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Abstract
In recent years, the number of patients suffering from melanoma, as the deadliest type of skin 
cancer, has grown significantly in the world. The most common technique to observe and diagnosis 
of such cancer is the use of noninvasive dermoscope lens. Since this approach is based on the expert 
ocular inference, early stage of melanoma diagnosis is a difficult task for dermatologist. The main 
purpose of this article is to introduce an efficient algorithm to analyze the dermoscopic images. The 
proposed algorithm consists of four stages including converting the image color space from the RGB 
to CIE, adjusting the color space by applying the combined histogram equalization and the Otsu 
thresholding‑based approach, border extraction of the lesion through the local Radon transform, and 
recognizing the melanoma and nonmelanoma lesions employing the ABCD rule. Simulation results 
in the designed user‑friendly software package environment confirmed that the proposed algorithm 
has the higher quantities of accuracy, sensitivity, and approximation correlation in comparison with 
the other state‑of‑the‑art methods. These values are obtained 98.81  (98.92), 94.85  (89.51), and 
90.99 (86.06) for melanoma (nonmelanoma) lesions, respectively.
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Introduction
Skin cancer is known as the most common 
and deadly diseases in the world. Based on 
a study done in the United States, about 
20% of people suffer from this cancer 
during their life.[1] Skin cancer can be 
categorized as melanoma and nonmelanoma 
ones. Melanoma is considered as the most 
dangerous type of skin cancer. Following 
to the World Health Organization report, 
approximately 70,230 people die every 
year because of the melanoma.[2] The origin 
of this cancer is in the skin epidermis 
and dermal layers. It forms from the 
accumulation of melanin seeds and its 
propagation to the outer layer of the skin. 
The nonmelanoma skin cancer generally 
begins in the basal or squamous cells. 
Direct sunlight exposure on the skin is 
the main factor of growing the basal 
cells. These kind of cancerous cells are 
completely treatable in the early stage of 
diagnosis.[2]

The first dermoscope setup was invented by 
Goldman in 1951 to evaluate the deviations 
in the skin pigmentation disorders.[3] After 

that, dermatologists used this device as a 
suitable non‑invasive tool for the skin lesions 
observation. By developing the technology, 
the digital versions of dermoscope with 
the ability of receiving and storing the skin 
images are replaced with the conventional 
ones. In such a device, by designing some 
appropriate filters, it is possible to remove 
the reflected or rescattered nonpolarized 
lights. During the imaging, the pigmentation 
of the lesion on the skin is coated with an 
oil or alcohol liquid that leads to reduce the 
skin reflections.[3,4]

Computer‑aided diagnosis  (CAD) has a 
vital role to measure a set of features in 
the dermoscopic images  (DIs).[5] CAD 
has a significant contribution to the 
dermatologists to diagnose the skin cancer 
in its early stage. To detect a skin lesion, 
a deep understanding of the various 
dermoscopic features associated with 
cancer, including individual patterns of a 
lesion such as the color and symmetry, is an 
important issue. The common configuration 
of a dermoscopic CAD includes four 
stages: preprocessing, segmentation, feature 
extraction, and classification. Among them, 
segmentation is the most difficult step in 
the CAD due to the following:
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(i)	  �It directly affects the accuracy of the other steps
(ii)	 �The transition from a lesion to a healthy area is often 

accompanied by a low contrast
(iii)	�The lesion borders usually have a fuzzy behavior and 

do not follow a particular regularity and
(iv)	�The presence of artifacts has a negative impact in the 

segmentation accuracy.

There are some works presented in the literature for the 
melanoma lesion segmentation in the DIs. In a method 
proposed by Emre Celebi et  al.[6] a seeded region growing 
was rendered that initiates with a selection of a pixel as 
the starting seed.  Afterward, the seeds are aggregated 
utilizing two criteria, homogeneity and adjacency. Proper 
selection of the initial seeds is a vital issue in this method. 
In a study by Fondn et  al.,[7] this was done using the 
mouse, as the starting point and stopping criterion can 
be determined in a good manner. In a study by Amalian 
et  al.,[8] a method was rendered based on the selection of 
the center of a homogeneous area as the starting seed, and 
then, regulating a threshold level randomly. The methods 
proposed by Fondn et al.[7] and Amalian et al.[8] have a poor 
segmentation accuracy owing to adjusting the parameters 
manually. To solve this restriction, a method was presented 
in a study by Smaoui and Bessassi[9] to adaptively select the 
starting point as well as the threshold level. Furthermore, 
for each level of growth, the adjacent pixels with similar 
properties are added to the image. With regard to the fact 
that the lesion is always darker than the healthy area of the 
skin, the seed pixel is adaptively selected as a pixel with a 
gray‑scale level that has a high similarity to its neighboring 
pixels. This characteristic is achieved by calculating the 
Euclidian or Manhattan distances between a sample pixel 
and the 5 × 5 window of its neighboring pixels.

In a study by Grana et al.,[10] lesion borders were extracted 
using the mathematical descriptors. In this method, 
first, two new descriptors, the slope of the lesion and 
the regulation degree of the lesion slope, are modeled 
mathematically. Afterward, lesion borders are recognized 
through a new algorithm based on the Catmull–Rom spline 
interpolation. In this method, the gray‑level gradient of 
the extracted points is calculated by employing the spline 
interpolation in the perpendicular direction of the spline.

In a study by Ammara et  al.,[11] a thresholding‑based 
approach was presented to melanoma lesion segmentation. 
In this approach, first, the melanoma image is segmented 
automatically by applying the Otsu thresholding method, 
and then, k points are selected to apply the spline‑based 
interpolation. This approach has suitable performance 
in the case of the contrast between the lesion and skin 
is appropriate. Nevertheless, the lesion and skin regions 
usually have overlaps in the DIs. This issue can be solved 
using the edge(area)‑based segmentation techniques. In a 
method proposed by Rubegni et  al.[12] and Zhou et  al.,[13] 
segmentation of the DIs was conducted by employing the 

Laplacian of Gaussian operator and active contour model, 
respectively.

In a study by Stoecker et  al.,[14] the granular regions were 
recognized by extracting 10 and 22 features which are 
related to the texture and color of the DIs. Some color 
features are: the mean quantities of RGB pixels, the relative 
mean values of each RGB pixels  (relR, relG, relB), the 
absolute values of RGB chromaticity, the mean value of 
G/B, the mean value of relG/relB, the luminance value that 
is defined as luminance  =  0.30 R  +  0.59 G  +  0.11 B, and 
the variance of R. In addition, some texture features are the 
average values of energy, inertia, correlation, and entropy.

In a study by Dalila et  al.,[15] by defining three types of 
features, geometrical, texture, and relative colors, the 
authors proposed an automated system based on the Ant 
colony segmentation algorithm. Although the Ant colony is 
an inherent parallelism approach which could be adapted 
to changes such as new distance; however, its probability 
distribution will be changed by iteration.

Skin cancer diagnosis based on deep neural network 
is utilized in a study by Zhang[16] which is able to 
improve the efficacy for identification of normally 
indistinguishable lesions versus clinically unknown lesions. 
Results demonstrate that the neural network architecture 
achieves higher accuracy for segmentation of melanoma 
images as compared with existing processes. However, 
this improvement leads to increase the computational 
complexity due to high training time of the deep neural 
network.

In a method proposed by Pennisi et  al.,[17] Delaunay 
Triangulation is used to extract a binary mask of the 
lesion region, without the need of any training stage. 
This algorithm uses different parameters to carry out the 
segmentation; however, most of them are related to the size 
of the images in input and to the considered skin types, 
thus they can be predefined.

A novel approach based on deformable model is proposed 
in a study by Ma and Tavares[18] to automatically segment 
the skin lesions. The proposed algorithm combines the 
information contained in DIs and defines the speed function 
based on the lightness, saturation, and color information. 
However, this study does not consider the influence of 
shape feature on the classification of the skin lesions.

In this article, we propose a new algorithm to melanoma 
segmentation that consists of four main stages [Figure  1]: 
(i) converting the image color space,  (ii) histogram 
equalization and adjusting the color space and the image 
contrast enhancement,  (iii) border extraction of the 
lesion by applying the local Radon transform  (LRT), and 
(iv) melanoma and nonmelanoma lesions recognizing 
using the ABCD rule. To the best of our knowledge, this 
is the first attempt for the melanoma segmentation utilizing 
the LRT algorithm. In the following, Section 2 contains the 
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main steps of the proposed algorithm. Simulation results in 
the designed user‑friendly software package environment 
are rendered in Section 3, and finally, Section 4 includes 
the conclusion of the paper.

Proposed Algorithm
Image color space conversion

One way to increase the contrast of an image refers to 
transferring of it to a new space, in which the image 
intensity is directly related to its main components.[19] To 
this end, first, we transfer the image color space from the 
RGB to CIE  (L*a*b), and then, the remaining processes 
are done in the sublayer L. Regulating the sublayer 
L affects the intensity of the pixels, while it maintains 
the original color of the image. The pixel quantities in 
this sublayer are set in the range of 0–100. To yield the 
appropriate image contrast, we set the intensity range of 
the pixels in accordance with the lesion and background 
contrasts based on the Otsu thresholding algorithm.[20] The 
Otsu thresholding is a method to segment an image based 
on the proper selection of an optimal threshold level t, as 
it creates the maximum uniformity in the intensity function 
of each classes, and concurrently, it minimizes the variance 
of the intensity function between the classes. We can write:

σ ω σ ω σw t t t t t2

1 1

2

2 2

2( ) = ( ) ( )+ ( ) ( ). . � (1)

Where the weights ωi are the occurrence probabilities of 
the two classes separated by the threshold level t and σ i

2  is 
the variance of these classes. Minimizing the between‑class 
variance is described through the occurrence probability of 
each class  (ωi) and the class average  (µi(t)) based on the 
following condition:
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where x  (i) is the preset value in the center of ith level of 
histogram. The values of ω2  (t) and µ2(t) are calculated 
similarly. After obtaining the optimal threshold level, we 
apply it to the sublayer L in the CIE color space.

Based on the Otsu thresholding, if the variance between 
the lesion and the background is high, the image intensity 
range should be smaller to leave out the probable lesions 
with lower luminance. On the other hand, in the case of 
small variance among the lesion and the background, the 
image intensity range should be considered large enough to 
preserve the lesion details. Consequently, the range of pixel 
intensities in this sublayer is divided by the Max Luminosity 
defined as Eq. 5. Figure 2a depicts the result of applying the 
proposed color space conversion to a sample DI.

Max  Luminosity

5  if     0.5

10 if     0.5 0.6

50 if   

=
<
< <

t
t

    0.6t >









� (5)

Histogram equalization and contrast enhancement

The second step consists of the histogram equalization 
and image contrast enhancement. Adjustment of the 
image histogram is a common technique to set the image 
intensities, resulting in contrast improvement. The goal of 
this step is to reduce the background noise as to determine 
the focal regions in the DIs. More details of the histogram 
equalization are referred from the study by Singh and 
Dixit.[21] After equalizing the histogram, the obtained image 
is multiplied again in the parameter Max Luminosity 

Figure 1: Block diagram of the proposed algorithm

Figure 2: Results of the different steps of the proposed algorithm for a 
sample dermoscopic image  (a) color space conversion,  (b) histogram 
equalization,  (c) contrast enhancement,  (d) applying the local Radon 
transform, (e) filling the holes, (f) determining the lesion border
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defined in Eq. 5 to keep the color intensities in the range of 
0–100. Figure 2b shows the result of histogram equalization 
for a sample DIs.

In the next step, the image contrast enhancement is 
performed. In many DIs, the background and foreground 
regions have a low contrast despite employing the color 
space conversion and histogram equalization. Hence, the 

goal of the contrast enhancement step is to emboss the 
embedded features in the image. In this regard, we employ 
the method proposed by Shao et  al.[22] for enhancing 
the image contrast. Let f  (x, y) represents a DI in which 
xϵ(1,w) and yϵ(1,h) demonstrate the image width and 
height, respectively. A  2D image is projected into 1D 
signal, as denoted by p, and the contrast enhanced image 
g is calculated using Eq. 6.

Figure 3: (a‑j) Results of applying the proposed algorithm for ten dermoscopic samples containing melanoma lesion
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Figure 4: The curves of (a) sensitivity,  (b) specificity, (c) approximation correlation, and (d) accuracy in the proposed algorithm and the other tested 
methods for 38 dermoscopic samples containing melanoma lesion
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where C is the degree of the contrast enhancement and set 
automatically as:
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p
N

p= ∑1  is the average value, s denotes the standard 

deviation, s2 represents the variance, and s4 is the 
fourth‑order momentum. Figure  2c shows the contrast 
enhancement result for a sample DI.

Figure 6: The curves of (a) sensitivity,  (b) specificity, (c) approximation correlation, and (d) accuracy in the proposed algorithm and the other tested 
methods for 38 dermoscopic samples without melanoma lesion
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Figure 5: (a‑j) Results of applying the proposed algorithm for ten dermoscopic samples without melanoma lesion
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Border extraction of the skin lesions by applying the 
local Radon transform

In the next step, the high‑quality image is processed by 
applying the RT to estimate the probable line angle. The 
RT of a 2D image g (x, y) is defined as below:[23]

g I x y x y d x d yρ θ δ ρ θ θ, , cos sin( ) = ( ) − −( )
−∞

∞

−∞

∞

∫∫ � (8)

Where I  (x, y) represents the gray‑scale intensity of the 
image in the pixel  (x, y). Furthermore, δ  (.) is the Dirac 
delta function. In the RT space, the intensity of each pixel 
with the coordinates of  (ρ,θ) corresponds to the integral of 
the image over a straight line with an angle of  relative to 
the x‑axis and a distance ρ from the origin.

The gray‑scale image resulted from the contrast enhancement 
step indicates an appropriate approximate version of the 
desired skin lesion. However, the key point to recognize the 
cancerous moles in such images is to accurate extraction of 
their borders, due to the irregular nature of the melanoma. To 
this end, in this article, we employ the LRT,[24] in which first, 
the entire image divides into the overlapping windows, and 
then, the RT is applied to each subwindow. This modification 
leads to reduce the probability error in the line detection in 
different angles compared to the RT without overlapping. To 
locate the RT, the square window with the length of n = 100 
and the pitch size of n/3 slides along the horizontal and 
vertical directions on the image. The disadvantage of the 
square window is its larger diameter relative to the side that 
leads to increase the occurrence probability of the maximum 
of RT over the diagonal direction with the degree of 45. 
To solve this restriction, we apply a circular mask with the 
radius of n/2 to each window.

Figure 10: The designed user‑friendly software package to classify the 
skin lesions into the benign, suspicious, and melanoma (the recognition 
result: suspicious lesion)

Figure 9: The designed user‑friendly software package to classify the skin 
lesions into the benign, suspicious, and melanoma (the recognition result: 
melanoma (cancer) lesion)

Figure 7: The quantities of ABCD features and the result of total dermoscopy 
score criteria for the four dermoscopic samples with melanoma

Figure 8: The quantities of ABCD features and the result of total dermoscopy 
score criteria for the four dermoscopic samples without melanoma
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The RT is based on the image projection for different 
angles. The projected signals with the range of 0°–180° 
have the maximum value in the angle corresponding with 
a probable lesion border. Consequently, by applying the 
RT in each window, a column that has the maximum 
quantity in its corresponding sinogram space outlines 
the angle of the line. After determining the line angle, 
a binarized mask should be created at this angle based 
on the following procedure: if we assume that there 
is a lesion border in the corresponding window, both 
the lesion border and the background pixels can be 
affected on the amplitude of the projected signal.[24] For 
normalization, first, the average of pixels intensity of the 
corresponding window should be subtracted from the 
projected signal. In the case that there is no lesion in a 
window, this difference will be zero and the mask will be 
totally black; otherwise, the initial and the end nonzero 
points of the ith column are considered as the mask 
coordinates. Next, the columns distance between the 
starting and ending points of the mask are set to 1 and 
the other regions are set to 0 in each window. Afterward, 
this distance is rotated to the specified angle, and hence, 
the binary mask will be created. By multiplying the 
obtained mask into the original image and calculating 
the average of each region, the original binarized image 
will be obtained. Finally, to create the binary mask of a 
lesion, possible holes of the binary image are filled with 
the white pixels.

One of the differences between the melanoma lesions in 
comparison with the normal moles is their diameter. More 
specifically, the lesions with a diameter more than 6  mm 
are considered as melanoma. Therefore, in the proposed 
algorithm, we remove the objects with the size <500 pixels 

through employing the four‑connected component labeling 
approach. Figures  2d‑f depict the results of applying the 
LRT, binarized image, filling the holes by white pixels, and 
detecting of the melanoma lesion border.

Skin lesions classification using the ABCD rule

The last step of the proposed algorithm comprises the 
feature extraction from the segmented image to diagnose 
the skin lesions. To this end, we conduct the ABCD rule[25] 
which was established in 1985 by a group of researchers 
at the New York University. The ABCD rule includes four 
components as:  (i) asymmetry: it evaluates the results of 
lesion symmetry,  (ii) border: it utilizes to estimate the 
lesion border,  (iii) color: it determines the number of 
colors in a lesion, and  (iv) diameter: the lesions with a 
diameter more than 6  mm are considered as melanoma. 
The symmetry feature is the most important indicator 
in the lesion description and is considered based on the 
two shape and color parameters. After extracting the 
four features related to ABCD rule, the total dermoscopy 
score  (TDS)[9] is calculated based on Eq. 9, in which each 
of the components is weighted with a coefficient.

TDS = 1.3 × A + 0.1 × B + 0.5 × C + 0.5 × D� (9)

Following the TDS criteria, the classification of the skin 
lesions into benign and malignant can be interpreted as 
below:
•	 If TDS <4.75 the skin lesion will be benign
•	 If 4.75≤ TDS ≤5.45 the skin lesion will be suspicious to 

cancerous cell
•	 If TDS >5.45 the skin lesion will be malignant.

Results and Discussion
The proposed algorithm is tested qualitatively on the DIs 
from two public datasets, the dermatology information 
system, and DermQuest.[26] The first dataset contains 
43 malignant melanomas and 26 nevi and the second 
dataset includes 76 malignant melanomas and 61 nevi. 
In this article, we used the 76 DIs including the border 
irregularities, low level of contrast, and inappropriate 
condition of imaging, in which 38 images are related 
to melanoma lesion and 38 images correspond to 
nonmelanoma lesion. Each image contains a single 
lesion of interest, which was manually segmented. 
The test infrastructure was implemented in MATLAB 
environment.

Quantitative evaluation of the proposed algorithm is 
conducted utilizing the sensitivity  (Sn), specificity  (Sp), 
precision  (P), and approximation correlation  (AC) criteria 
that are defined as follows:[20]

S
n

TP

TP + FN
= � (10)

S
p

TN

TN + FP
= � (11)

Figure  11: The designed user‑friendly software package to classify the 
skin lesions into the benign, suspicious, and melanoma (the recognition 
result: benign lesion)
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Where TP and TN represent the number of pixels correctly 
identified as melanoma and nonmelanoma lesions, 
respectively. Similarly, FP and FN represent the number of 
pixels incorrectly identified as melanoma and nonmelanoma 
lesions regions, respectively. We have utilized the above 
evaluation criteria to assess the correct detection rate. 
According to Eqs. 10 and 11, the sensitivity parameter 
provides a measure of melanoma pixels correctly identified 
as melanoma region. Furthermore, the specificity parameter 
provides a measure of background pixels correctly detected 
by the proposed algorithm as the background region. 
Finally, the precision parameter shows the detection rate of 
the system.

Table  1 shows the quantitative values of accuracy, 
specificity, and sensitivity for ten dermatoscopic samples 
containing melanoma lesion. In this table, n represents the 
nonoverlap window and n/10 denotes the 90% overlapping. 
As it can be seen, the sensitivity increases in accordance 
with raising the overlapping step. The highest value of the 
sensitivity corresponds to the sliding step of n/10; however, 
this improvement causes more computational complexity. 
From Table  1, we can conclude that the sliding step of 

n/3 has the higher sensitivity compared to the nonoverlap 
window. For instance, the average sensitivity improves by 
the factor of 26.18% in comparison with the nonoverlap 
window, by choosing the sliding step equal to n/3. Whereas, 
the obtained average sensitivity, when the sliding step is 
equal to n/10, improves approximately 0.83% compared 
to the situation that the sliding step is chosen n/3. Based 
on this observation, we have selected the sliding step of 
n/3 in our proposed algorithm for the remaining processes. 
Figures 3 depict the final results of the proposed algorithm 
applied on the ten dermoscopic samples. In all of these 
figures, we have selected the window length and the sliding 
step equal to n = 100 and n/3, respectively.

To prove the generality of the proposed algorithm in the 
melanoma lesion segmentation, we compared it with the 
other tested methods including the local Otsu thresholding, 
LRT without overlap, discrete wavelet transform with Haar 
mother wavelet, and global RT. All the tested algorithms 
were implemented under the same conditions, as the 
preprocessing step is similar for all them. In Table  2, the 
quantities of precision, sensitivity, specificity, and AC 
represent for the 38 dermoscopic samples with the 
melanoma lesion. These parameters are also shown in 
Figure  4. As it is obvious, the sensitivity and AC improve 
by the factor of 2.64  (1.48), 1.34  (1.20), 1.23  (2.05), and 
1.11  (1.02) in our proposed algorithm compared to the 
global RT, LRT without overlap, local Otsu thresholding, 
and discrete wavelet transform methods, respectively. 
As it can be seen from Figure  4, two methods, the LRT 
without overlap and local Otsu thresholding, are superior 
compared to the global RT. To be specifically in the case 
of employing the global RT to obtain the optimal threshold 
level, the melanoma lesion is not recognized in the six 
dermoscopic samples. This phenomenon confirms that 
selecting a threshold level alone is not appropriate for 
the entire DI. In the proposed algorithm, the angle lines 
are orientated similar to the discrete wavelet transform 
approach. Furthermore, by converting the image into the 
binary version and applying the overlapping windows, 
the melanoma recognition rate is improved, as it can be 
observed from Table 2.

The proposed algorithm is applied on the ten dermoscopic 
samples without melanoma lesion and the results are 
shown in Figure  5. Furthermore, the average quantities 

Table 2: Quantitative values of accuracy, sensitivity, specificity, and approximation correlation for 38 dermatoscopic 
samples containing melanoma lesion

Accuracy (%) Sensitivity (%) Specificity (%) AC (%)
Radon 95.69 35.84 99.56 61.27
Local Radon without overlap 96.82 70.51 99.12 76.00
Local Otsu thresholding 98.07 76.94 99.82 86.38
DWT 98.83 84.98 99.55 88.94
Proposed method 98.81 94.85 99.23 90.99
AC – Approximation correlation; DWT – Discrete wavelet transform

Table 1: Quantitative values of accuracy, specificity, and 
sensitivity for ten dermatoscopic samples containing 

melanoma lesion
Step Accuracy (%) Specificity (%) Sensitivity (%)

n n/3 n/10 n n/3 n/10 n n/3 n/10
NM61_orig 97.4 99.6 99.2 99.91 99.64 99.19 55.14 98.39 98.70
SSM15_orig 99.4 99.4 99.3 99.45 99.47 99.29 97.59 98.54 98.54
SSM18_orig 95.6 99.0 97.9 99.73 99.54 98.29 57.5 94.10 99.89
SSM21_orig 99.4 99.6 99.6 99.96 99.35 99.95 66.38 78.89 78.82
SSM23_orig 98.3 98.3 98.6 99.08 98.32 98.60 55.96 99.34 99.34
SSM31_orig 88.9 96.5 95.4 99.89 99.88 98.46 53.08 85.28 85.52
SSM36_orig 88.1 98.0 97.3 99.90 99.52 98.24 51.14 93.35 94.47
SSM58_orig 94.1 98.0 96.3 99.28 97.85 95.85 58.81 98.68 99.31
SSM62_orig 98.5 98.9 98.6 98.77 98.75 98.51 93.78 99.5 99.65
SSM33_orig 95.9 98.3 98.0 98.14 99.36 97.83 64.63 99.70 99.84
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of precision, sensitivity, specificity, and AC related to the 
whole 38 dermoscopic samples are depicted in Table  3 
and Figure  6. The amounts of sensitivity and AC in our 
proposed algorithm improve by the factors of 1.30  (1.15), 
1.23  (1.05), and 1.21  (1.32) in comparison with the LRT 
without overlap, local Otsu thresholding, and discrete 
wavelet transform methods, respectively. Note that, the 
functionality of the discrete wavelet transform approach 
is lower than the other methods in recognizing the 
nonmelanoma lesion; whereas as we discussed previously, 
this method outperformed the other tested approaches in the 
melanoma lesion diagnosis. The reason of this discrepancy 
refers to the prominent borders of the melanoma lesions. 
From Table  3, we can conclude that the performance of 
the proposed algorithm is more suitable for the images 
with the melanoma lesion compared to the nonmelanoma 
one. The main advantage of the proposed algorithm is its 
robustness against the discrepancy in the skin texture, skin 
color, presence or absence of hair, and even the weak or 
strong borders on the skin, for both the melanoma and 
nonmelanoma DIs.

Figures 7 and 8 show the extracted features, symmetry (A), 
border  (B), color  (C), diameter  (D), and the TDS criteria, 
for both the dermoscopic samples with  (out) melanoma, 
respectively. The amounts of TDS for the four‑selected 
samples of Figures  7 and 8 are 10.35  (4.37), 6.88  (2.74), 
7.71  (3.01), and 8.28  (4.57), respectively. Table  4 shows 
the number of samples diagnosed as the benign, suspicious, 
and melanoma lesions in the DIs with melanoma that are 
labeled as malignant lesions. Similarly, Table 5 depicts the 
number of samples diagnosed as the benign, suspicious, 
and melanoma lesions in the DIs without melanoma that 
are labeled as benign lesions. The number of corrected 
samples in these two states for the proposed algorithm, 
discrete wavelet transform, local Otsu thresholding, and 
LRT without overlap are 28  (26), 25  (20), 24  (24), and 
20  (22), respectively. Figures  9‑11 depict the designed 
user‑friendly software package to classify the skin lesions 
into the benign, suspicious, and melanoma ones. These 
packages were designed in MATLAB environment and 
performed on a computer with a 1.6 GHz processor 
and 8 GB random‑access memory. In these packages, 
extraction of ABCD features is done separately and the 
amount of TDS criteria is calculated automatically for 
each image, and eventually, the result is announced as a 
separate message.

Table 3: Quantitative values of accuracy, sensitivity, specificity, and approximation correlation for 38 dermatoscopic 
samples without melanoma lesion

Accuracy (%) Sensitivity (%) Specificity (%) AC (%)
Local Radon without overlap 97.95 68.75 99.36 74.36
Local Otsu thresholding 98.60 72.61 99.83 81.41
DWT 99.14 67.64 99.87 70.92
Proposed method 98.92 89.51 99.35 86.06
AC – Approximation correlation; DWT – Discrete wavelet transform

Conclusion
In this article, an efficient algorithm including preprocessing, 
main processing, and refinement procedure stages was 
proposed to diagnose the melanoma lesions in the DIs. In the 
main processing step, by applying the LRT algorithm as well 
as correctly detection of the angle of the melanoma border, the 
best threshold level was captured to binarize the image. The 
main advantage of the proposed algorithm is its robustness 
against the discrepancy in the skin texture and presence or 
absence of hair, for both the melanoma and nonmelanoma 
DIs. The inability of diagnosing the lesions with the similar 
color intensities in the border and background regions is one 
of the restrictions of the proposed algorithm.
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Table 5: The number of samples diagnosed as the benign, 
suspicious, and melanoma lesions based on the total 

dermoscopy score criteria in the dermoscopic images 
without melanoma that are labeled as benign lesions

Dataset_2 (not melanoma) Benign 
skin lesion

Suspicious Melanoma

Local Radon without overlap 22/38 3/38 13/38
Local Otsu thresholding 24/38 6/38 8/38
DWT 20/38 0/38 18/38
Proposed method 26/38 4/38 8/38
DWT – Discrete wavelet transform

Table 4: The number of samples diagnosed as the benign, 
suspicious, and melanoma lesions based on the total 

dermoscopy score criteria in the dermoscopic images 
with melanoma that are labeled as malignant lesions

Dataset_1 (melanoma) Benign 
skin lesion

Suspicious Melanoma

Local Radon without overlap 13/38 5/38 20/38
Local Otsu thresholding 14/38 0/38 24/38
DWT 11/38 2/38 25/38
Proposed method 8/38 2/38 28/38
DWT – Discrete wavelet transform
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