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Abstract
With the advent of complex and precise radiation therapy techniques, the use of relatively small 
fields is needed. Using such field sizes can cause uncertainty in dosimetry; therefore, special 
attention is required both in dose calculations and measurements. There are several challenges in 
small‑field dosimetry such as the steep gradient of the radiation field, volume averaging effect, lack 
of charged particle equilibrium, partial occlusion of radiation source, beam alignment, and unable 
to use a reference dosimeter. Due to these challenges, special dosimeters are needed for small‑field 
dosimetry, and this review article discusses this topic.
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Introduction
With the appearance of new techniques 
such as intensity‑modulated radiation 
therapy (IMRT), volumetric‑modulated 
radiotherapy (VMAT), stereotactic body 
radiotherapy (SBRT), and stereotactic 
radiosurgery (SRS), applying relatively 
small fields that are either dynamic or static 
is needed. For this purpose, there have been 
many developments in treatment machines. 
Small fields are usually defined between 
4  cm  ×  4  cm and 0.3  cm  ×  0.3 cm.[1,2] 
Using such field sizes can cause uncertainty 
in dosimetry; therefore, special attention 
is required in both dose calculations and 
measurements. It is notable that dosimetry 
protocols, such as the International Atomic 
Energy Agency  (IAEA) TRS‑398,[3] have 
provided guidelines for a reference field 
size (typically 10  cm  ×  10  cm). However, 
the majority of reference condition 
parameters, such as perturbation correction, 
stopping power ratio, gradient, and fluence 
corrections, are not applicable to small 
fields. To overcome nonreference fields 
used by dedicated machines, the IAEA[4] 
has provided a framework to manage the 
issues related to small‑field dosimetry.

There are several challenges in small‑field 
dosimetry, including the steep gradient 
of the radiation field, volume averaging 
effect, lack of charged particle equilibrium, 

partial occlusion of radiation source, beam 
alignment, and unable to use a reference 
dosimeter, which will be mentioned in 
the next section. Due to these challenges, 
special dosimeters are required for 
small‑field dosimetry which is the main 
subject of this review article.

Challenges in Small‑Field Dosimetry
Steep gradient of the radiation field

Modern treatment techniques used in 
radiotherapy  (such as IMRT, VMAT, 
and SRS) deliver the conformal dose 
distribution and high‑dose radiation to 
a tumor. The high conformity of the 
prescribed dose with the planning target 
volume (PTV) can effectively kill cancerous 
cells while preserving the surrounding 
healthy tissue.[5‑7]

In clinic, the dose distribution obtains 
using a treatment planning system  (TPS). 
A  TPS for calculation of accurate dose 
distribution needs to accurate input data, 
such as percentage depth dose  (PDD) 
curves, profiles, and output factors. In the 
beam profiles, the distance between the 
80% and 20% dose of the central axis 
defined as the penumbra region. In the 
penumbra region, measured dose is crucial 
due to the high‑dose gradient. Therefore, it 
is necessary to use high spatial resolution 
detectors to obtain the accurate beam 
profile in the high gradient dose regions 
such as small fields.[7]
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Volume averaging effect

Volume averaging occurs when the dosimeter dimension 
is large in compared with the radiation field size. In high 
gradient dose regions such as small fields, the dose value 
changes significantly over the dosimeter’s active volume. 
The detector reading is averaged throughout the active 
volume; however, only a portion of this volume is exposed 
to radiation.[8] Therefore, the measured beam profiles are 
artificially flattened.[9] Due to this effect, the dosimeter 
measures a lower dose than the correct value near the field 
center, and also this effect overestimates the dose beyond 
the field edge.[10]

Another important factor in volume averaging is the 
spreading of the penumbra, which is very important in 
measuring beam profiles  [Figure  1].[11] Since an accurate 
beam profile is one of the required parameters for TPSs, 
these inaccuracies in measurements become a concern in 
commissioning and quality assurance.[11‑13] Therefore, using 
small size detectors with a high resolution is desirable to 
avoid volume averaging in small photon fields.

Lack of charged particle equilibrium

If the number of charged particles leaving a volume is same 
with the number entering, charged‑particle equilibrium 
(CPE) happens. In this condition, the absorbed dose is 
equal to the collision kerma. If the lateral range of electrons 
is larger than the field size, lateral electronic disequilibrium 
(LED) can occur.[14] In this condition, the delivered dose to 
the active volume of the detector is not equal to the dose 
created by the same electrons from the opposite edge in 
the lateral direction. Consequently, the anticipation of the 
deposited dose to the tumor is unreliable.[15]

The lateral electronic equilibrium effect is most notable 
when there is tissue heterogeneity, such as between lung 
and bone.[16] Because of the high electron range at lung 
tissue than that in water, the LED effect in the lung tissue 
leads to an increase in the size of the penumbra region, 

increasing the underdosage of the PTV at the edge of the 
radiation field.[17]

In small fields, the lateral range of electrons usually 
is larger than the field size. Therefore, the lack of 
lateral CPE is important, especially in the presence of 
heterogeneity because the coverage of the PTV with the 
optimized isodose is required. Heterogeneity of the brain 
is not often investigated in SRS; however, in SBRT, the 
dose perturbations in and beyond air cavities, lung tissue, 
and bone must be considered[18] because neglecting the 
tissue heterogeneity in dose calculation may lead to 
errors in dose calculation and can reduce tumor control 
probability.[19]

Partial occlusion of radiation source

Partial occlusion of the radiation source happens because 
of the collimating output beam of the linear accelerator 
at a size approximately the same or smaller than the 
source size, as viewed from the detector. In this condition, 
only a portion of the source is seen by the dosimeter. 
Resultantly, the output detected will be smaller compared 
with that in field sizes where the detector sees the whole 
source.[20] When partial occlusion of the radiation source 
occurs, conventional methods to define the field size, such 
as full width at half maximum (FWHM), are inappropriate 
because the field size specified by FWHM is larger than the 
actual field size [Figure 2].[20]

Beam alignment

The correct alignment of the dosimeter is essential 
for small‑field dosimetry, because there is no flat area 
(the region that includes doses over  80% of the central 
beam axis) in the center of small fields, in contrast to large 
fields. Focal spot shift and displacement in the collimator 

Figure  1: Volume averaging effect of dosimeters/detectors used in 
small‑field dosimetry

Figure 2: For sufficiently large field sizes, the full width at half maximum 
of dose profiles is used correctly to determine field sizes because the field 
borders will be at approximately 50% of the dose level (a). When the field 
size is of the same order as the charged particle lateral diffusion distance, 
the penumbra region from opposing field edges overlap, leading to a small 
error in determining the field size from the full width at half maximum (b), 
but breaks down entirely for very small fields as the obtained curve has a 
lower maximum and hence its half value will be pushed outward from the 
correct position, leading to an overestimated field size  (c). Reproduced 
with permission from Das et al., 2008
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rotation axis or gantry rotation axis are factors that can cause 
errors related to misalignments in SRS.[21] Misalignment 
can lead to errors in dose measurement. Paskalev et  al. 
showed that a 0.2‑mm error in correct alignment could 
lead to a 5% shift in a measured dose. To prevent these 
errors, it is necessary for the dosimeter to be aligned to 
the center of the field, so it is performed by measurement 
of beam profiles at several depths.[22] As a result, having 
a high spatial resolution detector seems to be necessary in 
small‑field dosimetry.

Unable to use a reference dosimeter

In relative dosimetry, such as measurement of PDD and 
beam profiles, a reference dosimeter is required to correct 
the variation of the linear accelerator  (linac) output. This 
dosimeter is usually located in the corner of the radiation 
field. Since there is insufficient space to insert the reference 
detector in small fields, the perfect solution would be 
correcting the fluctuations of the linac output. This problem 
can be solved using a monitor chamber accelerator as a 
reference dosimeter if this signal is available. Another 
way is to measure the dose without a reference dosimeter 
if the linac output is stable. To assess the stability of the 
linac output, the PDD and profile beam is measured 
several times. Another solution is to use a dosimeter that 
is located beyond the radiation field. In this condition, 
the noise in signals to the reference dosimeter increases 
because the dose rate outside of the radiation field is very 
low. Consequently, this effect will lead to an increase in the 
noise of measurements. As a result, an ionization chamber 
with a large active volume is required to be used as a 
reference detector because of their high response and low 
noise. Wurfel suggested using ionization chambers with 
active volumes larger than 2.4 cm3 and emphasized that 
these detectors be located as close as possible to the beam 
border beyond the radiation field.[22]

Various Dosimeters Used in Small‑Field 
Dosimetry
According to the abovementioned challenges, selecting 
a detector with good performance in small fields is 
difficult. The necessary properties of a desired detector 
are high spatial resolution, high signal  (low noise), low 
energy dependence, low directional dependence, water 
equivalence, high stability, and easy to use clinically. 
Certainly, there is no standard dosimeter for small 
fields because no detector has all the aforementioned 
properties. Commonly used dosimeters in small fields 
are ionization chambers,[23,24] films,[25] thermoluminescent 
dosimeters  (TLDs),[26] polymer gels,[27] metal oxide 
semiconductor field effect transistors  (MOSFETs),[28] 
diamond detectors,[29] silicon diodes,[30] alanine 
dosimeters,[31] and Monte Carlo  (MC) simulations,[32,33] 
among others. The advantages and disadvantages of these 
detectors will be discussed next.

Radiographic and radiochromic film

Film dosimeters are good detectors to measure the dose 
distribution in two dimensions. These detectors are divided 
into two categories: radiographic and Gafchromic film. 
Radiographic films, such as extended dose range  (EDR2), 
have high spatial resolution that is appropriate to spatially 
measure the penumbra regions on beam profile curves in 
small fields. Nevertheless, the main problem of radiographic 
films is their nonconstant response with spectral variation 
and reproducibility.[34] Furthermore, processing conditions 
and the densitometer used to read out the dose influence 
the radiographic film response.[35,36] Perucha et  al. reported 
that it is difficult to control the processing phase such that 
it can limit the use of radiographic films in small fields.[37]

With the development of radiochromic films, several 
problems related to radiographic films have been solved. 
The radiochromic films are self‑developed and need no 
chemical processing to obtain an image of the radiation 
dose distribution.[38] These films are insensitive to ambient 
light and do not need a darkroom for their processing.[39] 
In megavoltage beam range, radiochromic films are almost 
tissue equivalent and reveal little energy dependence. 
Nevertheless, in kilovoltage beam range, these films 
represent varying degrees of energy dependence which it 
also depends on their composition.[38,40] Furthermore, this 
type of film can be immersed in water. Although some 
studies have shown that radiochromic films are a suitable 
detector for small‑field dosimetry,[41‑44] their nonlinear 
response in the high dose per fraction and dose rate used 
in SRS[45] is one of their drawbacks. Furthermore, read 
out the process of radiochromic films is a disadvantage; 
as according to the manufacturer’s notes, it is necessary to 
wait up to approximately 48 h after exposure of the film to 
ensure full‑color development.[39]

Diode detector

Diodes are another type of detector used in small‑field 
ionizing radiation dosimetry. The physics and operation 
of these detectors have been described elsewhere.[46] The 
energy required to create an electron‑hole pair in the 
silicon diodes is 3.6 eV, a value that is much smaller than 
the energy required to generate an ion pair in air; so the 
sensitivity of diodes are higher than ionization chambers. 
The diodes can be produced at a small size due to their 
high sensitivity per volume. The diodes have been widely 
used in small‑field dosimetry due to their real‑time readout, 
high spatial resolution, and small size.[47]

Although some studies have recommended using diodes 
to measure dose distribution in narrow fields, diodes have 
some disadvantages such as dependence on dose rate, 
energy, and direction.[48,49] Since the angular distribution 
of electrons and scattered photons alters with depth and 
distance from the central axis, the directional dependence 
is vital in measuring beam profiles and PDDs.[50] Another 
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disadvantage of these detectors is their energy dependency; 
some studies have shown an overestimation of low‑  and 
medium‑energy photons. As a result, shielded diodes were 
designed to reduce the effect of low‑energy photons.[51]

An underestimation can occur when photon scattering 
is poor because of the high absorptivity of the shield 
material.[52] In contrast, in cases without lateral electron 
equilibrium, silicon diodes will provide an overestimation 
because of the higher density of silicon compared 
with water.[50] Furthermore, this effect is more notable 
in shielded diodes due to the high‑density shielding 
material.[53] Therefore, in small fields where the lateral 
electron equilibrium is degraded and there are few 
low‑energy scatter photons, the use of unshielded diodes is 
recommended.

Diamond detectors

Diamond detectors are solid state and their sensitive 
volume is composed of natural diamond.[46] They are water 
equivalent due to the similarity of carbon’s atomic number 
to tissue. Some studies in small fields have illustrated 
the suitability of these detectors in measuring dosimetric 
parameters due to their small size, high‑dose response, and 
directional independence.[29,54‑56]

However, the diamond detectors have some disadvantages. 
Sauer and Wilbert showed that diamond detectors have 
significant energy dependence. They attributed this effect 
to the contact material and construction of the detector.[57] 
Moreover, these detectors demonstrate a significant dose 
rate dependence and a correction factor should be 
considered to correct this problem.[58,59]

Metal oxide–silicon semiconductor field‑effect transistor

MOSFET detectors are widely used for dosimetry in small 
fields because of their small active area and direct reading 
ability compared with some dosimeters, such as TLDs, 
that require prepreparation and postprocessing.[28,60‑62] In 
the megavoltage range of energy, MOSFETs are energy 
independent. Furthermore, these dosimeters are dose rate 
independent.[63]

The major disadvantage of MOSFETs is their 
angular dependency that can lead to uncertainties in 
dosimetry.[64,65] A solution for this problem is obtaining 
quantitative correction factors in the commissioning stage. 
MOSFET represents a temperature dependency and need to 
the correction factor if applied at a temperature different 
from the temperature that are calibrated. This dependency 
disappears if used of the dual‑MOSFET‑dual‑bias 
detector.[66]

Thermoluminescent dosimeter

TLDs are small crystals that according to 
thermoluminescence phenemon can measure ionizing 
radiation. When the crystal is heated the measured intensity 

of light emitted from crystal related to absorbed dose.[67] 
Special types of TLDs can also be applied in the dosimetry 
of small fields. Due to the advantages, such as high spatial 
resolution and dose response, TLDs provide a promising 
opportunity to measure the absorbed dose in a small 
field.[68] However, there are several drawbacks including 
cost, time requirement, energy dependence, long waiting 
periods before reading, and water nonequivalence.[68,69] 
Furthermore, it has been shown that TLD dosimeters are 
not appropriate in fields smaller than 10 mm in diameter.[70] 
The dependence of the TLD response on dosimeter size 
and beam quality has been previously studied.[71‑76]

A special type of TLD is micro‑TLD. They can be applied 
to determine the dose in a region based on their size, 
i.e., 1  mm  ×  1  mm  ×  1  mm. The size of these TLDs is 
a limitation on their accuracy in locations where the dose 
can vary rapidly between regions separated by only small 
distances.[41] Another type of TLD is TLD‑100, which has a 
linear dose response at doses lower than 1 Gy. In addition, 
they are beam energy dependent; with regard to 60Co, 
energy correction factors are 1.011 and 1.023 for 6 MV and 
25 MV X‑rays, respectively.[26]

Recently, optically stimulated luminescence dosimeters 
have become an acceptable system for dosimetry. In this 
system, an optical signal proportional to absorbed dose is 
generated when the irradiated crystal  (Al2O3 doped with 
carbon) is exposed to light.[77] These dosimeters have 
dosimetric characteristics  (such as linearity, dose rate, 
and beam energy dependence) similar to TLDs. OSL in 
comparison with TLD has important advantages such as 
high sensitivity  (over the wide range of dose value and 
dose rate values applied in radiotherapy) and quick readout 
times.[78]

Gel dosimeter

Gel dosimeters are attractive detectors for the 
determination of dosimetric parameters in radiotherapy 
because of their soft‑tissue equivalence and radiation 
direction independence. These dosimeters are considered 
as both a phantom and detector,[79,80] and they do not 
disturb the radiation field. Furthermore, they can measure 
three‑dimensional dose distributions.[81] These detectors 
are divided into three categories: Fricke, polymer, and 
radiochromic gels.[6] Fricke gels are highly reproducible 
and easy to prepare than other gel dosimeters, but 
diffusion in the gel is a disadvantage.[82,83] Polymer gels are 
high‑sensitivity dosimeters without any diffusion issues; 
however, fabrication of these detectors is difficult due to 
their sensitivity to the presence of oxygen.[84] Although 
these dosimeters cannot be introduced as a standard 
dosimeter due to issues concerning repeatability and their 
requirement for advanced data processing techniques, some 
reports suggest that they are suitable for measuring the 
relative output factor, beam profile, and dose distributions 
in small fields because of their high spatial resolution and 
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lack of issues concerning positioning.[10,29,85‑87] Radiochromic 
gel dosimeters are insensitive to oxygen, have desirable 
diffusion rates, and can readout by optical methods.[6,88,89] 
These dosimeters are new compared to other gel dosimetry 
systems and need to perform further research.

Alanine

One of the techniques used for dosimetry in radiotherapy 
is using an alanine readout with electron paramagnetic 
resonance  (EPR) or electron spin resonance  (ESR). These 
dosimeters have water equivalence, energy independence, 
nondestructive reading, low fading, and small detector 
size. In addition, they have a linear dose response.[90,91] In 
this technique, free radicals generated from the interaction 
between radiation and media are detected by an amino 
acid, alanine; the delivery dose is then measured using 
EPR spectroscopy.[92] The EPR signals have to be calibrated 
through the ion chamber for absolute dosimetry.

Some researchers have used alanine/K‑Band minidosimeters 
(miniALAs) to measure the dosimetric parameters in small 
fields and have concluded that miniALAs are suitable in 
determining the accurate dose.[31,93,94] Recently, alanine has 
been used to verify advanced radiotherapy techniques such 
as IMRT and radiosurgery.[95,96]

Plastic scintillation detectors

Plastic scintillation detectors  (PSDs) have attractive 
properties including water equivalency, high spatial 
resolution, energy and dose rate independence, and linear 
dose response. Production of Cherenkov light is the main 
disadvantage in dosimetry with PSD‑based systems. This 
light is generated when an optical fiber is placed in the 
radiation field. To solve this drawback, the light should be 
removed from the main signal.[97] Recently, PSDs have been 
used in modern radiation therapy modalities such as IMRT 
and SRS.[98] Morin et  al. showed that PSDs are suitable 
detectors that can be introduced as reference detectors for 
beam characterization and quality assurance consideration 
in radiosurgery.[99]

Ionization chambers

Ionization chambers are used in radiation therapy 
dosimetry because of their excellent dose response, dose 
rate independence, low directional dependence, and the 
wide research base behind them.[100] However, problems 
in measurement occur when the size of these detectors is 
bigger than the size of the irradiated field.[101] Therefore, 
their application in small‑field photon dosimetry is limited. 
The limiting factors in using the ionization chambers are 
the detector size and lack of lateral electronic equilibrium 
effects.[102] The ion chambers have an underestimating 
response at very small fields and this underestimating 
response is enhanced with the increment of the active 
volume chamber. Since to measure the beam profiles, 
especially in the penumbra region requires a high‑resolution 

detector, it seems that ionization chambers are not well 
suited for small‑field measurements.[22]

The pinpoint is a type of ion chamber with a tiny active 
volume (<0.1 cm3) that is specifically designed for 
measuring relative beam profiles in small photon fields. 
For the measurement of absolute doses, this chamber must 
be calibrated against a Farmer chamber. It is noteworthy 
that these detectors do not have stem and polarity effects 
because of the very small sensitive volume.[101,103,104] The 
pinpoint underestimates output factors in very small fields 
because of volume averaging. Pantelis et  al.[105] observed 
up to a 10% difference in measuring the output factor for a 
5‑mm beam.

Monte Carlo Simulation in Small‑Field 
Dosimetry
MC simulation is considered as a strong and trustworthy 
tool when experimental measurements are not feasible 
spatially in small fields because beam characterization in 
these fields by each of the detectors is unreliable, due to 
volume averaging effects and lack of lateral electronic 
equilibrium. Using MC simulations in small fields, the 
dosimetric parameters  (e.g., output factor, PDD curves, 
beam profiles) can be characterized, as well as calculating 
the dosimeter correction factors in predicting treatment 
planning requirements. The generally high level of 
accuracy, flexibility and the fact that the approximations 
employed in MC methods are far fewer than those 
implemented in TPS, all make MC methods attractive 
for use in medical physics. Furthermore, MC calculations 
are able to calculate doses to the media directly, thus 
circumventing the need for such complex corrections. 
This is particularly relevant for small‑field dosimetry. 
In addition, when the complexities of small fields and 
proximity to inhomogeneous media are both present, as 
is the case for SBRT and individual beamlets in IMRT, 
MC methods become increasingly useful. Nevertheless, 
the main drawback of MC methods is the uncertainty 
in clinical practice due to the requirement of extensive 
computing time. In the other word, the greatest limitation 
of MC calculations is, in general, inefficiency; as this is 
particularly critical in a clinical environment, where it 
is not feasible for treatment planning to require hours or 
days, and commercial TPSs dubbed as MC algorithms 
consequently employ significant approximations to this 
end. While MC calculations are in general excellent 
in predicting measurements, one needs to be careful 
to understand the code and its implementation. This is 
particularly important as users of a commercial planning 
system are often not able to commission a beam model 
themselves but rely on the manufacturer to perform this 
task based on data provided by the user. This means that 
the user must ensure the model is actually applicable to 
all relevant clinical scenarios. Other issues with the use of 
MC are the conversion of computed tomography numbers 
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to materials and the fact that many systems default to 
a relatively large dose calculation grid which is not 
appropriate for small‑field dose calculations.

Conclusion
The major conclusion extracted from the present study is that 
there is currently no dosimeter that has been all properties 
required for dosimetry in the small fields. Therefore, it 
seems to be logical to use several detectors instead of a 
single detector to obtain the required data for acceptance, 
commissioning, data entry into TPSs, and periodic quality 
assurance, because each detector has limitations related to 
themselves, for example, volume averaging in ionization 
chambers, energy dependency in diodes, and angular 
dependency in MOSFETs. In the clinic, depending on the 
characteristics required, a suitable dosimeter can be selected. 
Furthermore, in terms of sensitivity: diode and MOSFET, 
in terms of resolution: film, in terms of online readout: 
ionization chambers, MOSFET and diode and as well as 
from the point of view water equivalency: gel dosimeter can 
be considered as a good option in the small‑field dosimetry.
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