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INTRODUCTION

A bone scan or bone scintigraphy is a nuclear scanning test 
to find certain abnormalities in bone that are triggering the 
bone’s attempts to heal. It is primarily used to help diagnose 
a number of conditions relating to bones, including: Cancer 
of the bone or cancers that have spread (metastasized) to the 
bone, locating some sources of bone inflammation (e.g., bone 
pain such as lower back pain due to a fracture), the diagnosis 
of fractures that may not be visible in traditional X‑ray 
images, and the detection of damage to bones due to certain 
infections and other problems.[1,2]

Accurate dosimetry for representative groups of patients for 
each specific investigation is needed in order to optimize 
use of the various alternative radiodiagnostic techniques, 
and to estimate the collective radiation exposure and risk 
from nuclear medicine investigations.[3]

A computer program called MIRDose, has been developed 
and distributed by M.G. Stabin, Radiation Internal Dose 
Information Center, Oak Ridge Institute for Science and 
Education, Oak Ridge, USA. The program contains tables of 
the S factors for the common radionuclides; the user must 
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provide the biokinetic data in the form of residence times 
for the source organs. The program then generates tables of 
organ doses per unit administered activity in the traditional 
and SI units (rad/mCi and mGy/MBq).[4,5]

Internal dose of different organs can be estimated by 
different methods such as  Medical Internal Radiation 
Dosimetry (MIRD). In MIRD method, the dose absorbed 
in the target organs are estimated as a function of 
activities accumulated in the source organ and it provides 
a generally correct mathematical estimate dose.[6‑8] The 
aim of the present study was to compare estimation 
of radiation absorbed doses to patients following 
bone scans with technetium‑99m‑labeled methylene 
diphosphonate (MDP) with the estimates given in MIRDose 
software (Version 3.0. 2).

MATERIALS AND METHODS

The study was performed on 30 adult patients (18 women 
and 12 men) with an average age of 38 ± 12 years referred 
to the nuclear medicine department of Seyed Al‑shohada 
hospital in Isfahan, Iran for evaluation bone metastases. 
All patients signed a consent form after receiving detailed 
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information about the aim of the study. Each patient was 
injected with 25 mCi of 99mTc‑MDP. Patients were imaged 
with a dual‑head gamma camera  (Siemens GammaSonics, 
Hoffman Estates), equipped with low‑energy collimators. 
A 20% energy window around the photopeak of 99mTc was 
used. Whole‑body images from the thirty patients were 
acquired at 10, 60, 90, 180 minutes after 99mTc‑MDP injection. 
Images of five min duration were acquired. To determine 
the activity, in different organs, conjugate view method was 
applied on total body images. Regions of interest (ROIs) were 
manually drawn on anterior and posterior images around all 
organs (liver, bladder wall, spleen and kidneys) on each time 
frame. A  subtraction of surrounding activity was done by 
drawing ROI in neighborhood of each organ. The same set 
of ROIs was used for all scans and the counts in each ROI 
were converted to activity using the conjugate view method 
which illustrated by the following equation.[9‑12]
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In this equation, A is the organs activity in mCi, IA and IP 
are the anterior and posterior view background corrected 
counting rates, respectively, t is the body anterior–posterior 
thickness across each organ, this thickness were measured 
on the CT scanner (Brilliance; Philips). Also µe is the effective 
linear attenuation, f is equal to  (µet/2)/sinh(µet/2) and 
represents a correction for the source region attenuation 
coefficient (µe) and source thickness (t) and C is the system 
calibration factor  (counting rate per unit activity). The 
system calibration factor used in this study was obtained 
by counting a known activity of 99mTc for a fixed period 
of time in air using the same camera, collimators and the 
camera acquisition settings. The mean uptake activity in 
different time periods (10, 60, 90, 180 min) after injection 
of 99mTc‑MDP were also calculated for each organ and used 
in the time–activity curves. The time–activity curves used to 
calculate the cumulated activity in each organ was fitted by 
MATLAB software (Version. 7.5).

For obtained corrected counting rate, the counting rate 
measured in an adjacent ROI was subtracted from the 
counting rate in organs ROI, in according to the formula 
reported by Buijs et al., equation.[9]

I  I  I

I  I  I
A A BGA

P P BGP

= −
= −

'

'

Where IA (IP) is the background corrected counting rate in the 
anterior (posterior) organs ROI, I’A (I’P) is the measured counting 
rate in the anterior (posterior) organs ROI and IBGA (IBGP) is the 
counting rate in the anterior (posterior) background ROI.

Based on the MIRD schema, absorbed doses  (D) were 
calculated for the liver, bladder wall, spleen and kidneys 
using follow formula:[12‑14]

D = Ã × S

where Ã is the cumulated activity, “S” factor obtained from 
Yoriyaz and co‑workers study.[15] The results of this study 
were compared with the data of MIRDose software[16] by 
performing t‑test.

RESULTS

The absorbed doses per unit of injected activity 
(mGy/MBq × 10−4) for liver, kidneys, bladder wall and spleen 
were 3.86  ± 1.1, 38.73  ± 4.7, 4.16  ± 1.8 and 3.91  ± 1.3, 
respectively.

The results of t‑test to compare the results of the data of 
MIRDose software and present study are shown in Table 1.

DISCUSSION

Radiation dose calculations for radiopharmaceuticals have 
been standardized by implementation and dissemination 
of tools like MIRDose software. The MIRDose software 
greatly facilitates the calculation of internal radiation dose 
estimates by the MIRD techniques. The program makes 
use of standard and most up‑to‑date models in internal 
dosimetry.[16]

The accurate absorbed dose calculations depends on the 
accuracy of the quantifications of organ activity.[17] The 
accuracy of the quantifications of organ activity from planar 
gamma camera images has been evaluated by several 
researchers.[17‑20] They are demonstrated factors such as the 
effective attenuation coefficient (which could influence the 
estimation of activity by about ±10%), body thickness (±10%) 
and device sensitivity  (±5%) which influences the accuracy 
of activity quantification. However, researchers noted that 
background activity was perhaps the most important factor, 
with differences in how background regions were defined 
contributing to as much as ±20% variation of the observed 
activity values from the known results. Another factor to 
consider in quantification of the activity based on planar 
scintigraphy is the effect of overlapping tissue. This applies 
particularly to kidneys and liver.[17‑20]

Table  1 shows that the P  values of compared the results 
of this study with the data of MIRDose software is more 
than 0.05 which means that there is no significant differences 

Table 1: Results of t‑test to compare the data of MIRDose 
software with the present study
Organ P value

Liver 0.72±0.02>0.05±0.01
Bladder wall 0.12±0.06>0.05±0.02
Spleen 0.35±0.04>0.05±0.01
Kidneys 0.24±0.03>0.05±0.02
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among these. According to the results here  [Table 1], the 
P value of liver is higher than the rest which means is more 
in agreement with other studies.[17‑19]

CONCLUSIONS

The results of this study showed that methods used in the 
study for absorbed dose calculation is in good agreement 
with the data of MIRDose software and it is possible to use 
the obtained method of the present study, by a clinician. 
Also findings may be useful to estimate the amount of 
activity that can be administered to the patients and also 
serve as a way of comparing the risk to the benefit value of 
these nuclear medical procedures with the other modalities 
of diagnostic procedures.
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