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INTRODUCTION

Proper guidance and monitoring of high intensity focused 
ultrasound  (HIFU) treatment is essential for its wide 
spread clinical acceptance. Several imaging techniques 
have been used towards monitoring and control of HIFU 
treatments.[1‑3] Besides the importance of imaging pre‑and 
during treatment, post‑treatment imaging to map the treated 
region for follow‑up and/or continued therapy must also be 
considered. The most common non‑ultrasound‑based HIFU 
treatment monitoring and control methods consist of: X‑ray 
and magnetic resonance imaging  (MRI).[3] The feasibility 
of using MRI to detect HIFU‑induced tissue necrosis has 
extensively been studied.[4‑6] Moreover, a number of studies 
have been carried out proposing ultrasound imaging for 
this purpose. Conventional B‑mode ultrasound imaging 
does not have enough accuracy and specificity for reliable 
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Non‑invasive ultrasound surgeries such as high intensity focused ultrasound have been developed to treat tumors or to stop bleeding. 
In this technique, incorporation of a suitable imaging modality to monitor and control the treatments is essential so several imaging 
methods such as X‑ray, Magnetic resonance imaging and ultrasound imaging have been proposed to monitor the induced thermal 
lesions. Currently, the only ultrasound imaging technique that is clinically used for monitoring this treatment is standard pulse‑echo 
B‑mode ultrasound imaging. This paper describes a novel method for detecting high intensity focused ultrasound‑induced thermal 
lesions using a feed forward neural‑network. This study was carried on in vitro animal tissue samples. Backscattered radio frequency 
signals were acquired in real‑time during treatment in order to detect induced thermal lesions. Changes in various tissue properties 
including tissue’s attenuation coefficient, integrated backscatter, scaling parameter of Nakagami distribution, frequency dependent 
scatterer amplitudes and tissue vibration derived from the backscattered radio frequency data acquired 10 minutes after treatment 
regarding to before treatment were used in this study. These estimated parameters were used as features of the neural network. 
Estimated parameters of two sample tissues including two thermal lesions and their segmented B‑mode images were used along with 
the pathological results as training data for the neural network. The results of the study shows that the trained feed forward neural 
network could effectively detect thermal lesions in vitro. Comparing the estimated size of the thermal lesion (9.6 mm × 8.5 mm) using 
neural network with the actual size of that from physical examination (10.1 mm × 9 mm) shows that we could detect high intensity 
focused ultrasound thermal lesions with the difference of 0.5 mm × 0.5 mm.
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detection of the HIFU‑induced thermal lesions.[7‑13] Transient 
characteristics of tissue’s integrated backscatter  (IBS), 
attenuation coefficient and bubble activities as time 
traces before, during and after HIFU treatment have been 
investigated to this end.[11,12] A dramatic increase in both 
attenuation and IBS values were observed during the HIFU 
therapy which may be attributed to significant enhancement 
of bubbles activity in the focal region  (cavitation and/or 
boiling bubbles), and accompanying tissue damage.[11,12]

Recent researches have shown the potential of using radiation 
force impulses to monitor displacement changes that may be 
related to the formation of the HIFU thermal lesion. It has 
been suggested that as the thermal lesion forms a reduction 
in displacement should occur. More recent publications 
have reported initial increases in the displacements prior to 
stiffening.[13‑17] It has been proposed an ultrasonic Nakagami 
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imaging technique to monitor HIFU thermal ablation in real 
time and it has been demonstrated that Nakagami could 
detect the HIFU‑induced thermal lesion, which was difficult 
to be located in conventional B‑mode images because of no 
appearances of bubbles and Nakagami images showed higher 
contrast in the cases with apparent bubble formation.[18] On 
the other hand, several types of neural network algorithms 
have been used for segmenting ultrasound images. These 
include Kohenen network, incremental self‑organized 
map  (ISOM), restricted coulomb energy networks, and 
multi‑layer perceptron (MLP) network.[19‑21]

The aim of any classification method is to classify objects 
into two or more groups based on object attributes.[22] 
The work presented in this paper describes an automatic 
method for detecting HIFU‑induced thermal lesions using a 
feed forward neural network. We estimated some acoustical 
and mechanical and statistical parameters of tissue such as 
attenuation coefficient, IBS, scaling parameter of Nakagami 
distribution, frequency dependent scatterer amplitudes, 
and tissue vibration based on real‑time acquired radio 
frequency  (RF) data and used them as features to run a 
multi‑layer perceptron  (MLP) neural network. The MLP 
is a multi‑layer feed forward neural network which is a 
supervised classifier. It contains one or more hidden layers 
for which their neuron’s function is to arbitrate between 
the input and the output layers.[22,23] RF data acquired from 
two samples of tissues were used in this study. The first 
sample used to estimate the features for training of the 
neural network, and the second sample of tissue was used 
as the test data for the algorithm. We tried to find the best 
features to run the neural network so the implemented 
neural network was run using various combinations of the 
mentioned parameters to investigate which output of the 
neural network is more close to actual target. From this 
study, it was concluded that the best result is obtained 
when all of the mentioned parameters are used as input 
features to the neural network.

MATERIALS AND METHODS

Image‑guided HIFU System

A1‑MHz, F#0.8, and 125 mm aperture diameter 
transducer  (Imasonic S.A., Besançon, France) were used 
in this study to deliver the therapeutic ultrasound energy. 
Derived from simulations and verified by measurements, 
the full width at half maximum  (FWHM) lateral and axial 
dimensions of the HIFU beam focal spot in water were 
1.7  mm and 6.8 mm, respectively. A  Sonix RP® clinical 
ultrasound scanner  (Ultrasonix Medical Corp., Richmond, 
BC, Canada) was used to acquire RF echo data and to monitor 
HIFU thermal lesion formation and growth in real time pre‑, 
during and post‑exposure via its endocavity4‑MHz convex 
array probe which was coaxially mounted in the centre of the 
therapy transducer. Figure 1 shows the confocal arrangement 

of the imaging probe and the HIFU transducer. An AFG3101 
arbitrary function generator (Tektronix Inc., Beaverton, OR) 
provided the input electrical bursts to an AG1012 RF power 
amplifier  (T and C Power Conversions Inc., Rochester, NY) 
which in turn derived the HIFU transducer. A typical HIFU 
exposure was 40 s of 45‑W acoustic power delivered with a 
77% duty cycle. The HIFU exposures induced thermal lesions 
in the pork muscle tissue in vitro.

Tissue Parameters Estimation

Estimation of several mechanical and acoustical parameters 
of tissue through processing of the backscattered ultrasound 
RF data has been studied as part of this research and is 
briefly described below.

Attenuation coefficient
Many methods have been studied to estimate attenuation 
coefficient which are reviewed in.[24] The transient 
characteristics of tissue attenuation coefficient were 
investigated before, during and after HIFU treatment.[25] 
A common spectral difference attenuation estimation method 
to measure changing in attenuation coefficient during HIFU 
exposure, known as the multi‑narrow‑band  (MNB) method 
used by.[11] The different segments according to the depth 
were windowed along an RF A‑line from one backscattered 
RF data frame from the tissue. Under the assumption that the 
backscatter coefficient was the same in each small segment, 
the power spectra of the RF data backscattered from the 
front and back of a segment can be given by Eq. (1) 11:

Sb (Δd) = Sf (Δd) | H(Δd) |2� (1)

Where Sf (Δd) and Sb (Δd) are the power spectra of the front 
and back of a segment with the (Δd) thickness. H(Δd) is the 
transfer function of this segment. Figure  2 is a graphical 
representation of the two spectra, Sf (Δd) and Sb (Δd) for a 
typical representative RF data 24.

Figure 1: Confocal arrangement of the imaging probe with the HIFU 
transducer
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By considering the effects of attenuation, the H(Δd) was 
approximated as:

|H(Δd)| = e–2ΔdΔα(Δd)� (2)

The tissue attenuation coefficient was estimated by 
subtracting the log power spectra of the back segment from 
the log power spectra of the front segment. Spatial averaging 
in the segment was then used to reduce the variance because 
of noisy statistical ensemble of scatterers echo signal.[11]
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In this study, the pre‑, during‑ and post‑HIFU backscattered 
RF data were registered with the assumption that the 
position of the tissue sample is constant. The log power 
spectra of the segments of the pre‑data were considered 
as the references or the back segment in Eq.  (3). The log 
power spectra of the segments of the post‑data in the same 
position were considered as the front segment in Eq. (3) and 
compared with the references to estimate the change in the 
tissue attenuation coefficient using the Eq. (3).

Integrated backscatter
Ultrasonic integrated backscatter has shown the potential 
to provide the information of micro‑structure in tissue[26] 
which may alter when tissue is affected by HIFU exposure. 
The IBS can be determined by:[11,12,27]
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Where f0 is the center frequency of the transmitted pulse, 
Δf is half of the usable bandwidth, P (f, T2) and P (f, T1) are the 

power spectra of the signals backscattered from the tissue. 
T1 and T2 are two different frame times.[12] In this study, 
the IBS was estimated with a similar technique which was 
used for the attenuation estimation. The signal segments 
acquired post‑HIFU were compared to those related to 
pre‑HIFU in the same position.

Frequency Dependent Scatterer Amplitudes

Frequency dependence of backscattering to characterize 
tissue has been studied by various groups.[28‑30] As frequency 
dependence of the backscatter coefficient is related to 
the tissue microstructure, it is an important parameter 
for ultrasonic tissue characterization. The frequency 
dependence of the backscatter coefficient depends primarily 
on the size distribution of the scatterers.[28,29]

In this study we estimated changes in scatterers’ size due 
to HIFU exposure. To this end, we transmitted signals in 
two different frequencies of 2 and 4 MHz. To this end, we 
transmitted signals in two different frequencies of 2 and 
4 MHz. Then using the following equation we found the 
difference between the pressure amplitudes of second and 
main harmonic of backscattered signals:

A
d
dz

P f z P f zL1 L2= −[ ( , ) ( , )]0 02 � (5)

Where PL1 and PL2 are the amplitudes of the second harmonic 
of backscattered echo signals with transmitted central 
frequency of two MHz and the amplitudes of the main 
harmonic of backscattered echo signals with transmitted 
central frequency of four MHz, respectively, and z represents 
the depth.

Nakagami parameter
The Nakagami statistical distribution has recently received 
considerable attention toward processing of ultrasound 
RF data.[31,32] The corresponding Nakagami parameter 
estimated from the backscattered echo signals can be used 
to identify various backscattering distributions in medical 
ultrasound, thereby providing the ability to characterize 
biological tissues.[33,34]

The Nakagami image is based on the statistical distribution 
of the backscattered signals, hence provides information 
about the arrangements of scatterers in a scattering medium 
such as tissue.[32‑34] It has been shown that the probability 
density function  (pdf) of the ultrasonic backscattered 
envelope R under the Nakagami statistical model is given 
by:[32,34,35]
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where Γ(.) and U(.) are the gamma function and the unit step 

Figure 2: Back (a) and front (b) of a segment windowed from a hypothetical 
RF A-line and Fourier transformed to yield the corresponding Sb (Δd) and 
Sf. (Δd)[24]

ba
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function, respectively. The symbol r represents possible 
values for the random variable R of the backscattered 
envelopes. Let E(.) denote the statistical mean. Both the 
Scaling and Nakagami parameters associated with the 
Nakagami distribution can be calculated as follows:[32,34,35]

Ω = E R( )2 � (7)

m
E R

E R E R
=

( )
− ( )

[ ]

[ ]

2 2

2 2 2
� (8)

The Nakagami parameter as a function of scatterer 
concentration and the Scaling parameter signifying the 
average energy in the backscattered echo were both 
calculated using backscattered signals. In this study, the 
Scaling parameter was estimated and used as another 
feature for the neural network.

Tissue vibration
The Hilbert transform of echo signals were calculated to 
determine tissue vibrations due to ultrasound radiation 
force. At first we calculated the correlation between 
amplitude of the Hilbert transform of RF lines of two 
subsequent frames then the differences between the phases 
of Hilbert transforms of the signal of the first frame and 
shifted signals of the second frame were calculated. The 
tissue vibration in tissue sample because of radiation force 
was estimated by:

x =
×ϕ λ

2π
� (9)

where x is the tissue vibration, j is phase change and l 
represents the wave length.[36] It was expected that the tissue 
vibrations values calculated using the above equation would 
be different between the part of tissue where the thermal 
lesion was induced and the surrounding normal tissue.

Feed forward neural networks
There are two groups of neural network classifiers: 
Supervised and unsupervised. Supervised classifiers use 
known output data whereas unsupervised methods rely 
on input data to classify.[19,22] Layered feed forward neural 
network is the most common type of neural network used in 
engineering applications.[19,22] Multi‑layer perceptron (MLP) 
contains a number of neurons, where the function of 
each neuron is to combine input data using weighted 
sum operation and pass the resulting sum through output 
neuron. The number of layers and neurons in each layer 
depend on the nature of the problem.[22,37]

In this method, the output of neuron i, driven by N inputs xj, 
each with weight ωij, is given by:

s g xi j
N

ij j= ∑ =( )0 ω � (10)

where g() is the sigmoid function and is given by:[19‑21]

g x
e x( ) =

+ −

1
1

� (11)

In our study, a feed forward neural network was used 
including five features as inputs, one hidden layer with three 
neurons and one neuron as the output layer with the sigmoid 
function. Therefore, it is called a 5-3‑1 network.  Figure 3 
shows the schematic view of our neural network, including 
input, hidden and output layers. As the number of features 
is five and there are three neurons in hidden layer the 
number of weights are 18 so the number of samples must 
be more than 10 × 18 so we have enough data to run the 
neural network.

RESULTS

Figure  4 shows the B‑mode image from the Sonix RP 
scanner. Two pieces of Porcine muscle tissue were prepared 

Figure 3: Schematic of the three-layer feed forward neural network which 
is used in this study

Figure 4: B-mode image from Sonix RP monitor related to pre-HIFU 
experiment
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and used in this study. Different numbers of HIFU lesions 
were induced in each of them. For each lesion, the pre‑HIFU 
RF data and B‑mode image were acquired. HIFU exposure 
was on for 40  seconds to induce a thermal lesion. The 
post‑HIFU RF data and B‑mode image were acquired at 
10 minutes after the HIFU turned off. The region of interest 
of B‑mode image of this frame was separated to estimate 
the parameters of interest. Figure  5 shows the selected 
region of interest of reproduced B‑mode images of one of 
the lesions  (Tissue  #6: Lesion#4) used as the train data 
corresponding to pre‑, during‑ and post‑ HIFU.

A moving hamming window was used to segment each 
RF  data line in such that it divides into a series of 
segments of length 0.9 mm (60 sample points), assuming 
ultrasound speed of 1540  m/s in tissue. The tissue was 
put in a holder, so the position of it was fixed during 
acquiring pre and post‑data for each lesion. This made it 
possible to compare two registered images for a point by 
point analysis.

The lateral distance between two neighbouring lesions 
was approximately 1cm. From lesions created, two 
lesions (Tissue#6: Lesions#4,6) were used as the train data 
and the other two as the test data (Tissue#2: Lesions#2,5). 
In order to choose the lesions to be used as train data, at first 
we estimated the parameters of Tissue#6: Lesions#4,5,6. 
We trained the neural network using different mixture of 
two lesions among these three lesions. Test error of neural 
network using Lesion#4,6 as train data was 0.0018 which 
was less than test error of Lesion#4,5 as train data which 
was 0.0093, and test error of neural network related to 
Lesion#5,6 as train data which was 0.011. So we used 
Lesion#4,6 as train data. In the following, first the images 
of estimated parameters of the train data set related to 
Tissue#6: Lesion#4 and then the results of test data set 
related to Tissue#2: Lesion#2 will be presented. Because 
of large number of images estimated for four lesions, we 
only present the results of one of the train and one of the 
test data set to be able to tracking changes of parameters 
and also compare the result of detecting lesions with and 

without the neural network. At the end, images produced 
from the results of neural network will be presented.

Using the corresponding equations and implemented 
algorithms, all parameters subject to this study were 
calculated and imaged. Figure 6 shows the corresponding 
images of post values of estimated attenuation coefficient, 
IBS, scaling parameter of the Nakagami distribution, 
frequency dependent scatterer amplitudes and tissue 
vibration divided by the corresponding pre values. 
Regarding to colorbar of the images, it is seen that 
Attenuation coefficient, IBS, scaling parameter of the 
Nakagami distribution, and frequency dependent scatterer 
amplitudes in the HIFU lesion site were increased whereas 
the tissue vibration of the lesion was decreased.

Besides estimated parameters of Tissue#6: Lesion#4, 
parameters of Tisue#6: Lesion#6 were estimated and 
used as train data for neural network. After using these 
data to train the network two other lesions  (Tissue#2: 
Lesions#2,5) were used for test. Figure  7 shows 
selected site of reproduced B‑mode images of one of the 
lesions  (Tissue#2: Lesion#2) used as test data for pre‑, 
during‑and post‑HIFU. Figure  8 shows the corresponding 
images of attenuation coefficient, IBS, scaling parameter of 
the Nakagami distribution, frequency dependent scatterer 
amplitudes, and tissue vibration. As in the previous lesion, 
the attenuation coefficient, IBS, scaling parameter and 
frequency dependent scatterer amplitudes in the lesion site 
were increased whereas the tissue vibration of lesion was 
decreased.

This information  (related to Tissue#2: Lesion#2) besides 
estimated parameters of Tissue#2: Lesion#5 were used as 
test data. The values of the neural network for a pixel of 
interest are either one or zero for being coagulated or not 
being coagulated, respectively.

For training the network we needed to distinguish a lesion 
from the surrounding normal tissue, so the post‑HIFU 
B‑mode images along with physical examination of tissue cut 

Figure 5: Selected region of interest of reproduced B-mode images for pre-, during- and post-HIFU related to Tissue#6:Lesion#4. (a) pre- (b) during- and 
(c) post- images

cba
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Figure 6: Tissue#6: Lesion#4 (a) Attenuation coefficient, (b) IBS, (c) Scaling parameter of Nakagami distribution, (d) frequency dependent scatterer 
amplitudes, and (e) tissue vibration images

d

cba

e

Figure 7: Selected region of interest of reproduced B-mode images regarding to pre-, during- and post-HIFU related to Tissue#2: Lesion#2. (a) pre- 
(b) during- (c) post- images

cba

and the B‑mode image registered during HIFU were used to 
be able to distinguish a lesion site from the normal tissue. For 
training and testing neural network we used the pixels in the 
regions of the tissue where the existence of the normal or 
coagulated tissues was certain. To this end, we first located 
the centre of the lesion using B‑mode images acquired during 
HIFU and then using the lesion size measured after tissue 
cut we estimated which pixels were coagulated. These pixels 
in the centre of the lesion corresponding to the coagulated 
tissue were then chosen to train and test the MLP neural 
network algorithm. The training error  (mean square error 
between the network output and the actual target of train 
data[37]) of this network was calculated as 9.14 × 10−12 and the 
test error  (mean square error between the network output 
and the actual target of test data) was calculated as 0.0018.

The trained neural network was used to segment all the sites 

of interest of data related to tissue samples. We neglected 
the areas detected by the neural network algorithm as lesion 
if it’s lateral dimension was less than 1.7 mm, We used this 
value as the FWHM Lateral dimension of HIFU beam focal 
spot in water was 1.7mm and assumed that as normal tissue. 
Figure  9 shows the result of neural network for detecting 
Tissue#2: Lesion#2. Comparing the size of detected 
lesion (9.6 mm × 8.5 mm) with the actual size of the lesion 
from physical examination (10.1 mm × 9 mm) shows that we 
could detect a lesion with the difference of 0.5 mm × 0.5 mm.

Table  1 compares the detected size of Lesion#2 of 
Tissue#2 (Depth × Length) using the mentioned parameters 
based on each imaged parameter and also using the neural 
network algorithm developed in this study. It is seen that 
the neural network can effectively detect the actual lesion 
size which is 10.1 mm × 9 mm.
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Figure 8: Tissue#2:Lesion#2 (a) attenuation coefficient, (b) IBS, (c) scaling parameter of Nakagami distribution, (d) frequency dependent scatterer amplitudes, 
and (e) tissue vibration images

d
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Figure 9: Segmentation of normal and coagulated tissue by 5-3-1 neural 
network

Table 1: Detected size of high intensity focused ultrasound 
induced‑Lesion#2 (Tissue#2) using different methods
Parameters Measured lesion 

size (mm×mm)

Attenuation 6.8×5.1
IBS 10.1×6.8
Scaling parameter of Nakagami distribution 8×8.6
Parameter of scatterers’ size changes 6×6.8
Vibration 5.2×5
MLP neural network 9.6×8.5
IBS – Integrated backscatter; MLP – Multi‑layer perceptron

The neural network was run using various combinations of the 
mentioned parameters to find out which combination causes 
in best result (output of the neural network is more close to 
actual target) So six scenarios were studied, in each scenario 
we neglected one of the parameters then we found the 

sensitivity of the output of neural network to absence of that 
parameter. The difference of actual area (Depth × Length) of 
lesion with the estimated area using each scenario divided 
by the actual area used as indicator of the sensitivity also we 
substituted the actual area with the estimated area using all 
parameters combination to determine proportional accuracy. 
The best parameters combination is selected based on the 
determined sensitivities. Table 2 compares the determined 
sensitivities for detecting Lesion#2 of Tissue#2. This table 
includes the information of all scenarios’ results and it shows 
that the best result is obtained when all of the mentioned 
parameters are used as input features to the neural network. 
Estimated sensitivities using actual size illustrates that 
the estimated area using all parameters without Scaling 
parameter of Nakagami distribution can result in highest 
error which means this parameter is so effective in lesion 
detection. Comparing the estimated sensitivities of other 
scenario shows other parameters help in more accurate 
detecting of lesion. In the last column of table, each scenario 
has been compared with the estimation using all parameters 
and their sensitivities have been compared with the best 
scenario. It shows that Scaling parameter of Nakagami 
distribution causes in highest error in estimating lesion size 
and the vibration is less effective in the neural network.

Physical Examination of Tissue

After acquiring all RF data, the tissues were cut into slices 
and photographed for gross pathology examinations. 
Figure  10 shows the tissue#6 in which estimated 
parameters of lesions#4, 6 were used as the neural 
network train data. Figure 11 shows the tissue#2 in which 
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Figure 10: Tissue cut and folded open, showing HIFU lesions in its 
middle part (a) measuring length of the lesion. (b) measuring depth of the  
lesion

ba

Figure 11: Tissue cut and folded open, showing HIFU lesions in its middle 
part. (a) Tissue cut and folded from middle to measure length of the lesion. 
(b) Tissue folded close and cut vertically to measure depth of the lesion

ba

region. As suggested in,[12] the tissue albumen coagulation 
causes an increase in attenuation due to structural effect. 
Figures 6c and 8c showed that Scaling parameter of Nakagami 
distribution increases in the site of HIFU lesion too. This 
parameter is representation of the average energy in the 
backscattered signal and because of structural effect of the 
HIFU lesion and increase in attenuation, it is expected that 
the average backscattered energy from the lesion site would 
be higher. It has been shown that tissue stiffness decreases 
initially during heating and starts to increase if heated above 
a certain temperature threshold.[15,16] Different attempts 
have been made to estimate stiffness‑related parameters 
within tissues, such as strain measurements, tissue 
displacement under a localized force, response to vibration 
and ultrasound‑stimulated acoustic emission  (USAE) of 
tissues.[15] In our work, as it is shown in Figures 6e and 8e, 
the tissue vibration in the lesion site is decreased after 
HIFU treatment. Here we implemented a simple method to 
estimate the tissue vibration based on only the backscattered 
RF data that was acquired using an imaging probe without 
any higher intensity beam for pushing tissue samples. As 
Figures 6d and 8d show the frequency dependent scatterer 
amplitudes increases after the HIFU treatment. This could be 
attributed to the fact that the size of scatterers change after 
HIFU treatment and it can be used as a parameter to detect 
HIFU lesions.

While the neural network training process creates a 
nonlinear mapping between input and output, the choice 

Table 2: The determined sensitivity of the output of neural network for detecting Lesion#2 of Tissue#2 using different 
combination of features

Scenario description Depth (mm) Length (mm) Area Deviation 
from actual 

size (%)

Deviation 
from all 

parameter 
included (%)

Actual size 10.1 9 90.9 0.0 ‑
S1 All parameters included 9.6 8.5 81.6 −10.2 0.0
S2 All parameters without attenuation 9.2 8.5 78.2 −14.0 −4.2
S3 All parameters without scatters’ size changes 9.2 8.3 76.36 −16.0 −6.4
S4 All parameters without vibration 9.4 8.5 79.9 −12.1 −2.1
S5 All parameters without IBS 8.7 8.3 72.21 −20.6 −11.5
S6 All parameters without scaling parameter of Nakagami distribution 5 6.8 34 −62.6 −58.3
IBS – Integrated backscatter

estimated parameters of lesions#2, 5 were used as the 
test data.

DISCUSSIONS

It is observed in this study that after the HIFU exposure, 
attenuation coefficient and IBS values increase in the 
treated area, as mentioned in previous studies.[11,12] Studied 
the dynamic changes of attenuation coefficient and IBS for 
different acoustic powers. For their presented phantom, it 
was shown that one night after treatment the attenuation 
coefficient was almost thrice that before and the increase in 
IBS was about 5% also they placed the treated bovine livers 
in a cold room overnight at a temperature of 4˚C and after 
that the estimated IBS and attenuation coefficient further 
decreased comparing to during time of treatment but 
were still higher than before HIFU treatment. In our study, 
the average of the estimated attenuation coefficient in 
lesion site increased about 0.7 dB/cm comparing to before 
HIFU treatment. Also the averaged estimated differential 
IBS in the lesion site was increased about 5 × 10−11  times 
comparing to before HIFU treatment. The difference in our 
work comparing with the previously published works is 
in the choosing of reference segments for calculating the 
attenuation coefficient and IBS. Here, the log power spectra 
of the segments of the pre‑data were considered as the 
references. After HIFU exposure, the backscattered signal 
usually yields lower SNR because of increased attenuation in 
the focal area that attenuates the signal from the post focal 
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of input data for network is critical, along with the choice 
of features. The processing method applied here is based 
on the measurement of experimental tissue cut and 
during‑HIFU B‑mode images to find if any pixel is coagulated 
or not. One challenging point in doing accurate lesion size 
measurements is due to the fact that when we cut tissue 
we do not exactly know the B‑mode image and acquired 
RF lines belong to which slice in order to exactly compare 
the real sizes with the estimated ones. But using physical 
examination of the tissue cut besides the B‑mode images 
acquired during HIFU can help us to have a good estimation.

CONCLUSIONS

A non‑invasive ultrasound‑based technique to detect the 
thermal lesions induced by HIFU exposures was developed 
based on characteristics of mechanical, acoustical and 
statistical properties of pork muscle tissue in vitro. The tissue 
parameters including attenuation coefficient, IBS, frequency 
dependent scatterer amplitudes, tissue vibration, and scaling 
parameter of Nakagami distribution were estimated and 
imaged based on ultrasound backscattered RF data which 
was acquired 10 minutes after HIFU when the reference ones 
acquired before HIFU exposure. Selected samples of these data 
were used for training of and testing the neural network. This 
paper presents a simple 5-3‑1 feed forward neural network 
that has been trained to segment and detect HIFU lesion in 
registered data. Each individual tissue parameter might be 
able to detect a lesion within its own limitations, but using 
all of them simultaneously can make significant improvement 
in the detection of true size of lesion. If in a situation one of 
the acoustical, mechanical or statistical parameter could not 
detect a lesion, using all of them can significantly enhance the 
lesion detect‑ability. As a future step in this work, we plan 
to use this neural network to monitor HIFU lesion initiation 
and growth in real time. Moreover, the proposed technique is 
not limited to HIFU therapy and has a potential to be applied 
to other thermal therapies such as RF or microwave. It is 
concluded that still a great deal of additional training is needed 
before this technique can be applied in clinical settings.
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