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INTRODUCTION

Models are created in order to study complex and 
interesting phenomena. The main purpose of modeling 
and simulation are the analysis and the understanding of 
observed phenomena, testing hypotheses and theories, 
and predicting the system behaviors in space and/or time. 
Models are useful, because studying a model should not be 
more difficult than studying the phenomenon it describes. 
The physiological mechanisms that underlie the transition 
to seizure in epilepsy in humans are still largely unknown. 
Both experimental[1‑3] and theoretical models[4‑18] have been 
developed in an attempt to mimic the conditions under 
which seizure activity occurs. Theoretical models are usually 
systems of equations or computer simulations.

Although it is clear that modulations in excitation and 
inhibition in synaptically connected cortical neuronal 
networks can lead to abnormal discharge patterns, from the 
physiological observations it is not known appropriately 
how these modulations occurs. But it is possible to show 
by investigating which model parameters are effective 
in producing characteristic activities of a seizure. 
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Thus, a central requirement in theoretic approaches is 
to demonstrate the parameters whose variations can 
generate epileptiform activities. This may provide some 
hypothesis for neurophysiologists to test whether they 
are physiologically plausible or not. Hence, the task facing 
the model designer is analyzing the model behavior with 
respect to the parameters.

Brain activity recording and thus its modeling 
approaches have been considered at different levels: 
Cellular (microscopic), population of neurons (mesoscopic) 
to macroscopic. As known, the brain activity is the result 
of the neurons’ interactions. Therefore, the behavior of 
individual neurons and their interconnections have been 
considered at the microscopic level, in such a way that 
by setting suitable relations among thousands of neurons 
the local field potentials could be modeled. Modeling 
the individual neurons is the most precedent one in 
the field of expressing neuro‑physiological phenomena 
by some mathematical and computational equations. 
Hodgkin‑Huxley model[19] is one of the most famous 
models for the neuron. Noisy and leaky integrate‑and‑fire 
neurons and a Poisson spike‑train cell model are the other 
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A b s t r a c t

Neural mass models are computational nonlinear models that simulate the activity of a population of neurons as an average neuron, 
in such a way that different inhibitory post‑synaptic potential and excitatory post‑synaptic potential signals could be reproduced. These 
models have been developed either to simulate the recognized neural mechanisms or to predict some physiological facts that are 
not easy to realize naturally. The role of the excitatory and inhibitory activity variation in seizure genesis has been proved, but it is 
not evident how these activities influence appearance of seizure like signals. In this paper a population model is considered in which 
the physiological inter‑relation of the pyramidal and inter‑neurons of the hippocampus has been appropriately modeled. The average 
neurons of this model have been assumed to act as a linear filter followed by a nonlinear function. By changing the gain of excitatory 
and inhibitory activities that are modeled by the gain of the filters, seizure‑like signals could be generated. In this paper through the 
analysis of this nonlinear model by means of the describing function concepts, it is theoretically shown that not only the gains of the 
excitatory and inhibitory activities, but also the time constants may play an efficient role in seizure genesis.
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examples. Specialized models for hippocampal neurons 
are also proposed.[10,11] These models mainly differ in the 
nonlinear function of dendrite, the linear impulse response 
of the soma filter and modeling refractory phenomenon, 
but are common in being stochastic models. Netoff[20] 
modeled the brain as small world network in which all 
cells are only coupled to their nearest neighbors, but small 
numbers of connections are broken and rewired to make 
long‑distance connections at random locations.

In neuronal tissue  (gray matter of the brain) neurons can 
often be divided into two main families, the principal 
neurons and interneurons. Thus, the models of neurons have 
their special parameters for each kind of neuron according 
to their properties. On the other hand the neurons of a 
neural network can be connected to each other in different 
lattice forms. In these microscopic level models any change 
in the ratio of the number of excitatory to that of inhibitory 
neurons, as well as the structure of the connected neurons 
and the relevant coefficients can change the type of activity 
at the model output. In other words, there are too many 
effective parameters in these models that prevent the 
model to be suitably tractable. Thus generally, analysis of 
the microscopic models to discover some physiological 
facts is very difficult.

In another modeling scheme, called the reduced model, the 
complexity measure of single neurons is low so that a few 
neurons can build Electroencephalography  (EEG) signals. 
In[21] cortex is modeled as a matrix that each component 
contains excitatory and inhibitory mass of neurons. These 
models are mainly modified versions of the microscopic 
models that can lead to better comprehension of cortex 
dynamics.

For gaining a better insight into the neural functions 
underlying the emergence of different dynamics, further 
simplification of the models have been proposed, in which 
neuronal networks of cortex have been considered as a 
spatially continuous network. In these macroscopic level 
models, the properties of a bulk of neurons at a local region 
have been described by time‑space dependent state variables. 
Typically, these variables can be the mean firing rates or the 
mean value of the cell (soma) membrane potential, just like 
there is an average neuron at that location.[18,22] These kinds 
of models are also called neural mass models. Analogues to 
a single neuron[6] nonlinear function at the average dendrite 
and linear function at the average soma is expected in a 
neural mass model. Furthermore, the input of a neural mass 
model is usually a white noise to account for the influence 
of all far neuron populations.

Although these models are the simplest ones introduced 
for cortex, their differential equations possess nonlinear 
terms, and thus are difficult to analyze. Almost no analytical 
solutions exist for these equations and they must be 

qualitatively analyzed. By assessment of the model[23,24] 
further insight has been gained into the properties 
of the dynamics of cortex performance. The strength 
and time course of cortical inhibitory–inhibitory and 
inhibitory–excitatory connectivity have been realized to 
be the effective parameters of the model about the seizure 
initiation and cessation. Furthermore bifurcation diagrams 
have been considered to analyze the model behavior.[25] 
Also, by linearizing the part of the model responsible for 
the fast onset activity about its equilibrium solution, 
Molaee‑Ardekani[26] quantified the characteristics of the 
resonance frequency of that part of model while free 
parameters vary. It has been shown that if the parameters 
are suitably selected, sustained limit cycle activity with high 
frequency and damped oscillatory behavior in response to 
brief stimulating inputs can be seen.[26]

Although linearization and the associated sensitivity 
analysis are able to provide a great deal of information 
regarding the conditions under which linear stability is 
lost, they are in general insufficient for a nonlinear model. 
In this paper the describing function approach is used to 
analyze a neural mass model more accurately, in order 
to show if other parameters of the model can influence 
the model output activity. To begin, we focus on a single 
parameter: The excitatory time constant of pyramidal 
neurons. It is concluded that as well as the excitatory and 
inhibitory gains, the excitatory time constant of pyramidal 
neurons has a significant role in initiation and termination 
of seizures.

MATERIALS AND METHODS

Depth‑EEG Model

The first neural mass models only considered the 
excitatory interactions.[27] Later, Wilson and Cowan[28,29] 
incorporated both excitatory and inhibitory properties of 
the neuronal populations connected to each other. The 
state variable was the mean firing rate, and the equations 
underlying these models are differential equations that 
can easily be extended into partial differential equations, 
to account for spatial properties of the neuronal mass. 
Amari[30,31] has proposed a spatio‑temporal model with 
the mean soma membrane potential as macroscopic state 
variable.

Lopes Da Silva et  al.[6] and simultaneously Freeman[32] 
developed a lumped‑parameter population model as a 
forward model, which is capable to explain the alpha rhythm 
of the EEG and deals with perceptual processing in the 
olfactory system. Physical laws they employed are related 
to two conversion operations involved in the dynamics 
of each neural ensemble: A mean wave‑to‑pulse operator 
at the soma of neurons, and a mean linear pulse‑to‑wave 
conversion implemented at a synaptic level.
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Wendling et  al.[14] used the same approach to interpret 
depth‑EEG signal characteristics in epileptic patients 
according to physiological facts. Indeed, as a new law, 
they tried to model realistic epileptiform activity as a 
result of imbalance between excitatory and inhibitory 
synaptic gains  (i.e.,  model parameters). In this model 
each area of hippocampus contains three interacting 
subsets of neurons. Main cells  (i.e.,  pyramidal cells in 
the hippocampus or neocortex) receive excitatory and 
inhibitory feedbacks from other subsets composed of 
local interneurons. Also in order to represent fast EEG 
activity such as low‑voltage rapid discharges that are often 
observed in depth‑EEG signals at seizure onset, Wendling 
et  al. developed a new version of mentioned model 
based on bibliographical material.[14] The second class of 
inhibitory interneurons is added to model as the fourth 
subset to raise kinetics of the system. In this local model 
the influence from neighboring areas of hippocampus is 
represented by an excitatory model input, xp (t), which is 
represented by Gaussian white noise. Thus the model in[14] 
is a stochastic model whose output corresponds to the 

post‑synaptic activity of the first subset, and is interpreted 
as depth‑EEG signal. As mentioned before, in this paper 
we call it the depth‑EEG model.

Liley developed the basic theories of the macroscopic 
models by adding some new physiological facts.[18] Thus, 
effects of the synaptic reversal potentials, which make 
the amplitude of the respective post‑synaptic potentials 
dependent on the ongoing post‑synaptic/somatic membrane 
potential, have been added to the model. The effect of 
synaptic reversal potentials is the changing of the linear 
relation between the mean soma membrane potential and 
synaptic input to an exponential one. Also transmission of 
axonal pulses in long range fibers has been added to this 
model as a function. In other words, Liley model is capable 
of reproducing the main features of spontaneous human 
EEG. In particular, autonomous limit cycle and chaotic 
oscillatory activity in the alpha band  (8‑13  Hz) has been 
easily produced.

As shown in Figure  1, in depth‑EEG model each synaptic 

Figure 1: Organization of the depth‑EEG model. Four neuronal subsets: pyramidal cells, excitatory interneurons (A), dendritic projecting interneurons with 
slow synaptic kinetics (GABAA,slow:B) and somatic‑projecting interneurons (the grey rectangle) with faster synaptic kinetics (GABAA, fast:G). The average pulse 
density of afferent action potentials is changed into an average inhibitory or excitatory post‑synaptic membrane potential using a linear dynamic transfer 
functions, while this potential is converted into an average pulse density of firing of post‑synaptic neuron using a static nonlinear function (from[14])
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Figure 2: Average standard post‑synaptic membrane potentials: excitatory, 
slow inhibitory and fast inhibitory, respectively, obtained from impulse 
responses given by he(t) = Aate−ta, hi(t) = Bbte−tb. and he(t) = Ggte−tg, t > 0 
for A = 3.25, B = 22, G = 10 (from[14])

process  (excitatory, fast and slow inhibitory processes) 
is a combination of a linear system  (pulse‑to‑wave 
conversion implemented at a synaptic level) and a nonlinear 
function  (wave‑to‑pulse operator at the soma of neurons, 
i.e.,  S e er v v( ) /( )( )v = +2 10

0 − ), where v is the average potential 
of the pre‑synaptic cells and S (v) is the mean firing rate 
of post‑synaptic cells. This process is expressed with the 
differential (1).

The impulse response of the second‑order linear 
systems involved in the model is characterized by the 
time‑constant and the peak amplitude  (that is reached 
after one time‑constant), as shown in Figure  2. These 
are two indicators of the system. We call the former 
“synaptic time constant”, and the latter is proportional 
to the “synaptic gain”. It is evident that fast‑inhibitory 
synaptic time is less than slow inhibitory synaptic time. 
According to[14] standard values of linear system  (C1 
to C2, a, b, g) and nonlinear function parameters  (e0 
v0 and r) are presented in Table  1[14] y0  −  y9 are the 
states of the model, which are equivalent to the 
excitatory post‑synaptic potential  (EPSP) and inhibitory 
post synaptic potential  (IPSP) of the subpopulations 
of the neurons, or their corresponding mean  
firing rates.
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Types of the Model Output Activity

Based on the assumption that at different vigilance and 
pathological states the physiological parameters of the 
population of hippocampal neurons may differ from 
standard ones, Wendling et al. have produced six different 
types of EEG signals by changing the excitation  and 
inhibition synaptic gain parameters  (A, B, and G, 
respectively) in the  [0,100]  interval, which is a realistic 
range.[14] Normal background, sustained discharge of spikes, 
low voltage rapid activity, slow quasi‑sinusoidal  activity, 
sporadic spikes, and slow rhythmic activity. Each type of 
these signals can be met in the real world  (normal and 
pathological) during different activities of the brain.

Figure 3 shows typical output signals of model according 
to different parameters (i.e., different models of the model 
space). Since (1) are stochastic differential equations, they 
should be solved by a stochastic numerical algorithm; but, 
like[33] we accept the simplicity of solving our equations by 
Euler algorithm.

Table 1: Model parameters, interpretation and values used to produce EEG signals adapted[14]

Parameter Interpretation Standard value

A Average excitatory synaptic gain 3.25 (mV)
B Average slow inhibitory synaptic gain 22 (mV)
G Average fast inhibitory synaptic gain 10 (mV)
1/a Dendritic average time constant in the feedback excitatory loop of pyramidal neurons 1/100 (s)
1/τ Dendritic average time constant in the feedback excitatory loop of inter‑neurons 1/100 (s)
1/b Dendritic average time constant in the slow feedback inhibitory loop 1/50 (s)
1/g Somatic average time constant in the fast feedback inhibitory loop 1/500 (s)
C1, C2 Average number of synaptic contacts in the excitatory feedback loop C1=135, C2=108
C3, C4 Average number of synaptic contacts in the slow feedback inhibitory loop C3=C4=33.75
C5, C6 Average number of synaptic contacts in the fast feedback inhibitory loop C5=40.5, C6=13.5
C7 Average number of synaptic contacts between slow and fast inhibitory interneurons C7=108
vo, eo, r Parameters of the nonlinear asymmetric sigmoid function v0=6 (mV), e0=2.5 (s‑1), r=0.56 (1/mV)

EEG – Electroencephalography



Shayegh, et al.: Analysis of the behavior of a seizure neural mass model

Journal of Medical Signals & Sensors

Vol 3  | Issue 1  |  Jan-Mar 20136

We used Gaussian white noise as hippocampcal modulatory 
input. In order to produce background activity parameters 
using standard values,[14] the mean and variance of the input 
signal should be properly chosen. To this end, we selected  
 = 50 and  = 50.

Motivation to Analyzing Model

It has been observed that if all parameters of the depth‑EEG 
model are supposed to have constant values equal to the 
standard ones except excitation/inhibition synaptic gain 
parameters (A, B, and G) some differences between the model 
output and real signals, especially in dominant frequency of 
low‑voltage rapid activity, are obvious. It is seen that dominant 
frequency of low‑voltage rapid activity in the model output is 
non‑flexible, but in the real world it is not the case. In fact, 
frequency of the seizure activity is not unique for different 
subjects and also for different seizures of a person. Although 
these changes are small they should be considered.

To comply with the possible changes of frequency, some 
other parameters must be assumed to be variable over 
time. The question is then which parameters could be 
effective in this order. According to the simulation results 
synaptic time constant of pyramidal cell excitatory activity 
affects the frequency content of the model output. The 
block corresponding to pyramidal cell excitatory synaptic 
process of the model is bolded in Figure 1.

Thus analyzing the model is necessary to indicate how the 
time constant of pyramidal cell excitatory activity influences 
the model output frequency and even the activity type.

Describing Function Concept

A nonlinear system can be studied by simply replacing the 
nonlinear operations by approximating linear operations. 
When the operating point of the system is changing by time, 
instead of repeating the linearization about new operating 

points, one must determine the operation performed by 
the nonlinear element on an input signal of finite size and 
approximate this in some way by a linear operation. Thus 
the same nonlinearity when driven by inputs of different 
forms, or even when driven by inputs of the same form but 
of different magnitude, must be used. The approximation 
of a nonlinear operation by a linear one which depends on 
some properties of the input is called quasi‑linearization.

Three basic signal forms with which the quasi‑linear 
approximators for nonlinear operators have been driven 
until now are: Bias, Sinusoid, and Gaussian process. Also, 
different linear combinations of these basic input signals 
are considered. The quasi‑linear functions that describe 
approximately the transfer characteristics of the nonlinearity 
are termed describing functions  (DF).[34,35] The concept is 
to see when, for example, a sinusoidal signal is applied to 
the nonlinear function, what would be the fundamental 
component of the output signal. The ratio of the  (output/
input) phasors at the fundamental harmonic is defined as DF 
of the nonlinear function for sinusoidal input. This concept 
is mainly used in the detection of the system’s limit cycle, 
i.e., prediction of its approximate amplitude and frequency, to 
be able to design suitable controllers for nonlinear systems.

To obtain the DF for a sinusoidal input, x n a n[ ] sin[ ],= 0 0  
it must be considered that at steady state the output of 
the nonlinear characteristic, y[n], is periodic but, in general 
non‑sinusoidal. Assuming the nonlinearity to be symmetric 
about zero, the Fourier series becomes:

y n Y e ek
jkn j k

k

[ ] =
=

+

∑ ω

−∞

∞
0 ϕ

� (2)

where Yk and k are the amplitude and the phase shift of 
the kth harmonic component of the output y[n], respectively. 
In the sinusoidal‑input DF analysis, only the fundamental 
harmonic component of y[n], Y1 is considered, because the 
higher‑harmonics are often of smaller amplitude than the 
amplitude of the fundamental component.

Accordingly, the sinusoidal‑input DF of a nonlinear 
element, N(a0,0), is defined as the output/input ratio of the 
fundamental harmonic component.

N a
Y
a

e j( , )0 0
1

0

1ω ϕ= � (3)

DESCRIBING FUNCTION OF THE 
MODEL’S NONLINEAR BLOCK

To understand accurate role of the depth‑EEG model 
variables the nonlinear blocks can be approximated by a 
linear function equal to their suitable DF.[34,35] There are four 
nonlinear blocks, which in Figure 1 are labeled by numbers 
1‑4: N1, N2, N3, N4.

Figure 3: Six different kinds of the depth‑EEG model output



Shayegh, et al.: Analysis of the behavior of a seizure neural mass model

Journal of Medical Signals & Sensors

Vol 3  | Issue 1  |  Jan-Mar 2013 7

When the periodic activity is seen at the model output, 
input of the nonlinear blocks can be assumed to be 
sinusoidal signals with a bias, such that “sine‑plus‑bias 
DF” would be sufficient to analyze the model. Since 
the nonlinear function S(v) does not cause any delay, DF 
has no phase‑shift term. So only the magnitude of the 
output’s fundamental harmonic and the bias value must 
be determined. Accordingly, to obtain the DF for S(v) the 
integrations (2) must be computed:

a S y a n d n
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2
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where a0, 0 and y0 are amplitude, frequency and the bias 
value of input signal of the nonlinear block. Moreover, a0

out  
and y0

out  are the amplitude and bias of the output signal of 
the nonlinear block.

As mentioned before, the nonlinear function of depth‑EEG 
model is S v e er v v( ) / ( )( )= + −2 10

0 . So, two integrations of (4) 
would be:
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In order to simplify the above integrations to be analytically 
calculated, the nonlinear function is approximated by a 
piecewise linear function. Since the sigmoid function S(v) 
is a smooth and strictly monotonic function, the piecewise 
linear approximation is a convenient one. Although the 
larger the number of these linear pieces, the better the 
nonlinear function would be reconstructed; but, using only 
three linear pieces suffice in our analytical calculations. 
This is firstly because the approximated nonlinear functions 
do not lead to alter the model outputs significantly, and 
secondly the effect of other parameters of the model, 
which is the goal of our analysis, will be evident without 
any necessity to take the complexities into account. The 
approximated function is shown in Figure 4, and its related 
equation is displayed in (6).
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Accordingly, the 0 2− π  interval of integration must be 

partitioned into smaller intervals, in which S (v)is linear. 
For example, to this end in Figure 5 1 and 2 indicates 
the borders of sub‑integrations. Figure 5 shows the input 
and output of the nonlinear function S (v) where the 
sinusoidal amplitude equals to a0 = 16 and its bias value 
is y0 = −2.5.

It is evident that depending on the values of a0 and y0 
different situations occur, for which the integration intervals 
must be indicated separately.

Before describing these different situations, note that 1 and 
2 are equal to arcsin ( )

x y
a

2 0

0

−
−α  and arcsin ( )

x y
a

1 0

0

−
−α  

respectively. Since x1 < x1 then 1 < 2. Furthermore, due to 
the symmetry of the sinus signal, both 1 and 2 have values 
between − / 2 to  / 2. Thus, three different cases have been 
detected.

Case 1: θ θ1 2< <0 0, , or equivalently y
r

v0 0

1
99> +ln ( ) ,  

thus

Figure 4: The non‑linear function is approximated by a piece‑wise linear 
function

Figure  5: Example of the time intervals used in order to integration, 
according to the approximated nonlinear function
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Special cases of this situation are:
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Case 1b: − = − =π θ π θ/ , /2 21 2 , that occurs when 
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that its special cases are:
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Case 3b: θ π θ π1 22 2= =/ , / , or y a
r

v0 0 0

1
99+ < − +ln( )

S y a n$ ( sin[ ])0 0 0 0+ + =ω α � (16)

After computing the integration and some algebraic 
operations, the result of all of these cases for the values of 
y0

out  and aout
0 can be written in the same closed form as 

following:
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For example for case 2c that θ π θ π1 22 2= − =/ , / , the 
output of the S(v) in response to a sinusoidal input with 
amplitude a0 and the bias value y0, is a periodic signal 
whose fundamental harmonic amplitude is aout

0  and the dc 
component have the following values:

a
re

aout
0

0
099

=
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, y
re

y
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0
0 099

99
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(

ln( )
) � (18)

ANALYSIS OF DEPTH‑EEG MODEL AT A 
SPECIAL PARAMETER VECTOR A = 21, 
B = 31 and G = 21

To investigate whether other variables of the depth‑EEG 
model are effective in changing frequency contents of 
the model output and/or initiation or termination of the 
periodic seizure‑related activity, values of A, B, G have 
been fixed. The problem is limited to assess the role of 
a single parameter, here of the pyramidal excitatory 
time constants  (). We want to show the validity of the 
following:
1.	 Periodic activity can appear or disappear by 

changing the value of the pyramidal excitatory time 
constants ().

2.	 Frequency of the periodic activity is dependent on the .

Although detail of the analysis approach is dependent to 
the values of A, B, G, but the main approach is the same for 
all parameters: Different assumptions about the cases of 
nonlinear blocks should be tested until valid cases for all 
range of  would be found. Thus, in this paper to describe 
how the analysis would be done in details, as an instance, 
a special value of A, B, G is considered: A = 21 B = 31 
G = 21. These values are manually selected and there is 
a periodic activity for a = 100, b = 50, g = 500,  = 
50 at the model output. To obtain a general result, the 
depth‑EEG model could be analyzed for other values of 
A, B, G. Also, the role of other time constants could be 
indicated.

The Linear Part of the Depth‑EEG Model

The linear filters of the model are low‑pass filters. In 
simulation with MATLAB software they are treated as 
discrete filters by the following transfer functions.

H z
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21
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� (19)

where T is the sampling time by which the differential 
equations are numerically solved. The dc gain of filters ( = 
0) will be A/, B/b, G/g, and A/a. The frequency responses of 
these filters are as follows:
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The Nonlinear Part of the Depth‑EEG Model

According to the monotonic nature of nonlinear 
functions, it is clear that at every set of the model 
parameters there are unique state signals and output 
signal for a special input signal. Thus, depending to the 
dc value and the amplitude of the fundamental harmonic 
of the nonlinear blocks, they may work just in one of the 
abovementioned cases. To determine the valid cases of 
under the assessment parameters, we start our analysis 
by assuming some test fixtures for the nonlinear blocks. 
By analysis of the equivalent linear system, the dc value 
and the amplitude of the fundamental harmonic of the 
model output signal can be easily computed. By using 
these values, we obtain the input of every nonlinear 
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block and check it to see whether or not the assumed 
case for that block is correct. If the assumed cases were 
not the correct ones, i.e., leads to some contradictions in 
the system, we must continue the analysis procedure by 
assuming some new cases. Once the valid set of cases for 
the model parameter is found, the analysis is finalized for 
that parameter.

We have checked different assumptions by trial and error, 
but here just those assumptions that have been found to be 
correct at least for some values of t in under the assessment 
range [0,100], are reported. Thus, at first we suppose that 
for A = 21, B = 31, G = 21, t = 50, a = 100, b = 50, g = 
500, N1 is at case 2c, N2 and N3 are at case 1b, and N4 is also 
at case 2c.

Assumption 1: N1 and N4 are at Case 2c, N2 and N3 
are at Case 1b

Assuming the nonlinear blocks of the model at the above 
mentioned cases, the output of N2 and N3 are equal to 
2e0. In other words, according to Figure  6, y1 and y2 are, 
respectively, obtained by passing a dc value (2e0) multiplied 
by C2 and C4, through filters Ha (e j) and Hb (e j). Thus, y2 and 
y2 are constant signals, respectively, equal to 2C2 Ae0 /a + 
 and 2C4 Be0 /b, where  is the mean value of model input 
noise. Under these assumptions the effective loop of the 
model in which the oscillation is expected to be generated 
is shown in Figure 6.

Furthermore, since N1 is supposed to work in Case 2c it 
would be replaced by its describing function, i.e., a gain 
equal to re0  /In (99)  (18). Similarly N4 is replaced by the 
same gain.

Assuming the y0 to be the notation for the dc value of the 
model output (input of the N1), and a0 for its amplitude at 
the fundamental frequency  ( ( sin[ ])y a n0 0 0+ +ω α ), also by 

defining ′ + ′ + ′y a n0 0 0sin[ ]ω α  and ′′+ ′′ + ′′y a n0 0 0sin[ ]ω α  as 
the outputs of N1 and N4 respectively, the (18) can be used 
to obtain:
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Accordingly, the dc loop equation
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can be written as:

y
C Ae

a
C Be

b
GC

g
e r

r
AC e r

0
2 0 4 0 7 0

3 0

2 2
99

1
99

99

= + − −

× +

µ

τ

ln( )

( ln( ) [
ln( ))

( ln( ) )] )
1

99 20 0 0 6 0r
y v e C

B
b

v+ − − −
�

� (23)

Since we are analyzing the effect of changing the value of t on 
the system in an special case in which A = 21, B = 31, G = 21, 
a = 100, b = 50, g = 500, by substituting these values in 
the (23) the amount of y0 versus t is obtained as follows:

y0

48 3360 252 8149
236 4050

=
−

+
. .

.
τ

τ
� (24)

On the other hand using the Mason rule for the loop, it is 
evident that the model is a simple linear system with the 
frequency response as follows:
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Because the model input is a Gaussian white noise, the 
power spectrum of the model output by the assumption 1 
about the situations in which the nonlinear blocks work 
would be as follows:

Figure  6: The approximated model by using describing function under 
Assumption 1
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Checking Assumption 1
It is noteworthy that for some values of t the  (24) may 
not hold. In other words it must be checked when the 
conditions for Assumption 1 hold. The variance of the 
noise is assumed to be negligible in such a way that dc 
values of the state signals of the model are sufficient to 
check the conditions.

To check whether or not the above assumption about cases 
of nonlinear blocks is true, the following conditions must 
be assessed.
1.	 To check if N1 is in case 2c, it must be checked whether 

− + < < +
ln( ) ln( )99 99

0 0 0r
v y

r
v

2.	 To check if N2 is in case 1b: 
1

99 0
1

0r
v

AC
yln ( ) + < ′

τ
3.	 To check if N3 is in case 1b: 1

99 0
3

0r
v

AC
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τ
4.	 To check if N4 is in case 2c, it must be checked whether: 

− + < ′′ < +
1

99
1

990 0 0r
v y

r
vln ( ) ln ( ) .

The above statements would be reduced to the following 
ones by some simple algebraic manipulations:
1.	 N1 is in case 2c if: 1.9774 < t < 90.9735.
2.	 N2 is in case 1b if: 9.1190 < t.
3.	 N3 is in case 1b if: 2.9605 < t.
4.	 N4 is in case 2c for all values: 0 < t < 100.

Totally the condition for which the above analysis is valid is 
as following:

9.1190 < t < 90.9735� (27)

In other words the  (26) is just valid for those values of t 
with the limits of (27). This filter is equivalent to a resonant 
low‑pass filter, which according to it a periodic activity with 
the resonant frequency is expected at the model output. 
The magnitude of frequency response  (26) is plotted in 
Figure 7 for some values of t in the interval of (27).

Assumption 2: N1 is at Case 2c, N2, N3 and N4 are 
at Case 1b

Since in practice we consider t to be in the (0, 100] interval, 
the system must be analyzed again for 0 < t < 9.1190 and 
90.9735 < t < 100. In this section the analysis is done for 
0 < t < 9.1190 by another set of assumptions about the 
cases of the nonlinear blocks. We now suppose that N4 also 

works in the case 1b, i.e., its output is equal to 2e0.

For Assumption 2, there is no loop in the system such that for 
dc we have the following equation:

A
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B
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e C
G
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e C y( )µ + − − =2 2 20 2 0 2 0 7 0 � (28)

which leads to y0 = 0.7665 for  = 50. In this situation the 
model output is just a filtered white noise whose power 
spectrum is equal to:
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We must check again the range of t for which this 
situation occurs. It is noteworthy again that the variance 
of the input noise is supposed to be sufficiently small 
such that just the dc values indicate the cases for each 
nonlinear block.
1.	 To check if N1 is in case 2c, it must be checked whether 

− + < < +
ln ( ) ln ( )99 99

0 0 0r
v y

r
v

2.	 To check N2 is in case 1b: 
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v
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3.	 To check N3 is in case 1b: 
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0r
v

AC
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τ

4.	 To check N4 is in case 1b: 
1

99 0 0r
v yln ( ) + < ′′ .

By the obtained value y0 = 0.7665,  (1) always holds, 
(2)  requires t ≤ 98.5814,  (3) requires t ≤ 24.6459, and 
(4) requires t ≤ 9.1239, which all of them hold under the 
assessment range 0 < t < 9.1190.

The spectrum of (29) is clearly a first order low‑pass filter 
such that no periodic activity is seen at the model output 
for 0 < t < 9.1190.

Figure 7: Magnitude of the frequency response of (26) for some values of t 
in the interval: 9.1190 < t < 90.9735
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Assumption 3: N1, N2 and N3 are at Case 1b, N4is 
at Case 2c

For 90.9735 < t ≤ 100 the analysis is continued by assuming 
the case 1b for N1, N2 and N3, and case 2c for N4. In this 
situation too, there is no closed loop, and the equation for 
dc value is as the following:

y
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that leads to:
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For this situation, the spectrum of the model output is as 
follows:
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Again by assuming the small variance for the input noise, 
the range of suitable t for this situation is obtained.
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These conditions lead to 94.7794 < t < 119.1861. In other 
words for 94.7794 < t < 100 the  (32) presents the valid 
power spectrum of the model output. This means that for 
94.7794 < t < 100 no periodic activity is expected at the 
model output. For 90.9735 < t < 94.7794, the analysis 
must be done again.

Assumption 4: N1 is at Case 2a, N2, N3 and N4 are 
at Case 1b

For 90.9735 < t < 94.7794 we assume that N1 is at case 2a, 
N2, N3 and N4 are at case 1b. N1 behaves like a linear function 
by the following gain (2 > 0):
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 � (33)

The spectrum of the model output would be very similar 
to 26:

Figure 8: Magnitude of the frequency response of the approximated model 
for A = 21, B = 31, and G = 31 for some values of t low‑pass filter, the 
quality factor of the filter also must be considered to indicate whether the 
model output has a periodic activity or not. The quality factor of the resonant 
filter versus the value of is plotted in Figure 9 for 9.1190 < t < 94.7794

ω

π
θ

ω

θ
π

τ
τω ω

�(34)

This filter is again a resonant low‑pass filter.

It is noteworthy that while A = 21, B = 31, G = 21, a = 100, 
b = 50, g = 500, by the mentioned assumptions the whole 
interval of [0,100] is covered. In other words, it is an easy 
task to show that any other possible assumption about the 
cases leads to a contradiction (incorrect result).

RESULTS

Based on the results of previous sections, it is evident 
that according to the concept of describing function, the 
complex function of the nonlinear model is approximated 
by a filter at A = 21, B = 31, G = 21. This filter is low‑pass 
for 94.7794 < t < 100 and 0 < t < 9.1190, but a resonant 
low‑pass filter for 9.1190 < t < 94.7794. In other words 
the role of the t in changing the system function is now 
evident. But from the seizure initiation point of view, it must 
be discussed at which times the periodic activity appears 
in the model output. In Figure  8 changing the frequency 
response of the model by t is shown.

For the low‑pass filters, 94.7794 < t < 100 and 0 < 
t  <  9.91190, clearly there is no periodic activity in the 
model output, i.e., the normal activity. But for the resonant 
low‑pass filter, the quality factor of the filter also must be 
considered to indicate whether the model output has a 
periodic activity or not. The quality factor of the resonant 
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Figure 9: The quality factor values of the approximated resonant filter for 
the depth‑EEG model, versus t, for. 9.1190 < t < 94.7794. In this figure 
the 0 < t < 9.1190 and 94.7794 < t< 100 regions for which the model 
is equivalent to low‑pass filter are specified. According to the quality factor 
values for 90.3375 < t < 94.7794 is such small that the periodic activity of 
the model output is diminished

Figure 10: The resonant frequency of the approximated resonant filter for 
the depth‑EEG model, versus t, for 9.1190 < t < 94.7794. In this figure 
the 0 < t < 9.1190. and 94.7794 < t< 100 regions for which the model is 
equivalent to low‑pass filter are specified

filter versus the value of t is plotted in Figure  9 for 
9.1190 < t < 94.7794.

It is evident from Figure  9 that the quality factor of the 
resonant filter is decreasing as t is increasing. The quality 
factor of the filter is so low for 90.3375 < t < 94.7794 such 
that periodic activity seems to be diminished.

As a result we can say that at the constant value of all 
parameters, for example for A = 21, B = 31 G = 21, 
a = 100, b = 50, and g = 500, variation of the pyramidal 
excitatory constant time can initiate or/and terminate the 
periodic activity (seizure) by itself.

Also, the resonant frequency of the filter versus t is shown 
in Figure  10. According to this figure variation of the 
dominant frequency of the model output as t changes is 
obvious. Thus the pyramidal excitatory time constant is 
able to modify the frequency content of the model output. 
As it was mentioned before, unlike real signals, depth‑EEG 
model suffered from its unique output seizure frequency 
that could be eliminated by taking t as a new model 
parameter.

These theoretical results are matched with that of simulation 
results.

DISCUSSION AND CONCLUSION

In this paper we showed the effects of changing the 
parameter t for one special value of A, B, and G  (A = 21, 
B = 31, and G = 21). However, the derived results can be 
generalized for other values. We can say that the excitatory 
time constant of the pyramidal neurons is another 
parameter that affects the frequency of seizure‑related 
signals, i.e., decreasing the value of t reduces the output 
frequency, and is also able to initiate and terminate 
seizure. That is, while a periodic activity is seen on the 
model output, it may disappear by changing t (depending 
on synaptic gains), and vice versa: Sometimes changing t 
may cause the appearance of rhythmic activity.

In other words, in the absence of any variation of synaptic 
gains, pyramidal cell excitatory time  (t) is able to induce 
or stop instability. This means that without any need 
for synaptic gains to return to their standard values, 
seizures could be stopped by changing parameter t. This 
observation is in accordance with what Liley reported on 
his attempt[22] to find mechanism of both formation and 
cessation of generalized seizure activity, and propagation 
of focal epileptiform activity. As Liley declared, changes in 
fast GABAergic neurotransmission are necessary to induce 
transition to epileptiform activity, but it can be done 
through different parametric context. Weakening inhibition 
can be encountered by both reducing peak amplitude of the 
IPSP and its decay time constant. In this paper we showed 

that this may be the fact also for the excitatory processes: 
Every change in excitation process, either through change 
of the gain (A) or excitatory time constant t can cause the 
instability or stop it. It proposes that the effective time 
of the excitatory and inhibitory processes, not only their 
gains, are important in changing the type of EEG activity. 
In fact integrating the excitatory and inhibitory processes 
seems to be more meaningful when they are compared with 
investigate if they are balanced or not. This fact must be 
assessed from the point of view of physiological mechanisms. 
The physiological meaning of changing the time constant of 
pyramidal neurons may resemble the change of the speed of 
neurotransmitters’ secretion at the synapses.

In this paper we focused on the effects of the excitatory 
activity of pyramidal neurons, but it deserves to evaluate 
the effects of other time constants in the model, e.g. a, b, 
and g.
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