑expert variability during the segmentation 
of large databases over weeks which is known as “rater 
drift.”[7] On the other hand, studies involving multiple 
raters face inter‑expert variability because of complexity 
of this task.[8] Furthermore, iterative manual segmentation 
using the transverse, coronal and sagittal views may result 
in jagged boundaries, which cause difficulties in shape 
analysis. Hence, the fact that many applications depend 
on accurate, robust and cost‑effective brain segmentation 
has inspired much work for developing automatic brain 
segmentation tools.

A number of techniques have been proposed for 
semi‑automatic or automatic segmentation of brain tissues 
from cerebral MRI: Statistical‑based segmentation,[9‑12] 
geometrical-based segmentation,[13,14] atlas-based 
segmentation[15] and learning-based segmentation 
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methods.[16] The use of a priori information is a successful 
concept for robust automatic tissue segmentation from 
structural MRI.[8] Currently, several common methods 
have been proposed based on applying probabilistic atlas 
as a priori information.[17‑21] The atlas‑based brain tissue 
segmentation starts by registering the brain atlas to the 
input image. The tissue class labels provided by registered 
brain atlas are used for the initial brain tissue segmentation.

Brain segmentation based on expectation‑maximization (EM) 
which is originally proposed by Wells et al.,[12] in conjunction 
with brain atlas is a popular statistical classification scheme. 
This method has been improved by other researchers, 
e.g.,[17,19,20] to iteratively estimate tissue class label and bias 
field correction. Furthermore, EM framework has been 
extended to including a Markov random field  (MRF)[19,20] 
as spatial constraint. However, machine learning methods 
such as EM and artificial neural network (ANN), which are 
based on Empirical Risk Minimization cannot control the 
learning model and therefore result in the phenomena of 
over‑fitting and under‑fitting.[22]

In this study, we present a semi‑automatic brain tissue 
segmentation method from cerebral MRI based on support 
vector machine  (SVM).[23] SVM is a supervised learning 
method that is used for classification and regression 
based on kernel methods. Recently, SVM has become a 
popular machine learning tool since it has shown excellent 
performance in many real‑world applications such as a 
classification problem.[24‑26] In contrast to linear classification 
methods, SVM maps the original parameter vectors into 
a higher  (possibly infinite) dimensional feature space 
through a non‑linear kernel function. Then, it tries to find 
an optimal hyperplane that minimizes the discrimination 
error for the training data. In comparison to other machine 
learning methods (e.g. Bays and ANN), SVM can transforms 
the problem into a quadratic programming  (QP) one. 
Theoretically, QP will obtain global optimal solution so that 
it can overcome the local minimum problem. Furthermore, 
following Structural Risk Minimization principle, it can 
effectively overcome over‑fitting and under‑fitting problem 
and has greater generalization ability. On the other hand, 
SVM aims to obtain optimal solution under the circumstance 
of small‑sample size, instead of infinite‑sample size. Thus, 
SVM provides good generalization ability that can handle 
nonlinear classification problems such as brain tissue 
segmentation.[27] Suykens and Vandewalle[28] proposed 
a least‑square  (LS) type of SVM classifier  (LS‑SVM) by 
modifying the problem formulation to obtain a linear set of 
equations in the dual space. These properties suggest that 
applying LS‑SVM may improve the overall accuracy of the 
brain tissue segmentation from cerebral MRI.

A number of different methods which use SVM solely or 
in an integrated approach for segmenting the MR brain 
images have been proposed in previous studies. Quddus 

et  al.[29] and Lao et  al.[30] applied the SVM for WM lesions 
segmentation from T1 and multi‑parametric cerebral MRI. 
Guo et  al.[27] applied multi‑classification SVM with high 
dimensional feature vectors for segmentation of T2‑MRI.[27] 
In these researches, training data were generated with the 
help of experts. Schnell et al.[31] developed a fully automated 
method for classification of high angular resolution diffusion 
imaging in  vivo data based on using SVM. In this method, 
labeled in  vivo training dataset is prepared using tissue 
masks created from the SPM5 segmentation of T1‑images. 
Song et al.[32] proposed fuzzy nonlinear SVM in conjunction 
with intensity‑based Markov priors for neonatal brain MRI 
segmentation. In,[33] a combination of atlas prior information, 
spatial information in MRF model and class probabilities 
produced by SVM is utilized for segmentation of mouse 
brain MRI. The MRF provides a statistical model to describe 
local spatial relationships between classes. Also, SVM was 
employed by Luts et al.[34] to segment and classify the brain 
tumors in MRI and MR spectroscopic imaging images.

The aim of the presented research is to propose an effective 
hierarchical semi‑automatic segmentation method for 
classification of GM, WM and CSF using a LS‑SVM supervised 
method in which training is performed using registered brain 
atlas. In this method, skull stripping, intensity non‑uniformity 
correction and CSF segmentation are performed at the first 
two stages. Then, a priori information provided by a registered 
probabilistic brain atlas is used to train LS‑SVM with radial 
basis function (RBF) kernel to segment GM and WM.

The rest of the paper is organized as follows. In Section 
II, materials and methods required for performing and 
evaluating the proposed method are introduced. Detailed 
simulation results are provided in Section III. Finally, 
concluded remarks and discussion are given in Section IV.

MATERIALS AND METHODS

MRI Brain Data

In order to assess the performance of the developed 
method, an extensive validation was performed based on 
two imaging data type: Simulated and real MRI.

Brainweb‑Simulated Brain Data
The simulated 3D MRI  (181  ×  217  ×  181 voxels of 
1 mm3 isotropic resolution) which are used as test data, 
are provided by the Brainweb simulated brain database 
from the McGill University  (available from: http://www.bic.
mni.mcgill.ca/brainweb). This database provides realistic 
simulations of MRI acquisition with different levels of 
intensity non‑uniformity and noise. Simulated MRI are 
generated based on an anatomical model of a normal brain. 
Five datasets with different noise levels (n) range between 
0% and 3% and intensity non‑uniformity  (rf) with 0%, 20% 
and 40% are used.
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Internet Brain Segmentation Repository‑Real 
Data
In order to evaluate the performance of the proposed method 
on real MR data, the cerebral MR datasets from 20 normal 
subjects provided by Center for Morphometric Analysis at 
Massachusetts General Hospital  (Available at http://www.
cma.mgh.harvard.edu/ibsr)  (IBSR) are used. The real MR 
brain data and their hand‑guided expert segmentation 
results are available at these datasets. The IBSR provides the 
performance results from five other automatic segmentation 
methods that make it convenient to compare the results with 
those reported by others. These 20 datasets involve different 
levels of difficulty such as low contrast scans, relatively smaller 
brain volumes and considerable intensity non‑uniformity. This 
can make it possible to assess the effect of the signal‑to‑noise 
ratio, contrast‑to‑noise ratio, shape complexity and variations 
in size and intensity non‑uniformity on the segmentation 
results.

LS‑SVM

SVM as a subcategory of supervised learning methods 
is generally used for both classification and regression 
problems.[35,36] In SVM classifier, as introduced by Vapnik, 
a decision boundary is defined to classify a set of objects 
or features by generating input‑output mapping functions 
using a set of labeled training data. The basic idea behind 
SVM is to use a set of kernels to map original feature 
space into a high dimensional feature space. Hence, it 
builds a non‑linear discrimination boundary, i.e.  complex 
curve, in the original space through creating an optimal 
linear discriminating boundary in the high dimensional 
feature space. Practical expressions are formulated in the 
dual space in terms of the related kernel function and the 
solution follows a (convex) QP problem. The LS version of 
the SVM classifier has been first proposed by Suykens and 
Vandewalle.[28] The aim of LS‑SVM is to construct function 
y  =  f(x), which represents the dependence of the scalar 
output yi on the input vector xi given a set of N training 
data x y

N
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where b is a bias term and  (x) is a non‑linear mapping function 
which maps the input data into a higher dimensional feature 
space whose dimensionality can be infinite. In the LS‑SVM, the 
optimization problem is defined by the following equations:
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with constraints di  =  wT   (xi) + b  +  ei. The ei is the 
error in the ith training sample and g is the penalty factor, 

which is the trade‑off parameter between a smoother 
solution and the training error. A  larger g usually results 
in higher training accuracy, which may cause to overfit 
the training data. Equation (2) shows two modifications in 
comparison to the Vapnik formulation:  (1) The inequality 
constraints are replaced with equality constraints,  (2) a 
squared loss function is taken for this error variable. The 
Lagrangian form to solve the constrained optimization 
problem (equation 2) in feature space (primal space) is as 
follows:
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T
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where αk values are the Lagrange multipliers. The solution 
for the constraint optimization problem in the dual space 
results in the following solution:

y x K x x b( ) = ( ) +∑α i i
i=1

N

, � (4)

Function  K(xi, xj) is the kernel defined as K x x x xi j i
T

j( , ) ( ) ( )= φ φ

which performs the nonlinear mapping implicitly. The 
output of the LS‑SVM is converted to a posteriori probability, 
i.e.  rang  [0,1], using the sigmoid function proposed by 
Platt[37] (Step 3 of Subsection 2.3).

Proposed Method

In order to increase the robustness of the segmentation 
method, we propose a hybrid hierarchical model based 
method to segment the input cerebral MRI into CSF, GM 
and WM. As shown in Figure 1, the method consists of three 
steps:  (1) Skull striping,  (2) CSF segmentation and  (3) GM 
and WM segmentation. According to the significant contrast 
between gray level intensities of CSF and the other brain 
tissues, the hierarchical scenario provides powerful and 
flexible framework for brain tissue segmentation. Figure 2 

Figure 1: Hierarchical brain tissue segmentation. In the first step, skull 
stripping is performed to remove non-brain tissues. In the second step, the 
cerebrospinal fluid is segmented and in the third step, the grey matter and 
white matter are separated
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illustrates the details of the proposed hybrid hierarchical 
method.

The first two steps of the proposed method consist of 
skull stripping, intensity non‑uniformity correction and 
CSF segmentation which are performed using freely 
available software tools developed in the Oxford Centre for 
functional MRI of the Brain  (FMRIB)  (FSL version 4.1).[38,39] 
The FMRIB automated segmentation tool  (FAST) is part of 
the FSL library, which is composed of modules for structural 
MRI analysis such as intensity non‑uniformity correction 
and tissue segmentation.

Step 1: Skull Stripping
Intracranial segmentation commonly referred to as 
“skull‑stripping,” removes extracerebral tissue such as 
skull, eyeballs and skin. Skull stripping facilitates image 
processing such as surface rendering, cortical flattening, 
image registration and tissue segmentation. Thus, as the 
first step of the hierarchical method, we applied “Brain 
Extraction Tool”  (BET)[38,39] integrated in FSL software to 
take an image of a head and remove all non‑brain parts of 
the image.

Step 2: Intensity Non‑uniformity Correction and 
CSF Segmentation
MRI suffers from the non‑homogeneity in the 
radio‑frequency field, which results in non‑biological 
intensity non‑uniformities across the acquired brain image. 
Thus, in the second step of the proposed hierarchical brain 
segmentation method, FAST toolbox integrated in FSL 
software is used to segment CSF, while also correcting for 
intensity non‑uniformity. Accurate intensity non‑uniformity 
correction requires segmentation knowledge while perfect 

segmentation requires uniformity in the intensity mapping 
of the image. The segmentation routine implemented 
in FAST toolbox is based on hidden MRF model and an 
associated EM algorithm. In this method, the histogram 
of the input image is modeled as a mixture of Gaussians 
with mean and variance for each class. The segmentation 
allows a reconstruction of the image; subtracting this from 
the real image gives an estimate of the non‑uniformity. 
This whole process is then iterated between segmentation 
and intensity non‑uniformity correction until reaching 
the convergence.[40] The resulting outputs are intensity 
non‑uniformity corrected version and segmented CSF, GM 
and WM from the input data. In this step, the GM and WM 
masks are combined and the result is considered as a brain 
mask. This mask is then fed to the next level to segment GM 
and WM using LS‑SVM classifier.

Step 3: GM and WM Segmentation
Segmentation of GM and WM from obtained GM‑WM mask 
in the second step is performed using LS‑SVM classifier. 
The training samples for learning the machine are chosen 
from a priori information available in registered brain atlas 
ICBM. The registration process consists of global and 
local steps. The registration is begins with 12‑parameter 
affine transformation to correct position and overall 
shape differences between the input image and the atlas. 
Then, the affine registered atlas proceeds with a nonlinear 
registration using a spatial transformation model consisting 
of a linear combination of low‑spatial frequency discrete 
cosine transform functions.[17,6] The hereby obtained 
registration parameters W are then used to map the GM 
and WM a priori information to the input image.

This step starts by assigning an initial label for one of the 
GM and WM classes, to each voxel inside GM‑WM mask. The 
labeling process is achieved by converting the GM and WM 
a priori information provided by registered brain atlas into 
discrete version through assigning the most probable class 
to each voxel. The result of this step is initial approximation 
masks for GM and WM, which are used to select the training 
samples for each class. Owing to the large number of 
samples, only about 0.5% of the image voxels are selected 
for the training samples. Thus, reducing the computation 
time and computer memory usage will be achieved. The 
training samples are selected randomly in a uniform manner 
for all classes with equal number of samples in each class.

Besides designing the classifier, the segmentation result 
relies on the feature vector extracted from MRI data. The 
LS‑SVM supervised learning method uses four dimensional 
feature vectors. Two types of features are used for training 
and test: Voxel intensity and voxel spatial information. 
Let X be the feature vector of input data to be segmented 
and Y be the associated target vector. As the first feature, 
the grey level intensity from the input MRI is selected. 
However, class overlapping between different tissues of the 

Figure 2: Block diagram of the proposed hybrid hierarchical least-square 
support vector machine method
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MR signal is a critical issue when employing SVM for MRI 
segmentation.[33] Thus, the voxel coordinates  (x, y, z) are 
selected as the second feature group for training and test. 
A priori information about tissue probability in each voxel 
is selected as the target vector during the training process. 
These vectors consist of two class probabilities: GM and 
WM.

X I x y z x y z Y P P= ( ){ } = { }, , , , , , ,GM WM � (5)

The output of this step for each voxel is a vector consisting 
of two elements of GM and WM probabilities. In this step, 
the KULeuven’s LS‑SVMlab MATLAB/C toolbox  (available 
from: http://www.esat.kuleuven.ac.be/sista/lssvmlab) is used 
to handle the training and testing procedures. The RBF is 
chosen as the LS‑SVM kernel as follows:
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where σ is the kernel variance.

After the training step, the feature vector X={I(x, y, z), x, y, z} 
is determined for each voxel of the input image and is used 
as input feature vector for trained LS‑SVM to label the 
voxels of the input image. We consider the probability that 
each voxel belongs to each of the particular tissue types 
instead of assigning one tissue class to that voxel. However, 
the output of the SVM decision function does not provide 
posterior probabilities. Platt[37] proposed a method to map 
the SVM outputs into a posterior probability, i.e. range [0,1], 
by applying an additional sigmoid function on the outputs. 
Therefore, the sigmoid function (Eq 7) is used to map the 
LS‑SVM output to the posterior probability presentation.

A y x
f xk

i i
i

,
exp

( ) =
+ ( ) +( )

1
1 α β
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In this equation, α and β are determined from the training 
data and fk is the LS‑SVM decision function for the class k.

Evaluation Method

In order to quantitatively assess the accuracy of the 
proposed method, four commonly used measures, i.e. Dice 
coefficient, Jaccard coefficient, sensitivity and specificity, 
are used to compare the results of semi‑automatic 
segmentation  (A) with corresponding gold standard  (G). 
The segmented probabilistic grey level coded masks are 
converted into binary masks by assigning the most probable 
tissue to each voxel. Furthermore, we compared our hybrid 
hierarchical LS‑SVM technique with segmentation results of 
two other methods: FSL‑FAST and hierarchical LS‑SVM. In 
the latter method, after skull stripping using BET tool, all 
brain tissues consisting of CSF, GM and WM are segmented 

using LS‑SVM classifier. In other words, after skull stripping 
and registration of the atlas to the input image, GM and 
WM a priori information are merged so as to provide the 
new prior information. Then, the classifier is designed to 
produce class probability for CSF and GM‑WM. The input 
and output feature vectors for this step are as follows:

X I x y z x y z Y WM GM CSF= ( ){ } = { }−, , , , , , ,ρ ρ � (8)

The obtained GM‑WM mask is then segmented into GM and 
WM with the same method as described in the previous 
subsection.

Similarity Metrics

Two similarity metrics are used for quantitative evaluation 
of the proposed method: Dice coefficient[41] or similarity 
index and Jaccard coefficient.[42] These metrics represent 
spatial overlap between two binary images and their values 
range between 0 (no overlap) and 1 (perfect agreement) as 
they are expressed as a percentage in the following:
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Success and Error Rate

The sensitivity  (true positive fraction  [TPF]) refers to 
the ability to correctly identify appropriate tissue in the 
segmented mask. It is defined as follows.

TPF
TP

TP FN
=

+
� (11)

The specificity  (true negative fraction  [TNF]) refers to the 
ability of the proposed segmentation method to correctly 
remove non‑desired voxels.

TNF
TN

TN FP
=

+
� (12)

Sensitivity and specificity are the measures that are 
computed based on true positive, true negative, false 
negative and false positive.

RESULTS

In this section, the results of the proposed hybrid 
hierarchical model‑based brain tissue segmentation method 
are presented. The LS‑SVM parameters (penalty factor and 
kernel variance σ) and sigmoid parameters for mapping 
the LS‑SVM output  (α and β) were obtained through the 
simulations. The α and β were determined in such a way 
that we could have an appropriate mapping between the 
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whole process for a large number of times and pick the 
average of results for the assessment of the algorithm.

Table 1 presents quantitative results of the proposed hybrid 
hierarchical LS‑SVM method for the simulated MRI  (with 
different levels of noise and intensity non‑uniformity) 
in terms of Dice and Jaccard similarity coefficients and 
sensitivity and specificity. Tables  2 and 3 illustrate the 
results of brain tissue segmentation using FSL‑FAST and 
hierarchical LS‑SVM, respectively. Figure  3 illustrates the 
results of the proposed method in comparison to other 
methods.

If the result of segmentation for a selected segmentation 
method can be classified as a high quality set of results 
by defining an arbitrarily lower bound on the Dice 
coefficient, such as Dice >0.90, then the proposed method 
demonstrates good performance for segmenting WM and 
GM from the simulated images. As can be seen, for the 

LS‑SVM output space and [0,1] range. Therefore, we opted 
α and β to be −5 and 2.5 during all experiments for the 
LS‑SVM learning method. The penalty factor and σ were 
chosen to be 10 and 0.3.

Simulated Data Test

The first experiment was carried out based on Brainweb 
simulated data using the proposed hybrid hierarchical 
LS‑SVM method, FSL‑FAST method and hierarchical LS‑SVM 
segmentation method. Figure 3 shows the input MRI, the 
ground truth, the results of the proposed method, the 
FSL‑FAST and the hierarchical LS‑SVM for 0%, 1%, 3% noise and 
0%, 20%, 40% RF level for a selected slice. In this experiment, 
3500  samples for each class were randomly selected for 
training. As the training and testing process of the learning 
algorithm directly depend on the training samples, results 
obtained through the segmentation procedure will slightly 
vary in different tests. Therefore, it is needed to run the 

Figure 3: Segmentation results of 73rd slice of the Brainweb database using proposed hybrid hierarchical least-square support vector machine, FSL-FMRIB’s 
automated segmentation tool and hierarchical LS-SVM methods

c

b

a

Table 1: Quantitative results of the proposed hybrid hierarchical LS‑SVM method of Brainweb datasets in term of D, J, 
sensitivity (TPF) and specificity (TNF)
Noise/rf (%, %) CSF (%) GM (%) WM (%)

D J TPF TNF D J TPF TNF D J TPF TNF

0, 0 84.65 73.39 99.79 93.85 93.38 85.49 92.64 95.44 94.87 88.80 93.26 98.72
1, 0 83.72 72.00 99.80 93.67 92.97 85.10 91.80 95.20 94.53 88.72 92.84 97.98
3, 0 83.83 72.17 99.74 93.54 92.56 84.96 90.05 95.71 93.73 88.93 92.67 97.61
3, 20 82.46 70.16 99.62 93.76 91.87 84.81 88.95 95.84 93.07 87.70 92.39 96.52
3, 40 82.64 70.42 99.53 93.91 91.07 83.50 87.29 95.14 92.72 87.44 92.21 96.29
CSF – Cerebrospinal fluid; GM – Grey matter; WM – White matter; LS‑SVM – Least‑square support vector machine; TNF – True negative fraction; TPF – True positive fraction; 
D – Dice coefficient; J – Jaccard coefficient
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semi‑automatic segmentation method, FSL‑FAST and 
hierarchical LS‑SVM for selected subjects 111‑2 and 11‑3, 
respectively.

Figure  6 illustrates the segmentation results in terms of 
the Dice similarity coefficient for the proposed hybrid 
hieratical LS‑SVM method for GM and WM segmentation. 
In addition, the average results for all of the 20 datasets for 
the proposed method, FSL‑FAST and hierarchical LS‑SVM are 
shown in Table 4. As can be seen, the method can segment 
the GM and WM with mean similarity coefficient (Dice) of 
78.96% and 78.22%, respectively. As a result, the proposed 
hybrid hierarchical method can segment GM and WM 
accurately in comparison to FSL‑FAST and hierarchical 
LS‑SVM. Furthermore, comparing the proposed method 
with the results of other techniques reported at the 
IBSR website  [Table  5] shows that the proposed hybrid 
hierarchical method can yield an acceptable result in 
average for GM and WM segmentation based on Jaccard 
similarity metric.

The computational complexity of the core of the proposed 
method is loaded by the LS‑SVM classifier. As reported 
in,[43] the computational complexity of the LS‑SVM method 
is O[l.n2], where n is the number of training samples and l 
is the feature vector size. The advantage of this method 
in terms of computational complexity is to use a very 
short length feature vector and a small number of samples 
for the learning procedure. As n  (the number of training 
samples) is chosen to be %0.5 of the total brain voxels N 
and only four features are selected, then the computational 
complexity in the training phase will be less than O[N2]. In 
the test phase of the problem, since the SVM approach 

proposed method, the minimum Dice similarity coefficient 
for segmented GM in different noise and intensity 
non‑uniformity levels of the simulated MRI data is 91.07% 
whereas the lowest specificity coefficients were 89.95% and 
90.84% for FSL‑FAST and hierarchical LS‑SVM respectively. 
The same results were obtained for Jaccard, sensitivity and 
specificity. Furthermore, quantitative comparison between 
the obtained results for segmented WM and CSF with 
different methods shows the same results for GM. These 
results confirm that the proposed method can accurately 
segment brain tissues in comparison with well‑developed 
methods such as FSL‑FAST.

Real Data Test

As the proposed method is designed to work for real 
medical applications, we applied the proposed method 
to segment the 20 normal subjects of IBSR T1‑weighted 
brain scans. Since these datasets are clinical datasets which 
are the result of real MRI scanning, they involve different 
levels of difficulty and cover various problems related 
to segmentation of real MR data. Small brain volumes, 
sudden variations in gray level intensity, large intensity 
non‑uniformity that is destructive in some of the datasets 
and large noise levels are the real factors affecting the 
segmentation process. This database is considered more 
noticeable and reliable for assessment of segmentation 
methods compared with the simulated databases.

During the segmentation process, 1100  samples per 
class were randomly chosen for training LS‑SVM learning 
algorithm. Figures  4 and 5 show the original slices, 
hand‑guided segmentations and the results of the proposed 

Table 2: Quantitative results of FSL‑FAST segmentation of brainweb datasets
Noise/rf (%, %) CSF (%) GM (%) WM (%)

D J TPF TNF D J TPF TNF D J TPF TNF

0, 0 84.65 73.39 99.79 93.85 89.25 80.59 89.18 89.95 92.50 86.04 86.05 99.99
1, 0 83.72 72.00 99.80 93.67 90.17 82.10 88.80 92.22 94.33 89.26 89.34 99.95
3, 0 83.83 72.17 99.74 93.54 90.84 83.22 86.96 95.73 95.87 92.08 94.15 98.69
3, 20 82.46 70.16 99.62 93.76 90.79 83.14 86.92 95.58 95.69 91.73 94.20 98.37
3, 40 82.64 70.42 99.53 93.91 90.55 82.74 86.42 95.71 95.38 91.17 94.41 97.81

CSF – Cerebrospinal fluid; GM – Grey matter; WM – White matter; FAST – FMRIB automated segmentation tool; FMRIB – Functional magnetic resonance 
imaging of the brain’s; TNF – True negative fraction; TPF – True positive fraction; D – Dice coefficient; J – Jaccard coefficient

Table 3: Quantitative results of the hierarchical LS‑SVM algorithm of brainweb datasets
Noise/rf (%, %) CSF (%) GM (%) WM (%)

D J TPF TNF D J TPF TNF D J TPF TNF

0, 0 81.11 73.75 97.5 94.94 90.42 82.67 91.35 92.41 92.53 84.95 94.16 95.06
1, 0 79.93 72.54 96.80 92.86 89.02 81.07 89.73 91.81 91.76 84.03 93.97 94.58
3, 0 77.72 69.23 96.74 92.12 88.12 80.98 88.16 91.27 91.18 83.65 93.03 94.61
3, 20 76.03 68.09 95.51 91.31 86.83 79.09 87.20 91.76 90.24 81.12 92.18 94.01
3, 40 74.79 65.98 94.73 90.52 86.55 78.29 86.10 90.84 89.08 80.73 91.47 93.21
CSF – Cerebrospinal fluid; GM – Grey matter; WM – White matter; TNF – True negative fraction; TPF – True positive fraction; D – Dice coefficient; J – Jaccard coefficient; 
LS‑SVM – Least‑square support vector machine
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uses the kernel trick and an implicit mapping to the high 
dimensional space, the computational complexity of the 
problem for segmenting each voxel will only depend on 
the size of feature vector and therefore is not comparable 
to the complexity of the training procedure. Overall, the 
order of the computational complexity of the problem is 
determined by the training phase complexity, which will be 
less than O[N2].

The results attest to the similarity between the 
segmented GM and WM and the corresponding manually 
segmented tissues  (i.e.  the ground truth images). The 
Dice coefficient  (D), Jaccard coefficient  (J), sensitivity 
(TPF) and specificity (TNF) were computed after extracting 

Table 4: Quantitative evaluation of the proposed hybrid hierarchical LS‑SVM brain tissue segmentation method in the IBSR 
datasets
Method WM (%±standard) GM (%±standard)

D J TPF TNF D J TPF TNF

Hybrid hierarchical LS‑SVM 78.22±3.50 63.95±4.79 83.10±2.99 98.83±0.21 78.96±3.70 64.57±5.33 70.92±5.03 99.33±0.09
FSL‑FAST 77.00±9.88 63.42±10.81 87.80±15.37 98.52±0.44 75.63±5.48 61.11±6.91 65.10±6.98 99.55±0.54
Hierarchical LS‑SVM 76.86±2.96 62.50±3.87 83.21±2.73 98.70±0.02 76.66±4.01 62.33±5.24 68.16±5.11 99.36±0.08
GM – Grey matter; WM – White matter; LS‑SVM – Least‑square support vector machine; FAST – FMRIB automated segmentation tool; FMRIB – Functional magnetic resonance 
imaging of the brain’s; TNF – True negative fraction; TPF – True positive fraction; D – Dice coefficient; J – Jaccard coefficient; IBSR – Internet brain segmentation repository

Figure 4: Sample slices from segmentation of internet brain segmentation repository 111-2 dataset using proposed hybrid hierarchical least-square support 
vector machine, FSL-FMRIB’s automated segmentation tool and hierarchical LS-SVM methods

b

a

Figure 5: Sample slices from segmentation of internet brain segmentation repository 11-3 dataset using proposed hybrid hierarchical least-square support 
vector machine, FSL-FMRIB’s automated segmentation tool and hierarchical LS-SVM methods

b

a

Figure 6: Dice coefficients of the grey matter and white matter segmentation 
for internet brain segmentation repository dataset using proposed hybrid 
hierarchical least-square support vector machine method
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the tissues of interest from T1‑weighted MRI. In each 
section, the values reported in the “Hybrid Hierarchical 
LS‑SVM” line were obtained by applying the proposed 
hybrid hierarchical LS‑SVM method for brain tissue 
segmentation. Values reported in the “FSL‑FAST” and 
“Hierarchical LS‑SVM” lines were obtained by using 
FSL‑FAST and Hierarchical LS‑SVM methods for GM and 
WM segmentation.

DISCUSSION

In this paper, we presented a hybrid hierarchical 
method for semi‑automatic model‑based brain tissue 
segmentation from cerebral MRI. In the first step, the 
skull was removed. Then the CSF was extracted in the 
second step; these two steps were performed using the 
FSL‑FAST tool. In the third step, the brain mask obtained 
from the first two steps was segmented into GM and WM 
using the LS‑SVM classifier integrated in the KULeuven’s 
LS‑SVMlab MATLAB/C toolbox. On the other words, the 
first two steps are done in one environment and the 
results of them are used in other environment for the 
third step. The training process of the classifier was 
performed using two feature groups: Sample position 
and grey level intensity. The training samples were 
selected randomly from the registered GM and WM a 
priori information. Since the CSF and GM are of close 
intensities in the T1‑weighted MRI data, simultaneous 
classification of them may cause more misclassification. 
Thus, applying a hierarchical method for removing the 
skull, CSF extraction and then GM and WM segmentation 
increase the segmentation accuracy.

In our segmentation method, the LS‑SVM in conjunction with 
the brain atlas was used to segment the brain tissues. Since 
the LS‑SVM classifier provides a good generalization over 
different types of the input data, acceptable segmentation 
accuracy was achieved. Comparing to the standard SVM 
which requires solving a QP problem, the LS‑SVM problem 

could be formulated as a system of linear equations. 
Therefore, the proposed method is more efficient, 
especially for a large‑scale problem. Thus, using the LS‑SVM 
as the learning method instead of the traditional SVM could 
considerably decrease the overall computational cost. 
Furthermore, using the brain atlas for selecting training 
samples reduces manual intervention.

Since the training and testing process of the learning 
algorithm directly depend on the training samples, results 
obtained through the segmentation procedure will vary 
slightly in different tests. Furthermore, different approaches 
for choosing training samples may affect the performance 
of the algorithm. Dedicating a large part of the samples to 
the edges and boundaries will help the learning algorithm 
accurately segment the boundary regions. However, this is 
at the cost of losing the generality of the learning method 
and occurring misclassification in smooth areas. In this 
study, after performing several tests over various sampling 
methods while keeping the balance between class samples, 
uniform random selection of training samples were opted 
to train the learning machine.

To validate the proposed method, two different 
databases were used: The Brainweb simulated data and 
the IBSR real MRI data. These two databases include 
different images with different degrees of noise level 
and intensity non‑uniformity. Visual inspection of the 
segmented GM and WM demonstrated that the method 
can accurately extract the major tissues of the GM and 
WM. The quantitative results showed that the proposed 
hybrid hierarchical model‑based method can extract 
the location of the brain tissues in the head with a high 
degree of accuracy. Figure  7 illustrates the average Dice 
similarity coefficient between the segmented GM and 
WM from various images with different qualities in the 
databases along with their corresponding ground truth. 
Furthermore, the corresponding sensitivity and specificity 
coefficients  [Tables  1 and 4] confirmed that the new 
technique can segment GM and WM accurately.

As can be seen in the results and as concluded in Figure 7, 
it is obvious that segmentation using the FSL‑FAST leads to 
more accurate CSF extraction  [Table  1]. Results shown in 
the Figure 7 prove that applying FSL‑FAST tool for the skull 
stripping and CSF extraction in the first two steps and then 
feeding the remaining brain mask to the LS‑SVM classifier for 
the GM/WM segmentation lead to accurate segmentation. 
Although FSL‑FAST technique offers more accurate results 
than the hierarchical LS‑SVM method for the whole process, 
the combination of them leads to an increase in the accuracy 
of the segmented Brainweb datasets tissues. It is deduced 
that, precise CSF extraction can cause considerable as 
improvement in GM separation. However, a slight decline 
in the accuracy of WM segmentation for simulated datasets 
can be observed.

Table 5: Segmentations results for IBSR dataset in terms of 
average coefficient
Method GM WM

Adaptive MAP 0.564 0.567
Biased MAP 0.558 0.562
Fuzzy c‑means 0.473 0.567
Maximum a posteriori probability 0.550 0.554
Maximum‑likelihood 0.535 0.551
tree‑structure k‑means 0.477 0.571
FSL‑FAST 0.611 0.634
Hierarchical LS‑SVM 0.623 0.625
Hybrid hierarchical LS‑SVM 0.645 0.639
Manual (4 brains averaged over 2 experts) 0.876 0.832
IBSR – Internet brain segmentation repository; GM – Grey matter; WM – White 
matter; MAP – Maximum aposteriori probability; LS‑SVM – Least‑square support 
vector machine; FAST – FMRIB automated segmentation tool; FMRIB – Functional 
magnetic resonance imaging of the brain’s



Journal of Medical Signals & Sensors

241

Kasiri, et al.: A hybrid hierarchical approach for brain tissue segmentation using LS‑SVM

Vol 3  | Issue 4  |  Oct-Dec 2013

The experimental results based on real clinical data [Table 4] 
show that the proposed hybrid hierarchical method 
provides better results in comparison with FSL‑FAST and 
hierarchical LS‑SVM. The obtained similarities between the 
segmented WM and the corresponding ground truth based 
on Dice similarity metric are 78.22 ± 3.50, 77.00 ± 9.88 and 
76.86 ± 2.96 for the proposed method, FSL‑FAST and the 
hierarchical LS‑SVM, respectively. The similarity coefficients 
for GM are 78.96 ± 3.70, 75.63 ± 5.48 and 76.66 ± 4.01, 
respectively. These results show less variation in the result 
of segmenting different brain scans as well as improvement 
in the similarity between segmented tissues and their 
corresponding ground truth. This fact verifies the robustness 
of the proposed method in segmenting MRI with different 
characteristics of noise and intensity non‑homogeneities. 
This is evident because of using the SVM classifier that 
provides good generalization in comparison to other 
classifiers such as maximum likelihood.

CONCLUSION

The new hybrid hierarchical model‑based brain tissue 
segmentation technique can accurately segment the brain 
tissues from the cerebral MRI images. The results based on 
simulated MRI on different noise and intensity non‑uniformity 
levels shows that the proposed method segments the GM 
better than others and offers a marginal improvement for 
WM. However, it gives better results for IBSR real database. 
Therefore, the obtained results suggest that the LS‑SVM is 
a promising technique for image classification in a medical 
imaging application. This new approach can be used as a 
part of a neurological tissue analysis framework, such as 
statistical morphological analysis and head model creation 
for source localization.
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