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Abstract
Background: Accurate delivery of the prescribed dose to moving lung tumors is a key challenge 
in radiation therapy. Tumor tracking involves real-time specifying the target and correcting the 
geometry to compensate for the respiratory motion, that’s why tracking the tumor requires caution. 
This study aims to develop a markerless lung tumor tracking method with a high accuracy. 
Methods: In this study, four-dimensional computed tomography (4D-CT) images of 10 patients were 
used, and all the slices which contained the tumor were contoured for all patients. The fi rst four 
phases of 4D-CT images which contained tumors were selected as input of the software, and the 
next six phases were considered as the output. A hybrid intelligent method, adaptive neuro-fuzzy 
inference system (ANFIS), was used to evaluate motion of lung tumor. The root mean square error 
(RMSE) was used to investigate the accuracy of ANFIS performance for tumor motion prediction. 
Results: For predicting the positions of contoured tumors, the averages of RMSE for each patient 
were calculated for all the patients. The results showed that the RMSE did not have a major variation. 
Conclusions: The data in the 4D-CT images were used for motion tracking instead of using markers 
that lead to more information of tumor motion with respect to methods based on marker location.
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Introduction
Lung cancer is one of the most important 
causes of cancer deaths in the world. This 
cancer is the most common cause of death 
in men and the second leading cause of 
death in women, after breast cancer.[1] The 
main purpose in external radiotherapy is 
delivering three-dimensional (3D) uniform 
dose into tumor volume and minimizing 
the dose to the healthy tissues. Respiratory 
motion causes signifi cant motion of 
thoracic and abdominal organs and affects 
the targeting of external beam to lung 
tumors and so introduces uncertainties in 
radiation therapy. Therefore, it is a source 
of inaccuracy in image acquisition and 
lung tumor treatment. For some cases, 
the respiration tumor motion may be 
at the order of >2–3 cm. Thus, motion 
management techniques play an important 
role in protecting healthy tissues and 
damage to the moving tumor.

To adapt a proper beam delivery for breathing 
or lung tumor motion, two techniques have 
been developed: Gating and tracking. The 

goal in the gating approach is to select the 
time interval, in which the lung tumor moves 
into a predefi ned small gating window.[2-5] 
In the tracking approach, the beam follows 
the moving tumor.[6-9] The basic requirement 
for these techniques is the ability to predict 
the tumor motion versus time. Real-time 
tumor-tracking radiotherapy was developed 
in 1999 to amplify the precision of irradiation 
of moving lung tumors.[10]

Several studies have been conducted 
to move the beam according to tumor 
motion in the lung.[11-16] These studies 
used additional monitoring hardware such 
as optical tracking and fl uoroscopy for 
real-time tumor tracking.[17-21] Although 
direct tumor tracking techniques without 
external markers and implanting fi ducial 
markers are desired as more sophisticated 
method, usually, external markers, located 
on the chest of the patient, are used to 
predict the lung tumor motion. Therefore, 
this study was conducted to predict 
lung tumor motion without any markers 
using the adaptive neuro-fuzzy inference 
system (ANFIS) methodology.[22]
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Esmaili Torshabi et al. analyzed substantial effects of two 
different data clustering approaches on the fuzzy modeler 
performance. The performance of adaptive and multiple 
fuzzy logic models was tested in 20 patients treated with 
CyberKnife. The fi nal results showed that activating 
adequate model selection of our fuzzy-based modeler can 
signifi cantly reduce tumor tracking errors.[23] In other study, 
Choi et al. showed that clinically applicable results from 
the viewpoint of training and predicting time, which may 
be effective for predicting patient breathing motion and thus 
enhancing the effi cacy of radiation therapy.[24] Rottmann 
and Berbeco investigated the feasibility of training a 
respiratory motion prediction model with an external 
surrogate signal to avoid exposure of patients from 
additional dose due to imaging during this procedure. 
Their linear prediction model could reduce latency-induced 
tracking errors by an average of about 50% in real-time 
image-guided radiotherapy systems with the system.[25] 
Yun et al. developed a new ANN-based lung-tumor motion 
predictor for MRI-based intrafractional tumor tracking.

In comparison of the previous studies, in this work, a 
markerless method was used for prediction of the tumor 
position based on four-dimensional computed tomography 
(4D-CT) images of the patients. The organization of this 
paper is as follows: the next section discusses the ANFIS 
system algorithm, in the section of prediction of tumor 
position, an implementation of the algorithm is shown, and 
the results are presented after that. Finally, we conclude 
and give some perspectives for future work.

Materials and Methods
Adaptive Neuro-fuzzy inference system

Adaptive network is a feedforward dynamical neural 
network with several layers [Figure 1]. These networks 
in the learning process often use supervised learning 
algorithm. In addition, in the architecture of adaptive 
network, there are a number of adaptive nodes that have 
been interconnected straightly without any weight value 
between them. The functions and roles of each node in this 
network are different, and the output relies on the available 
input signals and parameters that are existed in the node. 
Parameters in the node are affected by learning rule that 

was used, and it can decrease the incidence of errors at the 
output of the adaptive network.[22]

The gradient descent or back propagation algorithm and the 
chain rule are commonly used in learning the basic adaptive 
network. The slow convergence rate and getting stuck easily 
in local minima are major problems on backpropagation 
algorithm. Therefore, an alternative learning algorithm, 
namely, hybrid learning algorithm have been introduced[22] 
which has the effective strength to speed up the convergence 
and prevent the occurrence of trapped in local minima.

ANFIS is an adaptive network method which uses the 
neural network with fuzzy inference system to assistant 
the inputs to the tumor motion as output.[26-29] An artifi cial 
neural network (ANN) is a method based on function 
approximation, and this model is based on the biological 
processing of brain neurons.[30] In this study, ANFIS 
technique was used to combine the advantages of fuzzy 
systems with numeric power in neural adaptive network 
systems. With ANFIS both neural network and fuzzy logic 
are able to share their ability to predict lung tumor motion.

The fi rst and the fourth layers in the ANFIS architecture 
have parameters that can be modifi ed over time. In 
the fi rst layer, it comprises a nonlinear of the premises 
parameter while the fourth layer contains linear consequent 
parameters. A hybrid algorithm proposed by Jang[22] is used 
to update both of these parameters. The forward path and 
backward path are two parts of a hybrid learning algorithm. 
The parameters of the premises in the fi rst layer of the 
forward path must be in a steady state. The consequent 
parameter in the fourth layer was repaired by a recursive 
least square estimator method. The convergence rate in the 
hybrid learning process is accelerated with the use of RSLE 
method. Input data are returned to the adaptive network 
input after the consequent parameters are obtained, and the 
obtained output will be compared with the true output. The 
occurred error within the comparison between the outputs 
produced with the true output is propagated back to the 
fi rst layer. Simultaneously, learning methods of gradient 
descent or backpropagation is used to update the parameter 
premises in the fi rst layer.

As an example in ANFIS structure, assuming that x and y 
are input variables for single-output fuzzy inference system, 
the output variable is calculated with applying of fuzzy 
rules to a fuzzy set of input variables. The rule set in this 
method contains two fuzzy if-then rules for the fi rst-order 
Sugeno fuzzy model:[31,32]

Rule 1: If x is A1 and y is B1 then, f1 = p1x+q1y+r1 (1)

Rule 2: If x is A2 and y is B2 then, f2 = p2x+q2y+r2 (2)

Where pi, qi, and ri (i = 1 or 2) are linear parameters and Ai, 
Bi are linguistic labels. These parameters are characterized 
by proper membership functions (MF).[22] With MF curve 
one can defi nes the number of points in the input space that Figure 1: Architecture of adaptive network
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is mapped to a membership P value between 0 and 1. MFs 
are the building blocks of fuzzy set theory, and they may 
have different shapes such as trapezoidal, triangular, and 
Gaussian. The Gaussian and bell-shape MFs are usually 
used to specify fuzzy sets.

Prediction of tumor position

To develop and evaluate the proposed algorithms, 4D-CT 
images for 10 lung cancer patients were acquired with 
multislice Brilliance CT Big Bore Oncology™[33] The data 
information related to breathing correlated was obtained 
using the Pneumo Chest bellows. Each data set contained 
ten 3D-CT phases, representing a breathing cycle.

All the slices which contained tumor were selected for 
10 patients, and the tumor margins were delineated in 
the selected slices. A breathing cycle for each patient 
contained 10 phases. In all slices, the tumor was 
contoured by a radiation oncologist. For training of 
algorithm, the contoured tumors in each slice of four 
successive phases in 4D-CT images were considered 
as an input. The algorithm was used to predict the next 
phase as the output. For example, the phases of three to 
six were used for training the input data, and the seventh 
phase was predicted. Tumor motion in three directions 
(x, y, and z) was considered for prediction of the motion. 
For simplicity, the centers of contoured tumors in three 
directions were selected for tracking. The center of 
the tumor was obtained by taking an average over the 
position of tumor voxels, and the centers of tumor were 
tracked slice by slice. The training was performed for 
the fi rst six patients, and other four patients were used 
for the evaluation of algorithm in the prediction of tumor 
motion. All algorithms in this work were applied on the 
CT images using MATLAB software.

The most widely used MF in Fuzzy logic is the bell MF. 
The generalized Bell MF block use an MF with Simulink® 
toll box of MATLAB using a generalized bell-shaped 
curve. The generalized bell-shaped curve can be calculated 
by:[32,34]

Bell (x; a, b, c) = 2

1

1
bx c

a
−

+

 (3)

Where the b is positive, the parameter c locates the center 
of the curve, and a shows width of the curve [Figure 2].

The ANFIS method in this work was a multilayer 
neuro-fuzzy method, and the related fuzzy inference system 
was based on Sugeno type.[35] Sugeno-type inference is a 
more compact and computationally effi cient, and it also 
uses adaptive techniques for fuzzy models. These adaptive 
techniques can also be used to customize MFs to model the 
data accurately by fuzzy system. Figure 3 illustrates the 
topology of Sugeno type which has a total of fi ve layers:
• Layer 1: Each node in this layer adjusts to a function 

parameter. Degree of membership value is the output 

from each node that is given by the input of the MFs. 
The parameters in this layer are commonly considered 
as the premise parameters

• Layer 2: Each node in this layer is constant or 
nonadaptive, and the circle node is tagged as π. The 
output node is the result of multiplying of signal coming 
into the node and conveyed to the next node. Each node 
in this layer represents the fi ring strength for each rule. 
In the second layer, the T-norm operator with general 
performance, such as the AND, is applied to obtain the 
output

 2i i Ai Bi( ) ( ), 1, 2μ μO w x y i= = ∗ =  (4)
• Layer 3: Each node in this layer is constant or 

nonadaptive, and the circle node is tagged as N. Every 
node is a calculation of the ratio between the ith fi ring 
strength of a rule and the sum of all rules’ fi ring 
strengths.
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• Layer 4: Each node in this layer is an adaptive node to 
an output. The parameters in this layer are defi ned as 
consequent parameters with a node function defi ned

 4i i i i i i i( )O w f w p x q y r= = + +  (6)
• Layer 5: The single node in this layer is a fi xed or 

nonadaptive node that the summation of all incoming 
signals from the previous node produces the total 
output. In this layer, a circle node is tagged as ∑.
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In this structure, the training and predicted values were 
considered as input and output, respectively. In the hidden 
layers, there were also several nodes functioning as MFs. 
The learning algorithm used in ANFIS was one of the 
hybrid algorithms, which consisted of the least-squares and 
gradient descent method. The measured error to train the 
mentioned ANFIS was given by[32]

Figure 2: An illustration of the generalized bell membership function
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Root mean square error (RMSE) = 
2

i i
1

1 ( )
N

i
A P

N =

−∑  (8)

In which N is the number of predicted samples, Ai 
and Pi are ith desired and number of predicted output, 
respectively. The RMSE was computed for each patient, 
and the average RMSE was used for prediction of lung 
tumor motion.

Simulations of this work were performed with a 2.53 GHz 
Intel core i5 processor. The in-house ANFIS algorithm was 
trained using the Matlab R2014a.

Results
To investigate the accuracy of ANFIS performance for 
tumor motion prediction, a statistical parameter was used 
as the RMSE. RMSE is equal to the difference between 
corresponding observed values and predicted values. The 
differences were squared and then averaged over the 
samples; and then, the square root of the average value was 
taken. The average of RMSE of each patient was calculated 
for tracking the positions of contoured tumors. The type and 
number of parameters for training ANFIS are illustrated in 
Table 1. Table 2 illustrates the value of mean and standard 
deviation calculated from RMSE of patients in three 
directions.

As the tumor motion was considered in three 
directions (x, y, and z), Figures 4-6 illustrate the training 
data and ANFIS output in the directions of x, y, and z, 
respectively.

Discussion
According to the results, using ANFIS with a hybrid 
intelligent method gives acceptable accuracies for 
predicting of lung tumor motion. Some of the benefi ts of 
using ANFIS for prediction are: (a) combination of two 
technologies of fuzzy systems and neural networks; (b) in 
fuzzy techniques, numerical and linguistic knowledge can 
be combined into a fuzzy rule base; (c) using learning 
methods, fuzzy MFs can be tuned with high effi ciency; 
and (d) compared to neural networks, in this technique, the 
requirements for architecture are simpler and fewer. In this 

work, Bell MF was used because this method is specifi ed 
by three parameters and has one more parameter compared 
to the Gaussian MF, so it can use a nonfuzzy set as long 
as the free parameter is tuned. Because of their concise 
notation and smoothness, bell MF is a popular method for 
specifying fuzzy sets. It has the advantage of being nonzero 
and smooth at all points. The followings are the advantages 
of using Sugeno:[36] (a) it is computationally effi cient, (b) it 
is connected to the linear techniques, (c) it works well with 
adaptive techniques and optimization, (d) it has acceptable 
continuity for the output surface, and (e) this method is 
proper for mathematical analysis.

Table 1: Various parameters which are used for training 
of adaptive neuro-fuzzy inference system 

ANFIS parameters Value
MF type Bell function
Number of MFs 5
Output MF Linear
Number of nodes 1297
Number of linear parameters 3125
Number of nonlinear parameters 60
Total number of parameters 3185
Number of training data pairs 420
Number of checking data pairs 420
Number of fuzzy rules 625
ANFIS – Adaptive neuro-fuzzy inference system; MFs – Membership 
functions

Table 2: The results of root mean square error per 
patient which calculated by adaptive neuro-fuzzy 

inference system
Statistical parameters Direction Average RMSE
Mean±SD X 0.1437±0.005

Y 0.1860±0.008
Z 0.3612±0.009

RMSE – Root mean square error; SD – Standard deviation

Figure 3: A Sugeno-type model with adaptive neuro-fuzzy inference system 
architecture[31]

Figure 4: Adaptive neuro-fuzzy inference system and training data output 
in the direction of x



Rostampour, et al.: Lung tumor motion prediction

Journal of Medical Signals & Sensors | Volume 8 | Issue 1 | January-March 2018 29

The training was performed for fi rst six patients, and the 
next four patients were used for test to evaluate the lung 
tumor tracking accuracies. It was observed in the results 
that the RMSE did not have a large variation. Based on the 
literature, many of the most cited articles on lung tumor 
motion estimation using 4D-CT datasets have used the 
4D-CT data from 5 to 12 patients.[37-43]

In this study, instead of using markers, the data in the 
4D-CT images were used for motion tracking. This results 
to more information of tumor motion in comparison with 
methods based on marker location. In the systems based on 
marker detection, the treatment is less convenient because 
IR system is used, the patient holds the breath, and more 
labor work is needed. In the use of 4D-CT, it is possible to 
track the tumor in off-line bases.

Since the amount of raw input data was relatively low 
(the data for the various location of the tumor in the 
lung), and the data were not normalized, there was some 
fl uctuation in the results. With normalization of the 
input in the future study; the output fl uctuation can be 
reduced.

The robustness of proposed method in this study can be 
evaluated for large dataset, and the number of MFs can 
be increased if we have no limitation in the computing 
system. Better accuracies can be expected if there are no 
limitations. The nonlinear nature of breathing will also 
degrade the quality of prediction, and by increasing the 
training data, we can overcome the nonstationary breathing 
patterns that were accrued in the images.

The authors are intended to apply the method in 
experimental tools in the future. In the future work, it is 
suggested that with the investigation of tumor model, the 
variation of the shape can be predicted during the breathing 
cycle.

Acknowledgment

The authors are grateful to the Vice Chancellor for Research 
and Technology, Isfahan University of Medical Sciences 
grant (2015) for supporting this project (No. 394530).

Financial support and sponsorship

This study was fi nancially supported by Isfahan University 
of Medical Sciences.

Confl icts of interest

There are no confl icts of interest.

 References
1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 

2002. CA Cancer J Clin 2005;55:74-108.
2. Kubo HD, Len PM, Minohara S, Mostafavi H. 

Breathing-synchronized radiotherapy program at the university 
of california davis cancer center. Med Phys 2000;27:346-53.

3. Ohara K, Okumura T, Akisada M, Inada T, Mori T, Yokota H, 
et al. Irradiation synchronized with respiration gate. Int J Radiat 
Oncol Biol Phys 1989;17:853-7.

4. Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, 
van Herk M, Lebesque JV, et al. Precise and real-time 
measurement of 3D tumor motion in lung due to breathing and 
heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol 
Phys 2002;53:822-34.

5. Shirato H, Shimizu S, Kunieda T, Kitamura K, van Herk M, 
Kagei K, et al. Physical aspects of a real-time tumor-tracking 
system for gated radiotherapy. Int J Radiat Oncol Biol Phys 
2000;48:1187-95.

6. Keall PJ, Kini VR, Vedam SS, Mohan R. Motion adaptive x-ray 
therapy: A feasibility study. Phys Med Biol 2001;46:1-0.

7. Murphy MJ. Tracking moving organs in real time. Semin Radiat 
Oncol 2004;14:91-100.

8. Neicu T, Shirato H, Seppenwoolde Y, Jiang SB. Synchronized 
moving aperture radiation therapy (SMART): Average tumour 
trajectory for lung patients. Phys Med Biol 2003;48:587-98.

9. Schweikard A, Shiomi H, Adler J. Respiration tracking in 
radiosurgery. Med Phys 2004;31:2738-41.

10. Shirato H, Shimizu S, Shimizu T, Nishioka T, Miyasaka K. 

Figure 6: Adaptive neuro-fuzzy inference system and training data output 
in the direction of z

Figure 5: Adaptive neuro-fuzzy inference system and training data output 
in the direction of y



Rostampour, et al.: Lung tumor motion prediction

30 Journal of Medical Signals & Sensors | Volume 8 | Issue 1 | January-March 2018

Real-time tumour-tracking radiotherapy. Lancet 1999;353:1331-2.
11. Murphy MJ, Jalden J, Isaksson M. Adaptive Filtering to Predict 

Lung Tumor Breathing motion During Image-Guided Radiation 
Therapy. In Proceedings of the 16th International Congress 
on Computer-Assisted Radiology and Surgery, Paris: 2002. 
p. 539-44.

12. Sharp GC, Jiang SB, Shimizu S, Shirato H. Prediction 
of respiratory tumour motion for real-time image-guided 
radiotherapy. Phys Med Biol 2004;49:425-40.

13. Vedam SS, Keall PJ, Docef A, Todor DA, Kini VR, Mohan R, 
et al. Predicting respiratory motion for four-dimensional 
radiotherapy. Med Phys 2004;31:2274-83.

14. Isaksson M, Jalden J, Murphy MJ. On using an adaptive neural 
network to predict lung tumor motion during respiration for 
radiotherapy applications. Med Phys 2005;32:3801-9.

15. Murphy MJ, Dieterich S. Comparative performance of linear and 
nonlinear neural networks to predict irregular breathing. Phys 
Med Biol 2006;51:5903-14.

16. Qiu P, D’Souza WD, McAvoy TJ, Ray Liu KJ. Inferential 
modeling and predictive feedback control in real-time motion 
compensation using the treatment couch during radiotherapy. 
Phys Med Biol 2007;52:5831-54.

17. Cerviño LI, Du J, Jiang SB. MRI-guided tumor tracking in lung 
cancer radiotherapy. Phys Med Biol 2011;56:3773-85.

18. Hughes S, McClelland J, Tarte S, Lawrence D, Ahmad S, 
Hawkes D, et al. Assessment of two novel ventilatory surrogates 
for use in the delivery of gated/tracked radiotherapy for 
non-small cell lung cancer. Radiother Oncol 2009;91:336-41.

19. Shah AP, Kupelian PA, Willoughby TR, Meeks SL. Expanding 
the use of real-time electromagnetic tracking in radiation 
oncology. J Appl Clin Med Phys 2011;12:3590.

20. Shimizu S, Shirato H, Kitamura K, Ogura S, Akita-Dosaka H, 
Tateishi U, et al. Fluoroscopic real-time tumor-tracking radiation 
treatment (RTRT) can reduce internal margin (IM) and set-up 
margin (SM) of planning target volume (PTV) for lung tumors. 
Int J Radiat Oncol Biol Phys 2000;48:166-7.

21. Zhong Y, Stephans K, Qi P, Yu N, Wong J, Xia P, et al. Assessing 
feasibility of real-time ultrasound monitoring in stereotactic 
body radiotherapy of liver tumors. Technol Cancer Res Treat 
2013;12:243-50.

22. Jang JS. ANFIS: Adaptive-network-based fuzzy inference 
system. IEEE Trans Syst Man Cybern 1993;23:665-85.

23. Esmaili Torshabi A, Riboldi M, Imani Fooladi AA, 
Modarres Mosalla SM, Baroni G. An adaptive fuzzy prediction 
model for real time tumor tracking in radiotherapy via external 
surrogates. J Appl Clin Med Phys 2013;14:4008.

24. Choi SW, Chang Y, Kim N, Park SH, Song SY, Kang SH. 
Performance enhancement of respiratory tumor motion prediction 
using adaptive support vector regression: Comparison with 
adaptive neural network method. Int J Imaging Syst Technol 
2014;24:8-15.

25. Rottmann J, Berbeco R. Using an external surrogate for predictor 
model training in real-time motion management of lung tumors. 
Med Phys 2014;41:121706.

26. Zadeh LA. Fuzzy sets. Inf Control 1965;8:338-53.
27. Zadeh LA. Outline of a new approach to the analysis of complex 

systems and decision processes. IEEE Trans Syst Man Cybern 
1973;3:28-44.

28. Zadeh LA. Fuzzy logic.Computer 1988;21:83-93.
29. Zedeh L. Knowledge representation in fuzzy logic. Knowledge 

and data engineering. IEEE Trans Syst Man Cybern 
1989;1:89-100.

30. Bishop CM. Neural Networks for Pattern Recognition. 
New York, USA: Oxford University Press, Inc.; 1995.

31. Kakar M, Nyström H, Aarup LR, Nøttrup TJ, Olsen DR. 
Respiratory motion prediction by using the adaptive neuro fuzzy 
inference system (ANFIS). Phys Med Biol 2005;50:4721-8.

32. Loukas YL. Adaptive neuro-fuzzy inference system: An instant 
and architecture-free predictor for improved QSAR studies. 
J Med Chem 2001;44:2772-83.

33. Vandemeulebroucke J, Rit S, Kybic J, Clarysse P, Sarrut D. 
Spatiotemporal motion estimation for respiratory-correlated 
imaging of the lungs. Med Phys 2011;38:166-78.

34. Jang JS, Sun CT. Neuro-fuzzy modeling and control. Proc IEEE 
1995;83:378-406.

35. Takagi T, Sugeno M. Fuzzy identifi cation of systems and its 
applications to modeling and control. IEEE Trans Syst Man 
Cybern 1985;15:116-32.

36. Sivanandam SN, Sumathi S, Deepa SN. Introduction to Fuzzy 
Logic Using MATLAB. Springer-Verlag Berlin Heidelberg; 
2007. p. 127.

37. Admiraal MA, Schuring D, Hurkmans CW. Dose calculations 
accounting for breathing motion in stereotactic lung radiotherapy 
based on 4D-CT and the internal target volume. Radiother Oncol 
2008;86:55-60.

38. Boldea V, Sharp GC, Jiang SB, Sarrut D 4D-CT lung motion 
estimation with deformable registration: Quantifi cation of motion 
nonlinearity and hysteresis. Med Phys 2008;35:1008-18.

39. Heinzerling JH, Anderson JF, Papiez L, Boike T, Chien S, 
Zhang G, et al. Four-dimensional computed tomography 
scan analysis of tumor and organ motion at varying levels of 
abdominal compression during stereotactic treatment of lung and 
liver. Int J Radiat Oncol Biol Phys 2008;70:1571-8.

40. Purdie TG, Moseley DJ, Bissonnette JP, Sharpe MB, Franks K, 
Bezjak A, et al. Respiration correlated cone-beam computed 
tomography and 4DCT for evaluating target motion in 
stereotactic lung radiation therapy. Acta Oncol 2006;45:915-22.

41. Underberg RW, Lagerwaard FJ, Slotman BJ, Cuijpers JP, 
Senan S. Use of maximum intensity projections (MIP) for target 
volume generation in 4DCT scans for lung cancer. Int J Radiat 
Oncol Biol Phys 2005;63:253-60.

42. Weiss E, Wijesooriya K, Dill SV, Keall PJ. Tumor and normal 
tissue motion in the thorax during respiration: Analysis of 
volumetric and positional variations using 4D CT. Int J Radiat 
Oncol Biol Phys 2007;67:296-307.

43. Werner R, Ehrhardt J, Schmidt R, Handels H. Patient-specifi c 
fi nite element modeling of respiratory lung motion using 4D CT 
image data. Med Phys 2009;36:1500-11.


